Supporting Information

Enhancing Photocatalytic Efficiency and Stability of CsPbBr₃ Nanocrystals for Visible-Light Driven Aerobic Diaryl Thio/Seleno Etherification

Ashis Mathuri[†], Buddhadeb Pal[†], Milan Pramanik, Anupam Manna* and Prasenjit Mal*

School of Chemical Sciences, National Institute of Science Education and Research (NISER)

Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni,

District Khurda, Odisha 752050, India.

*Corresponding author (s): Prasenjit Mal, E-mail: pmal@niser.ac.in; and Anupam Manna,

Email: anupammanna@niser.ac.in

[†]Equal contributing authors.

Content

Experimental section	Page Number
Fig. S1. PL lifetime decay of CsPbBr ₃ NCs	S3
Table S1. Summary of fitting results for CsPbBr3 perovskites	S3
Fig. S2. Cyclic voltammetry of CsPbBr ₃ NCs	S4
Fig. S3. PL spectra of CsPbBr ₃ NCs in hexane and acetonitrile	S4
Fig. S4. PL quenching of CsPbBr ₃ NCs in MeCN	S5
Fig. S5. PL quenching of CsPbBr ₃ NCs in MeCN and O ₂ atmosphere	S6
Fig. S6. PL lifetime decay of CsPbBr ₃ NCs in ACN and O ₂	S6

Table S2. Summary of fitting results for CsPbBr ₃ perovskites	S7
Fig. S7-S10. PL quenching of CsPbBr ₃ NCs in ACN and TMB	S7-S10
Fig.11. Stability of CsPbBr ₃ -DBIA in different polar solvents	S10
Fig. S12. Cyclic voltammetry of (a) TMB and (b) Disulphide	S11
Fig. S13. UV-Vis spectroscopy for H_2O_2 generation	S11
Synthetic procedure	S12-S14
Table S3. The Reaction Condition Optimization	S14-S15
Control Experiment	S15-S16
Crystal measurement	S16-S17
Characterisition Data of organic molecule	S18-S24
References	S25
NMR SPECTRA	S26-S49
Light setup views	S50-51

Fig. S1. PL lifetime decay of (a) DBIA-CsPbBr₃ (b) NBA-CsPbBr₃ (c) DBHT-CsPbBr₃ (d)

NBS-CsPbBr₃

Fable S1. Summary	of fitting	results for	CsPbBr ₃	perovskites.
--------------------------	------------	-------------	---------------------	--------------

Sample	α_1	τ_1	α_2	τ2	α3	τ3	τ_{av}
Name		(ns)		(ns)		(ns)	(ns)
DBIA- CsPbBr ₃	0.263 (37.1%)	1.85	0.321 (45.3%)	6.71	0.125 (17.6%)	19.41	12.5
NBA- CsPbBr ₃	0.094 (50.0%)	0.7	0.082 (43.6%)	2.71	0.012 (6.4%)	20.9	10.2
DBHT- CsPbBr ₃	0.185 (92.5%)	0.85	0.011 (5.5%)	4.17	0.004 (2.0%)	21.27	7.4
NBS-	0.011	0.93	0.084	3.72	0.103	17.93	9.7

CsPbBr ₃	(5.5%)	(42.4%)	(52.0%)	

Fig. S2. Cyclic voltammetry of CsPbBr₃

CsPbBr3 in Hexane and Acetonitrile

Fig. S4. PL quenching of (a) DBIA-CsPbBr₃, (b) NBA-CsPbBr₃, (c) DBHT-CsPbBr₃, (d)

NBS-CsPbBr₃ in ACN.

Fig. S5. PL quenching of (a) DBIA-CsPbBr₃, (b) NBA-CsPbBr₃, (c) DBHT-CsPbBr₃, (d)

NBS-CsPbBr3 in ACN and O2 atmosphere.

Fig. S6. PL lifetime decay of DBIA-CsPbBr₃ in ACN and O₂.

Experiments	α1	τ_1	α2	τ2	α3	τ3	α4	τ4	τ_{av}
		(ns)		(ns)		(ns)		(ns)	(ns)
DBIA-CPB in ACN	0.094	0.697	0.082	2.71	0.049	8.15	0.012	26.98	12.63
DBIA-CPB in ACN +O ₂	0.167	0.72	0.094	2.65	0.046	7.88	0.011	24.93	10.43

Table S2. Summary of fitting results for CsPbBr₃ perovskites.

Fig. S7. PL quenching of (a) DBIA-CsPbBr₃, (b) NBA-CsPbBr₃, (c) DBHT-CsPbBr₃, (d)

NBS-CsPbBr $_3$ in ACN and 1,3,5-Trimethoxybenzene.

