Supporting Information

Efficient photocatalytic oxidation of CH₄ over Ag-modified ZnO nanorods

Chunlai Zhang,^{ab} Yingdong Hao,^{ab} Xingbo Wang,^{ab} Deng Hu,^a Nannan Sun^{*ac} and Wei Wei^{*acd}

^a Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China. E-mail: sunnn@sari.ac.cn, weiwei@sari.ac.cn

^b University of Chinese Academy of Sciences, Beijing, 100049, China

^c CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
^d School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China

Fig. S1 Device diagram of photocatalytic conversion of methane experiments. (a) The simple indication of the light source, reactor, and stirring device; (b) Detail structure of the used reactor.

Fig. S2 ¹H NMR spectrum of the liquid product obtained from photocatalytic methane oxidation over 5.0Ag/r-ZnO. Reaction conditions: 1 mg catalyst, 75 mL H₂O, 2 MPa CH₄, 1 MPa O₂, 8 h reaction time, 300 W Xe lamp. DMSO was adopted as an internal standard in the NMR test.

Fig. S3 Calibration curve for the quantification of CH_3OH by ¹H NMR. There is no commercial product for CH_3OOH . As the number of protons of methyl in CH_3OH and CH_3OOH molecules is the same, the quantification of CH_3OOH is calibrated by the same curve as that of CH_3OH , which is the usual way of quantifying CH_3OOH .

Fig. S4 Calibration curve for the quantification of HCHO by colorimetric method.

Fig. S5 FE-SEM images of r-ZnO.

Fig. S6 TEM images of r-ZnO.

Fig. S7 TEM images of r-ZnO.

Fig. S8 HR-TEM images of r-ZnO.

Fig. S9 TEM images of 5.0Ag/r-ZnO.

Fig. S10 XPS full survey spectra of 5.0Ag/r-ZnO.

Fig. S11 XPS spectra at valence band regions of r-ZnO and 5.0Ag/r-ZnO.

Fig. S12 Direct photocatalytic CH₄ oxidation to liquid products (Control).

Fig. S13 Effect of catalyst mass on direct photocatalytic CH₄ oxidation.

Fig. S14 Effect of light intensity on direct photocatalytic CH₄ oxidation.

Fig. S15 Effect of reaction time on direct photocatalytic CH₄ oxidation.

Catalyst	Condition	Oxidant	Major Products	Productivity	Selectively	Reference
5.0Ag/r- ZnO	Photocatalysis, 1 mg catalyst, 2 MPa CH ₄ , 75 mL H ₂ O, RT, 300 W Xe lamp, 2 h	O ₂	НСНО	10778.92 µmol·g ⁻¹ ·h ⁻¹	68.23%	This work
TiO ₂	Photocatalysis, 5 mg catalyst, 1.9 MPa CH ₄ , 10 mL H ₂ O, RT, 300 W Xe lamp, 1 h	O ₂	НСНО	3.16 mmol g ⁻¹ h ⁻¹	81.2%	1
AuFe-ZnO	Photocatalysis, 40 mg catalyst, 18 bar CH ₄ , 20 mL H ₂ O, 20 °C, 300 W Xe lamp,	O ₂	CH ₃ OH	1365 μmol·g ⁻¹ ·h ⁻¹	90.7%	2
Pd/ZnO	Photocatalysis, 10 mg catalyst, 2 MPa CH ₄ , 100 mL H ₂ O, 300 W Xe lamp, 25 ± 2 °C, 2 h,	O ₂	НСНО	5515 μmol·g ⁻¹ ·h ⁻¹	47.52%	3
AuCu-ZnO	Photocatalysis, 20 mg catalyst, 19 bar CH ₄ , 100 mL H ₂ O, 25 °C, 300 W Xe lamp, 2 h,	O ₂	СН ₃ ОН СН ₃ ООН	11224.9 μmol·g ⁻¹ ·h ⁻¹	79.18%	4
Pd/H-TiO ₂	Photocatalysis, 10 mg catalyst, 2.0 MPa CH ₄ , 60 mL H ₂ O, 300 W Xe lamp, 45 °C, 2 h	O ₂	CH3OH	4.5 mmol g ⁻¹ h ⁻¹	70%	5
Pd/WO ₃	Photocatalysis, 20 mg catalyst, 1.9 MPa CH ₄ , 100 mL H ₂ O, 300 W Xe lamp, 25 ± 2 °C 2 h	O ₂	СН ₃ ОН СН ₃ ООН	7018 µmol·g ⁻¹ ·h ⁻¹	81%	6

Table S1 Comparison of photocatalytic performance of catalysts for CH₄ conversion to liquid oxygenates.

Ag/TiO2	Photocatalysis, 10 mg catalyst, 2 MPa CH ₄ , 100 mL H ₂ O, 300 W Xe lamp, 25 °C, 2 h	O ₂	CH3OH	4.8 mmol g ⁻¹ h ⁻¹	80%	7
Au- CoO _x /TiO ₂	Photocatalysis, 10 mg catalyst, 2 MPa CH ₄ , 100 mL H ₂ O, 300 W Xe lamp, 25 ± 2 °C, 2 h	O ₂	СН ₃ ОН СН ₃ ООН	2540 μmol·g ⁻¹ ·h ⁻¹	95%	8

Reference

- 1. P.-P. Luo, X.-K. Zhou, Y. Li, and T.-B. Lu, ACS Appl. Mater. Interfaces, 2022, 14, 21069-21078.
- H. Du, X. Li, Z. Cao, S. Zhang, W. Yu, F. Sun, S. Wang, J. Zhao, J. Wang, Y. Bai, J. Yang, P. Yang, B. Jiang, and H. Li, *Appl. Catal. B*, 2023, **324**, 122291.
- H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako and J. Ye, J. Am. Chem. Soc., 2019, 141, 20507-20515.
- 4. L. Luo, Z. Gong, Y. Xu, J. Ma, H. Liu, J. Xing and J. Tang, J. Am. Chem. Soc., 2022, 144, 740-750.
- 5. X. Zhang, Y. Wang, K. Chang, S. Yang, H. Liu, Q. Chen, Z. Xie, and Q. Kuang, *Appl. Catal. B*, 2023, **320**, 121961.
- 6. K. Wang, L. Luo, C. Wang and J. Tang, *Chinese J. Catal.*, 2023, 46, 103-112.
- 7. N. Feng, H. Lin, H. Song, L. Yang, D. Tang, F. Deng and J. Ye, *Nat. Commun.*, 2021, **12**, 4652.
- H. Song, X. Meng, S. Wang, W. Zhou, S. Song, T. Kako and J. Ye, ACS Catal., 2020, 10, 14318-14326.