Supporting information

Investigating the Mechanism of Propylene Epoxidation over Halogen (X=F, CI, Br, I) Modified Cu₂O(110) Surfaces: A Theoretical Study

Lingyun Zhou,*^a Zhu Wen,^a Leyuan Cui,^b Guangxu Yang,^a Yingchun Luo,^a Yadian Xie,^a Can Cui,^a Chunyan Li,^a Gang Fu,*^b

^aSchool of Chemical Engineering, Key Laboratory of Low-Dimensional Materials and Big Data, Guizhou Minzu University, Guizhou Provincial Key Laboratory of Low Dimensional Materials and Environmental and Ecological Restorations, Guizhou, Guiyang 550025, China;

^bState Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

*Corresponding authors. E-mail: lyzhou@gzmu.edu.cn; gfu@xmu.edu.cn (G. Fu)

Fig. S1. The top view and side view of the computational models. (a) $Cu_2O(110)$, (b) F- $Cu_2O(110)$, (c) Cl- $Cu_2O(110)$, (d) Br- $Cu_2O(110)$, (e) l- $Cu_2O(110)$.

Fig. S2. Bader charge analysis of pristine $Cu_2O(110)$, F- $Cu_2O(110)$, Cl- $Cu_2O(110)$, Br- $Cu_2O(110)$ and l- $Cu_2O(110)$ surfaces. The color gradient indicated the magnitude of Bader charge.

Fig. S3. The projected density of states (PDOS) of the 3d orbitals of surface Cu atoms directly coordinated with X before and after O_2 adsorption (a) $Cu_2O(110)$, (b) Cl- $Cu_2O(110)$, (c) Br- $Cu_2O(110)$ and (d) l- $Cu_2O(110)$

Fig. S4. The PDOS of the 3d orbitals of surface Cu atoms directly coordinated with X after O_2 adsorption and the 2p orbitals of the adsorbed O_2 , (a) $Cu_2O(110)$, (b) F- $Cu_2O(110)$, (c) Cl- $Cu_2O(110)$, (d) Br- $Cu_2O(110)$ and (e) l- $Cu_2O(110)$.

Fig. S5. Proposed reaction network of propylene oxidation by adsorbed O₂. (I) adsorbed O₂; (II) peroxirane intermediate; (III) allyl intermediate; (IV) adsorbed O atom; (V) OMP* intermediate; (VI) allyl intermediate; (VII) adsorbed PO*; (VIII) allylic oxygen intermediate; (TS1) oxygen insertion; (TS2) α -H abstraction; (TS3) O-O bond cleavage; (TS4) α -H abstraction; (TS5) ring closing; (TS6) α -H abstraction.

Fig. S6. The reaction of two propylene molecules with adsorbed O_2 on F-Cu₂O (110) surface: (a) potential energy profiles of propylene epoxidation from DFT; (b) optimized structures of intermediates and transition states involved in propylene epoxidation.

Fig. S7. The reaction of two propylene molecules with adsorbed O_2 on Br-Cu₂O (110) surface: (a) potential energy profiles of propylene epoxidation from DFT; (b) optimized structures of intermediates and transition states involved in propylene epoxidation.

Fig. S8. The reaction of two propylene molecules with adsorbed O_2 on I-Cu₂O (110) surface: (a) potential energy profiles of propylene epoxidation from DFT; (b) optimized structures of intermediates and transition states involved in propylene epoxidation.

Fig. S9. The linear relationship between the hydrogen affinity (ΔE_{H}) of lattice oxygen species (O²⁻) and the energy barriers (ΔE_{a}) for the α -H abstraction.

Fig. S10. The bond lengths involved in α -H abstraction reaction: (a)-(b) Cu₂O(110), (c)-(d) F-Cu₂O(110), (e)-(f) Cl-Cu₂O(110), (h)-(g) Br-Cu₂O(110) and (i)-(j) I-Cu₂O(110) surfaces.

Fig. S11. The plot of $d_{(OH)}$ versus ΔE_a for α -H abstraction.

Fig. S12. The side view and top view of the OMP* on $Cu_2O(110)$, F- $Cu_2O(110)$, Cl- $Cu_2O(110)$, Br- $Cu_2O(110)$ and I- $Cu_2O(110)$ surfaces.

Fig. S13. (a) The linear relationship between $\Delta \Delta E_{def}(M)$ and ΔE_a for α -H abstraction. (b) The plot of $\Delta \Delta E_{def}(M)$ versus the dihedral angles D(C3-C2-Cu-O_{sur}) of OMP^{*}.

Summary of the adsorption energies (ΔE_{ad}), O-O bond lengths and Bader charges of O₂ adsorption on Cu₂O(110) and halogen modified Cu₂O(110) surfaces.

