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Factors affecting the activity of photocatalysts

Temperature

Photoreaction for water splitting is not thermodynamically favorable but it can increase or 

decrease the activity of photocatalyst for H2. Photoreaction initiates with light absorption, in the 

absence of light no hydrogen produced. At low temperature H2 evolution rate was low because 

transfer of electrons towards conduction band is less at high temperature it increases and enhance 

the production of hydrogen. Temperature has no significant effect on activity of photocatalyst 

but affects the absorption and desorption process of the hydrogen gas on catalyst surface. As the 

temperature increased desorption of H2 gas from the catalyst increased and more hydrogen 

produced. For the best performance of photocatalyst optimized temperature was 60 ⁰C[1]. At this 

temperature hydrogen evolution was maximum see Figure S1.

Figure S1: Effect of temperature



pH

Hydrogen ions concentration is another factor which affects the H2 evolution rate of 

photocatalyst. Hydrogen gas can be produced in acidic and basic medium but in extreme 

conditions the activity of photocatalyst reduced [2]. In highly acidic condition photocatalyst 

starts to degrade which results decrease in the production of hydrogen. In basic medium, 

hydroxyl ions concentration become high these ions consumes holes and results increased in the 

hydrogen production [3]. Optimized condition for our research work was 10 pH at this pH 

maximum hydrogen evolution was observed for results see Figure S2.

Figure S2:Effect of pH



Light 

Presence of light source in all photoreactions is very important, in the absence of light or light 

source no photoreaction occurred [4]. We carried hydrogen evolution experiment in the presence 

of solar light. Sun is main source of all types of radiations [5]. During photoreaction as the 

intensity of light increased hydrogen evolution increased. In the morning, due to low intensity of 

light hydrogen evolution rate was low, similarly, in the evening light becomes dull and low 

intensity of light generates less charge carriers due to which less hydrogen produce [6]. During 

the peak hours of sunlight due to high intensity of light hydrogen evolution becomes high and 

maximum hydrogen gas produced see Figure S3.

Figure S3: Effect of Light Intensity



Catalyst dose

Amount of catalyst used for the used for the hydrogen evolution experiment also influence the 

activity pf photocatalyst for hydrogen production. We used optimized and fixed 5 mg amount of 

photocatalyst for each hydrogen generation experiment. As we increased the amount of 

photocatalyst the particles starts accumulation[7] and surface of the photocatalyst become 

occupied with these particles its exposure to the sunlight become less [8] which results decreased 

in the production of the hydrogen gas see Figure S4.

Figure S4: Effect of photocatalyst dose
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Figure S5: Wavelength dependent activities of Au@Al-CeVO4 photocatalysts.



Figure S6: Hydrogen generation activities of as synthesized series of catalysts.



Table S1: The comparison between the concentration of sacrificial reagent and the 

corresponding H2 production.

Photocatalysts Sacrificial reagent* 
concentration (%)

H2 evolution
(mmol g‒1h‒1)

Au1.0@Al‒CeVO4 0% 34.55

Au1.0@Al‒CeVO4 1% 38.43

Au1.0@Al‒CeVO4 2% 42.78

Au1.0@Al‒CeVO4 3% 46.11

Au1.0@Al‒CeVO4 4% 49.45

Au1.0@Al‒CeVO4 5% 52.93

Au1.0@Al‒CeVO4 6% 52.99

Au1.0@Al‒CeVO4 7% 53.22

Au1.0@Al‒CeVO4 8% 53.43
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