Fig. S8. PL quenching of (a) DBIA-CsPbBr₃, (b) NBA-CsPbBr₃, (c) DBHT-CsPbBr₃, (d)

NBS-CsPbBr₃ in ACN and 1,3,5-Trimethoxybenzene.

Fig. S9. PL quenching of (a) DBIA-CsPbBr₃, (b) NBA-CsPbBr₃, (c) DBHT-CsPbBr₃, (d)

NBS-CsPbBr₃ in ACN, 1,3,5-Trimethoxybenzene and O₂ atmosphere.

Fig. S10. PL quenching of (a) DBIA-CsPbBr₃, (b) NBA-CsPbBr₃, (c) DBHT-CsPbBr₃, (d)

NBS-CsPbBr₃ in ACN, 1,3,5-Trimethoxybenzene and O₂ atmosphere.

Fig. S11. Stability of CsPbBr₃-DBIA in different polar solvents.

Fig. S12. Cyclic voltammetry of (a) TMB and (b) Disulphide

Fig. S13. UV-Vis spectroscopy for H_2O_2 generation

SYNTHESIS

Representative procedure for the preparation of Phenyl(2,4,6-trimethoxyphenyl)sulfane

(**3aa**).

In an oven dried quartz tube 1,3,5-trimethoxybenzene **1a** (0.35 mmol, 60 mg), 1,2diphenyldisulfane (0.43 mmol, 94 mg), and CsPbBr₃ (5 mol %, 0.0178 mmol) were dissolved in 2.0 mL dry acetonitrile solvent. After that, the reaction mixture was irradiated by visible light (wavelength 450-455 nm) for 18 h in the presence of an oxygen balloon. After completion of the reaction, acetonitrile was removed under reduced pressure. Then, the crude mixture was diluted in dichloromethane (CH_2Cl_2) and extracted with brine solution. The resulting organic solution was dried over anhydrous sodium sulfate and concentrated to obtain a crude mixture which was further purified by silica-gel column chromatography using distilled ethyl acetate and hexane as the eluent to afford the pure product.

Scheme S1. Synthesis of 3aa.

Synthetic procedure for compound 5. A 20 mL Schlenk tube holding a magnetic bar was charged with a 2 mL DCM solution of phenyl(2,4,6-trimethoxyphenyl)sulfane **3aa** (60 mg, 0.217 mmol) and *m*CPBA(41 mg, 0.24 mmol) was added under argon atmosphere and stirred at -78 °C for 12 h. After the completion of the reaction, solution was quenched with H₂O and then extracted with DCM, dried over Na₂SO₄ and concentrated in rotary evaporator. The crude mixture was further purified by column chromatography to afford 1,3,5-trimethoxy-2-(phenylsulfinyl)benzene **5** (35 mg, 67%) as a white solid.

Scheme S2. Synthesis of compound 5

Synthetic procedure for compound 6. A 20 mL Schlenk tube holding a magnetic bar was charged with (4-bromophenyl)(2,4,6-trimethoxyphenyl)sulfane 3 al (0.169 mmol, 60 mg), phenyl boronic acid (0.203 mmol, 25 mg), K_2CO_3 (0.507 mmol, 70 mg), and $Pd(PPh_3)_2Cl_2$ (0.08 mmol, 6 mg) in dioxane/H₂O (1.5 mL/0.5 mL) under inert atmosphere. Then the reaction

mixture was placed into a preheated oil bath at 100 °C for 24 h. After that, the crude mixture was extracted with EtOAc, dried over Na_2SO_4 and concentrated in rotary evaporator. The crude mixture was further purified by column chromatography to afford **6** (29 mg, 52%) as a white solid.

Scheme S3. Synthesis of compound 6

Table S3. The Reaction Condition Optimization

	+ (a	S S Co	onditions	o o 3aa	
entry	2a (equiv)	CsPbBr ₃ (mol%)	solvent	light source	yield ^a (%)
1	1.2	3 (DBIA-CsPbBr ₃)	CH ₃ CN	Blue LED	75
2	1.2	3 (DBIA-CsPbBr ₃)	DMSO	Blue LED	0
3	1.2	3 (DBIA-CsPbBr ₃)	DMF	Blue LED	0
4	1.2	3 (DBIA-CsPbBr ₃)	Toluene	Blue LED	0
5	1.2	3 (DBIA-CsPbBr ₃)	THF	Blue LED	0

