Supporting Information

Stable Ni Nanocrystals on Porous Single-Crystalline MgO particles for Enhanced Dry Reforming Activity and Durability of CH₄/CO₂

Suning Zhang, ^{ab} Fangyuan Cheng^{*abc} and Kui Xie^{*abc}

^a College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
^b Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
^c Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.

* Corresponding author: <u>cfy@fjirsm.ac.cn</u> (F. Cheng), <u>kxie@fjirsm.ac.cn</u> (K. Xie).

Figure S1. (a-c) The growth diagram from SC $MgCO_3$ particles to PSC MgO particles using the lattice reconstruction strategy.

Figure S2. (a-c) SAED patterns of MC-C, MC-F and MC-R.

Figure S3. XRD patterns of PSC Ni/MgO particles.

Figure S4. HR-TEM image of PSC Ni/MgO with well-defined interface structure.

Figure S5. (a-i) Element mappings of PSC MgO particles.

Figure S6. (a-c) EDS test of PSC MgO particles with different morphology.

Figure S7. (a-I) Element mappings of PSC Ni/MgO particles.

•

Figure S8. PSC Ni/MgO load with different SC Ni nanoparticle contents.

Figure S9. The TPO profiles of PSC Ni/MgO before and after 150 hours of DRM long-term testing at 700 °C.

Figure S10. (a-b) BET surface area and BJH average pore size of PSC MgO with different morphologies. (c-e) N_2 adsorption-desorption isotherms of MO-C, MO-F, MO-R.

Catalyst	Gas	WHSV	Temper	test time	CH4	CO ₂	H ₂ /CO	Ref
	composition	$(L \cdot g_{cat}^{-1}h^{-1})$	ature		Conversion	Conversion	radio	
Ni/SiO ₂ @Al	CH4/CO2/N2=	12	800 °C	100h	62.8%	82.3%	0.82	[1]
₂ O ₃	1:1:0.2							
Ni/MgO-	CH4/CO2/Ar=	18	700 °C	50h	88%	92%	0.75	[2]
SiO ₂	1:1:1							
NiMo/MgO	CH4/CO2/Ar=	60	800 °C	850h	100%	100%	1	[3]
	1:1:8							
Ni ₃ GaC _{0.25}	$CH_4/CO_2/N_2=$	54	600 °C	72h	48%	52%	-	[4]
	1:1:1							
Ni/MgO	CH4/CO2/Ar=	80	800 °C	40h	72%	-	0.84	[5]
	1:1:2							
Ni/MgO-	CH4/CO2=1:1	60	800 °C	50h	90.5%	-	1.6	[6]
ZrO ₂	.2							
Ni/MgO	CH4/CO2/Ar=	24	700 °C	150h	≥95%	≥96%	0.99	This
(M-1)	1:1:8							work
Ni/MgO	CH4/CO2/Ar=	24	700 °C	150h	≥90%	≥92%	0.96	This
(M-2)	1:1:8							work
Ni/MgO	CH4/CO2/Ar=	24	700 °C	150h	≥81%	≥89%	0.92	This
(M-3)	1:1:8							work

Table S1. The comparison of the performance of dry reforming of CO_2/CH_4 under typical operation conditions.

References

[1]. J. W. Han, J. S. Park, M. S. Choi and H. Lee, Applied Catalysis B: Environmental, 2017, 203, 625-632.

[2]. Q. Zhang, X. Feng, J. Liu, L. Zhao, X. Song, P. Zhang and L. Gao, International Journal of Hydrogen Energy, 2018, 43, 11056-11068.

[3]. Y. Song, E. Ozdemir, S. Ramesh, A. Adishev, S. Subramanian, A. Harale, M. Albuali, B. A. Fadhel, A. Jamal and D. Moon, Science, 2020, 367, 777-781.

[4]. K. Y. Kim, J. H. Lee, H. Lee, W. Y. Noh, E. H. Kim, E. C. Ra, S. K. Kim, K. An and J. S. Lee, ACS Catalysis, 2021, 11, 11091-11102.

[5]. Y. Fu, W. Kong, B. Pan, C. Yuan, S. Li, H. Zhu and J. Zhang, Journal of the Energy Institute, 2022, 105, 214-220.

[6]. B.-J. Kim, H.-R. Park, Y.-L. Lee, S.-Y. Ahn, K.-J. Kim, G.-R. Hong and H.-S. Roh, Journal of CO₂ Utilization, 2023, 68.