Surface	$\Delta E_{ad} (eV)$	d _(O=O)	$d_{(Cu-O)}$	Bader Charge
		(Å)	(Å)	(e)
Cu ₂ O(110)	-0.57	1.274	2.123	-0.15
			2.105	-0.10
F-Cu ₂ O(110)	-0.81	1.319	1.945	-0.20
. ,			1.989	-0.18
Cl-Cu ₂ O(110)	-0.68	1.318	1.944	-0.20
· · ·			2.003	-0.18
Br-Cu ₂ O(110)	-0.68	1.316	1.946	-0.20
· · ·			2.014	-0.18
I-Cu₂O(110)	-0.64	1.316	1.945	-0.21
- 、 ,			2.030	-0.18

Summary of the bond length $d_{(Cu-X)}$, Bader Charge of Cu atoms directly coordinated with X in the top and sub layers of halogen modified Cu₂O(110) surface and the adsorption energy (ΔE_{ad}) of X on the vacancy site of the Cu₂O(110) surface.

Surface	ad(Cu-X)	^b d _(Cu-X)	^a Bader Charge	^b Bader Charge	$\Delta E_{\rm ad}({ m eV})$
	(Å)	(Å)	(e)	(e)	
	1.805		+0.64	+0.53	-5.96
Cu ₂ O(110)	1.805	1.807	+0.64		
F-Cu ₂ O(110)	1.928		+0.57	+0.51	-5.54
	1.928	1.958	+0.57		
CI-Cu ₂ O(110)	2.158	2.193	+0.51	+0.46	-4.28
	2.158		+0.51		
Br-Cu ₂ O(110)	2.290	2.331	+0.47	+0.42	-3.91
	2.290		+0.47		
I-Cu ₂ O(110)	2.446		+0.41	+0.37	-3.29
	2.446	2.493	+0.41		

^aCu atoms directly coordinate with X in the top layer, ^bCu atoms directly coordinate with X in the sub layer.

Summary of the reaction energies of each elementary step in DEP on pristine $Cu_2O(110)$ and halogen modified $Cu_2O(110)$ surfaces.

	Cu ₂ O(110)	F-Cu ₂ O(110)	CI-Cu ₂ O(110)	Br-Cu ₂ O(110)	I-Cu ₂ O(110)
Ι	-0.57	-0.81	-0.68	-0.68	-0.64
TS1	0.12(0.69)	-0.34(0.47)	-0.23(0.45)	-0.21(0.47)	-0.12(0.52)
П	-0.55	-0.58	-0.46	-0.46	-0.35
TS2	0.44(1.01)	0.06(0.87)	0.18(0.86)	0.19(0.87)	0.24(0.88)
Ш	0.16	-0.17	0.00	0.00	0.04
TS3	-0.15(0.40)	-0.33(0.25)	-0.23(0.23)	-0.22(0.24)	-0.10(0.25)
IV	-1.92	-1.94	-1.64	-1.71	-1.78
V	-2.68	-3.42	-3.02	-3.03	-2.96
TS4	-1.53(0.39)	-1.75(0.19)	-1.40(0.24)	-1.48(0.23)	-1.54(0.24)
VI	-2.14	-2.51	-2.18	-2.26	-2.28
TS5	-2.19(0.49)	-2.74(0.68)	-2.51(0.51)	-2.49(0.54)	-2.32(0.64)
VII	-3.55	-3.44	-3.33	-3.35	-3.32
TS6	-2.24(0.44)	-2.48(0.94)	-2.13(0.89)	-2.16(0.87)	-2.14(0.82)
VIII	-3.54	-3.89	-3.81	-3.65	-3.54

Decomposition of the energies of OMP* on pristine $Cu_2O(110)$ and halogen modified $Cu_2O(110)$ surfaces.

	Cu ₂ O(110)	F-Cu ₂ O(110)	CI-Cu ₂ O(110)	Br-Cu ₂ O(110)	I-Cu ₂ O(110)
$\Delta E_{def}(M)$	2.48	2.41	2.40	2.40	2.42
$\Delta E_{def}(S)$	1.95	1.41	1.54	1.54	1.59
ΔE_{int}	-7.11	-7.25	-6.96	-6.96	-6.97
ΔE	-2.68	-3.42	-3.02	-3.03	-2.96

Table S5

Decomposition of the energies of TS6 on pristine $Cu_2O(110)$ and halogen modified $Cu_2O(110)$ surfaces.

	Cu ₂ O(110)	F-Cu ₂ O(110)	CI-Cu ₂ O(110)	Br-Cu ₂ O(110)	I-Cu ₂ O(110)
$\Delta E_{def}(M)$	2.75	2.96	3.04	3.01	2.96
$\Delta E_{def}(S)$	1.89	1.42	1.57	1.54	1.5
$\Delta E_{\rm int}$	-6.88	-6.87	-6.78	-6.71	-6.6
ΔE	-2.24	-2.48	-2.17	-2.16	-2.14

Table S6

The energy difference between TS6 and OMP* on pristine $Cu_2O(110)$ and halogen modified $Cu_2O(110)$ surfaces.

	Cu ₂ O(110)	F-Cu ₂ O(110)	CI-Cu ₂ O(110)	Br-Cu ₂ O(110)	I-Cu ₂ O(110)
$\Delta\Delta E_{def}(M)$	0.27	0.54	0.64	0.61	0.55
$\Delta\Delta E_{def}(S)$	-0.06	0.01	0.06	0.00	-0.09
$\Delta\Delta E_{\rm int}$	0.23	0.39	0.18	0.26	0.37
ΔE_a	0.44	0.94	0.89	0.87	0.82