6	1.2	3 (DBIA-CsPbBr ₃)	MeOH	Blue LED	30
7	1.2	3 (DBIA-CsPbBr ₃)	DCE	Blue LED	70
8	0.6	3 (DBIA-CsPbBr ₃)	CH ₃ CN	Blue LED	40
9	0.6	5 (DBIA-CsPbBr ₃)	CH ₃ CN	Blue LED	50
10	1.2	5 (DBIA-CsPbBr ₃)	CH ₃ CN	Blue LED	80
11	1.2	5 (DBIA-CsPbBr ₃)	CH ₃ CN	Blue LED	88°
12	1.2	5 (NBA-CsPbBr ₃)	CH ₃ CN	Blue LED	75
13	1.2	5 (DBHT-CsPbBr ₃)	CH ₃ CN	Blue LED	51
14	1.2	5 (NBS-CsPbBr ₃)	CH ₃ CN	Blue LED	57
16	1.2	5 (DBIA-CsPbBr ₃)	CH ₃ CN	Blue LED	25 ^d

^{*a*}Isolated yields after column chromatography, ^{*b*}Reaction conditions: **1a** (60 mg, 0.35 mmol), **2a** (94 mg, 0.43 mmol) and CsPbBr₃ (5 mol%) in 1.5 mL of CH₃CN for 18 h, ^cIn dry CH₃CN, ^{*d*}Reaction under normal air condition.

Radical trapping experiment with TEMPO/BHT/Diphenylethelene. In an oven dried quartz tube 1,3,5-trimethoxybenzene **1a** (0.35 mmol, 60 mg), 1,2-diphenyldisulfane **2a** (0.43 mmol, 94 mg), and CsPbBr₃ (5 mol %, 0.0178 mmol) were dissolved in 2.0 mL dry acetonitrile (ACN) solvent and TEMPO (1.07 mmol, 167 mg) were dissolved in 1.0 mL dry acetonitrile (ACN) solvent. After that, the reaction mixture was irradiated by Blue LEDs light for 18 h in the presence of an oxygen balloon. The reaction was monitored by TLC. After the reaction time, no desired product was found. The same experiment was carried out using BHT (235 mg,

1.07 mmol) and 1,1-diphenylethylene (193 mg, 1.07 mmol). However, the addition of BHT led to no product formation whereas diphenylethylene reduced the yield of the product **3aa** giving only 10% (5 mg).

Scheme S4. Various radical scavengers under standard condition.

Crystal measurement

Crystals of compound **3ah** was achieved after slow evaporation of CHCl₃ and water mixture (1:0.5). The crystals data were collected with Bruker SMART D8 goniometer equipped with an APEX CCD detector and with an INCOATEC micro source (Mo-K α radiation, $\lambda = 0.71073$ Å). ORTEP drawing of the compound **3ah** show ellipsoid contour at the 50% probability level.

Compound 3ah (CCDC 2205394)

Fig. S14. Crystal structure of 3ah (CCDC 2205394). Ellipsoids are drawn at the 50% probability level.

Crystallographic Data for (3ah)

Empirical formula	$C_{15}H_{12}F_4O_3S$
Formula weight	348.31
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	6.9500(4)
b/Å	9.8071(6)
c/Å	11.6221(5)
$\alpha/^{\circ}$	90.667(4)
β/°	105.074(4)

$\gamma/^{\circ}$	107.794(5)
Volume/Å3	724.72(7)
Z	2
pcalcg/cm ³	1.596
µ/mm ⁻¹	0.280
F(000)	356.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
Reflections collected	13243
Independent reflections	3515 [$R_{int} = 0.0378, R_{sigma} = 0.0319$]
Goodness-of-fit on F2	0.992
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0313, wR_2 = 0.0803$
Final R indexes [all data]	$R_1 = 0.0356, wR_2 = 0.0827$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.31

CHARATERIZATION DATA

Phenyl(2,4,6-trimethoxyphenyl)sulfane (3aa): $R_f = 0.45$ (5% ethyl acetate in hexane); white solid; yield 88% (43 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.13 (m, 2H), 7.05-7.01 (m, 3H), 6.22 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.1, 162.7, 138.8, 128.6, 125.8, 124.5, 98.9, 91.3, 56.4, 55.6.

p-Tolyl(2,4,6-trimethoxyphenyl)sulfane (3ab):¹ $R_f = 0.5$ (5% ethyl acetate in hexane); white solid; yield 91% (95 mg); ¹H NMR (400 MHz, CDCl₃) δ 6.98-6.93 (m, 4H), 6.21 (s, 2H), 3.86 (s, 3H), 3.81 (s, 6H), 2.25 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9, 162.6, 135.1, 134.2, 129.4, 126.1, 99.5, 91.3, 56.4, 55.5, 21.0.

o-Tolyl(2,4,6-trimethoxyphenyl)sulfane (3ac):² $R_f = 0.45$ (5% ethyl acetate in hexane); white solid; yield 89% (92 mg); $^1\!\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 7.10-7.08 (m, 1H), 6.97-6.91 (m, 2H), 6.59- 6.56 (m, 1H), 6.23

(s, 2H), 3.88 (s, 3H), 3.80 (s, 6H), 2.46 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.1, 162.7, 137.7, 134.84, 129.8, 126.1, 124.6, 124.2, 98.5, 91.4, 56.4, 55.5, 20.1.

(4-Methoxyphenyl)(2,4,6-trimethoxyphenyl)sulfane(3ad):² $R_f = 0.55$ (10% ethyl acetate in

hexane); white solid; yield 94% (105 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.07-7.06 (m, 2H), 6.74-6.72 (m, 2H), 6.19 (s, 2H), 3.85 (s, 3H), 3.81 (s, 6H), 3.74 (s, 3H); ¹³C{¹H} NMR (175 MHz,

CDCl₃) & 162.7, 162.4, 157.6, 129.3, 128.68, 114.3, 100.7, 91.3, 56.4, 55.5, 55.4.

(2-Methoxyphenyl)(2,4,6-trimethoxyphenyl)sulfane (3ae):² $R_f = 0.55$ (10% ethyl acetate in hexane); white solid; yield 92% (100 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.02-7.00 (m, 1H), 6.80-6.79 (m, 1H), 6.72-6.70 (m, 1H), 6.48-6.47 (m, 1H), 6.23 (s, 2H), 3.90 (s, 3H), 3.88 (s, 3H),

3.79 (s, 6H); ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 163.1, 163, 155.6, 127.3, 124.9, 124.8, 120.9, 109.9, 97.4, 91.3, 56.4, 55.7, 55.5.

(4-Fluorophenyl)(2,4,6-trimethoxyphenyl)sulfane (3af):² $R_f = 0.5$ (5% ethyl acetate in

hexane); white solid; yield 72% (76 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.03-7.01 (m, 2H), 6.87-6.85 (m, 2H), 6.20 (s, 2H), 3.86 (s, 3H), 3.81 (s, 6H); ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 163, 162.4, 160.88

(d, *J* = 243.2 Hz), 133.72 (d, *J* = 3.0 Hz), 127.97 (d, *J* = 7.7 Hz), 115.63 (d, *J* = 22.0 Hz), 99.4, 91.3, 56.4, 55.5.

(2-Fluorophenyl)(2,4,6-trimethoxyphenyl)sulfane (3ag): $R_f = 0.4$ (5% ethyl acetate in

hexane); white solid; yield 69% (73 mg); mp 115-118 °C; ¹H NMR (700

MHz, CDCl₃) δ 7.05-6.96 (m, 2H), 6.89-6.87 (m, 1H), 6.68-6.65 (m, 1H), 6.22 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H); ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 163.2, 162.8, 159.60 (d, *J* = 243.6 Hz), 127.42 (d, *J* = 2.7 Hz), 126.10 (d, *J* = 16.7 Hz), 125.81 (d, *J* = 7.4 Hz), 124.17 (d, *J* = 3.4 Hz), 115.16 (d, *J* = 21.2 Hz), 96.9, 91.4, 56.4, 55.5; IR (KBr) \bar{v} 2967, 2940, 1582, 815; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₅FO₃SNa 317.0607; found 317.0624.

(2,3,5,6-Tetrafluorophenyl)(2,4,6-trimethoxyphenyl)sulfane (3ah): $R_f = 0.4$ (5% ethyl $\downarrow 0 - \downarrow 0 -$

2847, 2359, 1584, 709; HRMS (ESI/Q-TOF) m/z: $[M + Na]^+$ calcd for $C_{15}H_{12}F_4O_3SNa$ 371.0341; found 371.0319.

(4-Chlorophenyl)(2,4,6-trimethoxyphenyl)sulfane (3ai):¹ $R_f = 0.4$ (5% ethyl acetate in hexane); white solid; yield 77% (85 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.26 (m, 2H), 6.90-6.89 (m, 2H), 6.23 (s, 2H), 3.89 (s, 3H), 3.82 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.3, 162.5, 138.2, 131.5, 127.4, 117.9, 98.2, 91.3, 56.4, 55.6.

(3-Chlorophenyl)(2,4,6-trimethoxyphenyl)sulfane (3aj):² $R_f = 0.45$ (5% ethyl acetate in hexane); white solid; yield 75% (82 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.09-7.06 (m, 1H), 7.00-6.99 (m, 1H), 6.93-6.92 (m, 2H), 6.22 (s, 2H), 3.88 (s, 3H), 3.81 (s, 6H). ¹³C{¹H} NMR (175 MHz,

CDCl₃) & 163.4, 162.6, 141.2, 134.5, 129.6, 125.2, 124.6, 123.8, 97.7, 91.4, 56.4, 55.6.

366.9838.

(2,6-Dichlorophenyl)(2,4,6-trimethoxyphenyl)sulfane (3ak): $R_f =$ 0.4 (5% ethyl acetate in hexane); white solid; yield 65% (80 mg); mp 85-90 °C; ¹H NMR (700 MHz, CDCl₃) δ 7.27-7.26 (m, 2H), 7.06-7.03 (m, 1H), 6.10 (s, 2H), 3.80 (s, 3H), 3.73 (s, 6H); ${}^{13}C{}^{1}H$ NMR (175 MHz, CDCl₃) δ 161.8, 160.9, 139.2, 134.4, 128.4, 128.1, 101.5, 91.3, 56.1, 55.4; IR (KBr) v 2921, 2848, 2360, 1582, 731; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₄Cl₂O₃SNa 366.9859; found

(4-Bromophenyl)(2,4,6-trimethoxyphenyl)sulfane(3al): $R_f = 0.45$ (5% ethyl acetate in hexane); white solid; yield 79% (100 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.10 (m, 2H), 6.95-6.94 (m, 2H), 6.21 (s, 2H), 3.87 (s, 3H), 3.81 (s, 6H); ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 163.1, 162.4, 137.4, 130.0, 128.5, 126.9, 98.3, 91.2, 56.3, 55.4.

(4-(Trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)sulfane(3am):³ $R_f = 0.5$ (5% ethyl

acetate in hexane); white solid; yield 61% (75 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.38-7.37 (m, 2H), 7.06-7.05 (m, 2H), 6.23 (s, 2H), 3.89 (s, 3H), 3.81 (s, 6H); $^{13}C\{^{1}H\}$ NMR (176 MHz, CDCl₃) δ

163.6, 162.7, 144.3, 127.6, 126.3, 125.4 (q, *J* = 3.7 Hz), 125.2, 97.1, 91.4, 56.5, 55.6.

(3,5-Bis(trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)sulfane (3an): $R_f = 0.4$ (5% ethyl

acetate in hexane); white solid; yield 57% (84 mg); mp 88-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.38 (s, 2H), 6.24 (s, 2H), 3.90 (s, 3H), 3.81 (s, 6H); ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 163.9, 162.5, 142.7, 131.7 (q, *J* = 33.1 Hz), 125.3, 124.2, 122.6, 118.0 (q, *J* = 3.7 Hz), 95.9, 91.5, 56.4, 55.6; IR (KBr) $\bar{\nu}$ 2918, 2850, 2360, 1582, 736; HRMS (ESI/Q-TOF) m/z: [M]⁺ calcd for C₁₇H₁₄F₆O₃S 412.0568; found 412.0562.

2-((2,4,6-Trimethoxyphenyl)thio)pyridine (3ao): $R_f = 0.6$ (30% ethyl acetate in hexane); white solid; yield 50% (49 mg); mp 120-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36-8.35 (m, 1H), 7.38-7.34 (m, 1H), 6.92-6.88 (m, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.23 (s, 2H), 3.87 (s, 3H), 3.80 (s,

6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.3, 162.5, 161.9, 149.4, 136.2, 119.5, 119.0, 97.9, 91.4, 56.4, 55.6; IR (KBr) υ 2920, 2848, 2364, 1582, 761; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₄H₁₆NO₃S 278.0851; found 278.0828.

acetate

2-((2,4,6-Trimethoxyphenyl)thio)thiophene (3ap):⁴ $R_f = 0.5$ (5% ethyl acetate in hexane); white solid; yield 48% (49 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.15 (m, 1H), 7.12-7.10 (m, 1H), 6.86-6.85 (m, 1H), 6.14 (s, 2H), 3.88 (s, 6H), 3.82 (s, 3H); ¹³C{¹H} NMR (175 MHz, CDCl₃) δ 162.8, 127.2, 126.9, 102.8, 91.2, 56.3, 55.5

161.9, 137.2, 130.6, 127.2, 126.9, 102.8, 91.2, 56.3, 55.5.

Naphthalen-1-yl(2,4,6-trimethoxyphenyl)sulfane(3aq):¹ $R_f = 0.45$ (5% ethyl acetate in hexane); white solid; yield 75% (87 mg); ¹H NMR (700 MHz, CDCl₃) δ 8.46 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.4 Hz,

1H), 7.21 (t, *J* = 7.7 Hz, 1H), 6.84 (d, *J* = 7.3 Hz, 1H), 6.25 (s, 2H), 3.89 (s, 3H), 3.79 (s, 6H);

¹³C{¹H} NMR (175 MHz, CDCl₃) δ 163.18, 162.8, 135.8, 133.8, 131.2, 128.3, 126.0, 125.8, 125.7, 125.0, 124.6, 122.5, 98.3, 91.5, 56.4, 55.5.

Phenyl(2,4,6-trimethoxyphenyl)selane (3as):⁵ $R_f = 0.5$ (5% ethyl acetate in hexane); white solid; yield 79% (91 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.21-7.19 (m, 2H), 7.13 (t, J = 7.5 Hz, 2H), 7.09-7.07 (m, 1H), 6.21 (s, 2H), 3.86 (s, 3H), 3.78 (s, 6H); ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 163.2, 162.2, 133.8, 129.2, 128.8, 125.4, 97.7, 91.5, 56.4, 55.6.

p-Tolyl(2,4,6-trimethoxyphenyl)selane (3at):⁶ $R_f = 0.5$ (5% ethyl acetate in hexane); white solid; yield 60% (72 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 7.9 Hz, 2H), 6.20 (s, 2H), 3.86 (s, 3H), 3.79 (s, 6H), 2.25 (s, 3H); ¹³C{¹H} NMR (101

MHz, CDCl₃) δ 162.9, 162.0, 135.2, 129.7, 129.6, 129.3, 97.7, 91.2, 56.4, 55.5, 21.1.

(4-Bromophenyl)(2,4,6-trimethoxyphenyl)selane (3au):⁶ $R_f = 0.5$ (5% ethyl acetate in hexane); white solid; yield 56% (80 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 6.20 (s, 2H), 3.87 (s, 3H), 3.79 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

163.3, 161.9, 132.8, 131.8, 130.5, 119.2, 96.7, 91.3, 56.4, 55.6.

4-((2,4,6-Trimethoxyphenyl)selanyl)benzonitrile (3av): $R_f = 0.5$ (10% ethyl acetate in

hexane); white solid; yield 85% (106 mg); mp 121-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 6.23 (s, 2H), 3.89 (s, 3H), 3.79 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.8, 162.1, 142.4, 132.1, 128.3, 119.4, 108.3, 95.1, 91.3, 56.5, 55.6; IR (KBr) \bar{v} 3006, 2927, 1581, 1227, 821; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₆NO₃Se 350.0323; found 350.0348.

1,3,5-Trimethoxy-2-(phenylsulfinyl)benzene (5):⁷ $R_f = 0.5$ (40% ethyl acetate in hexane); white solid; yield 95% (60 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.54 (d, J = 7.8 Hz, 2H), 7.38-7.36 (t, J = 7.6 Hz, 2H), 7.33-7.31 (t, J = 7.2 Hz, 1H), 6.04 (s, 2H), 3.79 (s, 3H), 3.67 (s, 6H); ¹³C{¹H} NMR (176 MHz,

CDCl₃) δ 165.2, 161.5, 145.4, 129.0, 128.1, 124.3, 112.8, 91.3, 56.0, 55.6.

0.5 (5% ethyl acetate in hexane); white solid; yield 70% (42 mg); ¹H NMR (700 MHz, CDCl₃) δ 7.33-7.26 (m, 6H), 7.05-7.03 (m, 3H), 6.22 (s, 2H), 3.88 (s, 3H), 3.81 (s, 6H); ¹³C{¹H} NMR (176

[1,1'-Biphenyl]-4-yl(2,4,6-trimethoxyphenyl)sulfane (6): 8 R_f=

MHz, CDCl₃) δ 163.1, 162.7, 137.7, 137.1, 131.4, 126.9, 126.59, 126.58, 126.5, 126.1, 98.7, 91.4, 56.5, 55.6.

(4-(Phenylethynyl)phenyl)(2,4,6-trimethoxyphenyl)sulfane (7): $R_f = 0.5$ (5% ethyl acetate

in hexane); white solid; yield 75% (48 mg); mp 127-131 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.48 (m, 2H), 7.32-7.26 (m, 5H), 6.98-6.96 (m, 2H), 6.23 (s, 2H), 3.89 (s, 3H), 3.81 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.3, 162.6,

139.9, 131.8, 131.6, 128.4, 128.2, 125.4, 123.6, 119.0, 98.0, 91.4, 89.7, 89.2, 56.5, 55.6; IR

(KBr) $\bar{\upsilon}$ 3100, 2928, 1589, 1226, 728; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₃H₂₀O₃SNa 399.1031; found 399.1048.

REFERENCES

- 1. S. K. R. Parumala and R. K. Peddinti, *Green Chem.*, 2015, 17, 4068.
- X.-X. Wang, C. Chen, H.-Z. Shi, G.-W. Zhang, Y. Tang, C.-G. Zhang, M.-Y. Wu and S. Feng, *J. Electrochem. Soc.*, 2021, 168, 015501.
- 3. Q. Feng, D. Chen, M. Hong, F. Wang and S. Huang, J. Org. Chem., 2018, 83, 7553.
- 4. T. Mino, E. Yoshizawa, K. Watanabe, T. Abe, K. Hirai and M. Sakamoto, *Tetrahedron Lett.*, 2014, **55**, 3184.
- 5. Y. Guo, H. Bao, L. Chen, J. Shi and Y. Li, Org. Lett., 2022, 24, 6999.
- 6. P. Kalaramna and A. Goswami, J. Org. Chem., 2021, 86, 9317.
- 7. S. Pradhan, S. Patel and I. Chatterjee, *Chem. Commun.*, 2020, 56, 5054.
- C. Ravi, R. Semwal, R. Kumar, N. N. K. Reddy and S. Adimurthy, *ChemistrySelect*, 2018, 3, 6116.

Fig. S15. ¹H NMR(400 MHz, CDCl₃) spectrum of phenyl(2,4,6-trimethoxyphenyl)sulfane

(3aa)

Fig. S17. ¹H NMR(400 MHz, CDCl₃) spectrum of p-tolyl(2,4,6-trimethoxyphenyl)sulfane

(**3ab**)

Fig. S18. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of p-tolyl(2,4,6-

trimethoxyphenyl)sulfane (3ab)

Fig. S19. ¹H NMR(400 MHz, CDCl₃) spectrum of o-tolyl(2,4,6-trimethoxyphenyl)sulfane

(**3ac**)

Fig. S20. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of o-tolyl(2,4,6-

trimethoxyphenyl)sulfane (3ac)

7.26 7.07 7.06 6.74 6.72	6.19	3.85 3.81 3.74
\lor \lor	1	\leq

Fig. S21. ¹H NMR(700 MHz, CDCl₃) spectrum of (4-methoxyphenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ad)

Fig. S22. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (4-methoxyphenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ad)

7.7.2</

Fig. S23. ¹H NMR(700 MHz, CDCl₃) spectrum of (2-methoxyphenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ae)

Fig. S24. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (2-methoxyphenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ae)

trimethoxyphenyl)sulfane (3af)

Fig. S26. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (4-fluorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3af)

Fig. S27. ¹H NMR(700 MHz, CDCl₃) spectrum of (2-fluorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ag)

$\sum_{\substack{163,27\\162,82}} \frac{163,27}{162,82}$

Fig. S28. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (2-fluorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ag)

Fig. S29. ¹H NMR(700 MHz, CDCl₃) spectrum of (2,3,5,6-tetrafluorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ah)

Fig. S30. ${}^{13}C{}^{1}H$ NMR (175 MHz, CDCl₃) spectrum of (2,3,5,6-tetrafluorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ah)

Fig. S31. ¹H NMR(700 MHz, CDCl₃) spectrum of (4-chlorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ai)

Fig. S32. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (4-chlorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ai)

7.26 7.09 7.00 7.00 6.99 6.93 6.93 6.22	3.88
	52

Fig. S33. ¹H NMR(700 MHz, CDCl₃) spectrum of (3-chlorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3aj)

Fig. S34. ${}^{13}C{}^{1}H$ NMR (175 MHz, CDCl₃) spectrum of (3-chlorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3aj)

Fig. S35. ¹H NMR(700 MHz, CDCl₃) spectrum of (2,6-dichlorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ak)

Fig. S36. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (2,6-dichlorophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3ak)

Fig. S37. ¹H NMR(700 MHz, CDCl₃) spectrum of (4-bromophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3al)

Fig. S38. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (4-bromophenyl)(2,4,6-

trimethoxyphenyl)sulfane (3al)

Fig. S39. ¹H NMR(700 MHz, CDCl₃) spectrum of (4-(trifluoromethyl)phenyl)(2,4,6trimethoxyphenyl)sulfane (3am)

Fig. S40. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (4-(trifluoromethyl)phenyl)(2,4,6-

trimethoxyphenyl)sulfane (3am)

Fig. S41. ¹H NMR(700 MHz, CDCl₃) spectrum of (3,5-bis(trifluoromethyl)phenyl)(2,4,6-

trimethoxyphenyl)sulfane (3an)

Fig. S42. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of (3,5-

bis(trifluoromethyl)phenyl)(2,4,6-trimethoxyphenyl)sulfane (3an)

Fig. S43. ¹H NMR(400 MHz, CDCl₃) spectrum of 2-((2,4,6-trimethoxyphenyl)thio)pyridine

(**3ao**)

Fig. S44. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2-((2,4,6-

trimethoxyphenyl)thio)pyridine (3ao)

Fig. S45. ¹H NMR(700 MHz, CDCl₃) spectrum of 2-((2,4,6-

trimethoxyphenyl)thio)thiophene (3ap)

Fig. S46. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of 2-((2,4,6-

trimethoxyphenyl)thio)thiophene (3ap)

Fig. S47. ¹H NMR(700 MHz, CDCl₃) spectrum of naphthalen-1-yl(2,4,6-

trimethoxyphenyl)sulfane (3aq)

Fig. S48. $^{13}C\{^{1}H\}$ NMR (175 MHz, CDCl₃) spectrum of naphthalen-1-yl(2,4,6-

trimethoxyphenyl)sulfane (3aq)

Fig. S49. ¹H NMR(700 MHz, CDCl₃) spectrum of phenyl(2,4,6-trimethoxyphenyl)selane

(3as)

Fig. S50. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of phenyl(2,4,6-

trimethoxyphenyl)selane (3as)

Fig. S51. ¹H NMR(400 MHz, CDCl₃) spectrum of *p*-tolyl(2,4,6-trimethoxyphenyl)selane

(3at)

Fig. S52. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of *p*-tolyl(2,4,6-

trimethoxyphenyl)selane (3at)

Fig. S53. ¹H NMR(400 MHz, CDCl₃) spectrum of (4-bromophenyl)(2,4,6-

trimethoxyphenyl)selane (3au)

Fig. S54. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of (4-bromophenyl)(2,4,6-

trimethoxyphenyl)selane (3au)

Fig. S55. ¹H NMR(400 MHz, CDCl₃) spectrum of 4-((2,4,6-

trimethoxyphenyl)selanyl)benzonitrile (3av)

Fig. S56. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4-((2,4,6-

trimethoxyphenyl)selanyl)benzonitrile (3av)

Fig. S57. ¹H NMR(700 MHz, CDCl₃) spectrum of 1,3,5-trimethoxy-2-

(phenylsulfinyl)benzene (5)

Fig. S58. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of 1,3,5-trimethoxy-2-

(phenylsulfinyl)benzene (5)

Fig. S59. ¹H NMR(700 MHz, CDCl₃) spectrum of [1,1'-biphenyl]-4-yl(2,4,6-

trimethoxyphenyl)sulfane (6)

Fig. S60. ¹³C{¹H} NMR (175 MHz, CDCl₃) spectrum of [1,1'-biphenyl]-4-yl(2,4,6-

trimethoxyphenyl)sulfane (6)

Fig. S61. ¹H NMR(400 MHz, CDCl₃) spectrum of (4-(phenylethynyl)phenyl)(2,4,6trimethoxyphenyl)sulfane (7)

Fig. S62. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of (4-(phenylethynyl)phenyl)(2,4,6trimethoxyphenyl)sulfane (7)

Description of Light Source. Blue LED set up (Led Photochemical Reactor) was purchased from commercial source CRYONANO VL-PHOTON. The intensity of the blue LED was (417 × 100) lx (measured by Sigma-Digital Lux Meter 101, Model: 20036176). Quartz glass (brand name: Luzchem) was used as reaction vessel. No filter was used for the reaction. Other features of the photoreactor are as follows:

CRYONANO Labs LED Photochemical Reactor - CNPHOTON 101

The CN-Photon LED Photochemical Reactor from CRYONANO Labs is a compact desktop instrument for conducting research in areas of Photo-biology, Inorganic, Organometallic and Organic Photochemistry (e.g., Drug-DNA Interaction) etc. It has a ventilated illumination chamber with tunable high intensity LEDs and fully automatic operation with countdown timer for setting the reaction time and switching it off automatically. The intensity of light can also be automatically controlled using inbuilt microprocessors.

The reactor includes a controller in a separate housing for light intensity control and automation with display. It also comes with a carousel for liquid samples.

Fig. S63. The instrument configuration details provided by the manufacturer (CRYONANO VL-PHOTON). The full-width-at-half-maximum (FWHM) of the Blue LED is 450-470 nm.

c) Reaction setup

b) Light power intensity

d) Digital LUX Meter

