Supporting Information

Ambient Conversion of CO₂ and Epoxides to Cyclic Carbonates Using 3D Amide-

Functionalized MOFs

Zafar A. K. Khattak,^{*ab*} Nazir Ahmad,^{*sc*}, Hussein A. Younus,^{*de*} Habib Ullah,^{*fg*} Baoyi Yu,^{*h*} Khurram S. Munawar,^{*i*} Muhammad Ashfaq,^{*j*} Muhammad Yaseen,^{*k*} Muhammad Danish,^{*g*} Mohammed Al-Abri,^{*d*,*l*} Rashid AlHajri,^{*l*} and Francis Verpoort, ^{*sam*}

- ^{a.} State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
- ^{b.} Department of Chemistry, University of Buner, Swari, Buner, Khyber Pakhtunkhwa, Pakistan.
- ^{c.} Department of Chemistry, GC University, Lahore, Pakistan.
- ^d Nanotechnology Research Centre, Sultan Qaboos University, PO Box 17, PC 123, SQU, Al-Khoudh, Oman.
- ^{e.} Chemistry department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.
- ^f Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
- ^{g.} Department of Chemistry, University of Sialkot, Sialkot 51040 Punjab, Pakistan.
- ^h Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China.
- ^{*i*} Department of Chemistry, University of Mianwali, Mianwali 42200, Pakistan.
- ^{*j*} Department of Physics, University of Sargodha, Sargodha 40100, Pakistan.
- ^k Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
- ¹ Department of Chemical and Petroleum Engineering, College of Engineering, Sultan Qaboos University, P.O Box 33, Al Khould, Muscat, PC 123, Oman.
- ^{*m.*} National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation.
- * Correspondence: dr.nazirahmad@gcu.edu.pk (N.A.); francis@whut.edu.cn (F.V.)

Contents

1.	Tables Related to Single Crystal XRD	Table S1-S3
2.	Single Crystal XRD	Figures S1-S3
3.	XPS Survey	Figures S4-S5
4.	The cycloaddition of epoxides catalysed by TBAB	Table S4
5.	NMR Spectra of Carbon Dioxide Fixation Reactions	Figures S6-S9
6.	Proposed Catalytic Mechanism	Scheme S1 and S2
7.	The carbon dioxide sorption-desorption	Figure S10
8.	FTIR of the as-synthesized and recovered catalyst	Figure S11

9. References

Crystal data	ZnMOF				
CCDC	2097251				
Chemical formula	$C_{40}H_{46}N_6O_{12}Zn$				
$M_{ m r}$	868.20				
Crystal system, space group	Monoclinic, C2/c				
Temperature (K)	296				
<i>a</i> , b, <i>c</i> (Å)	13.2667 (11), 13.8534				
	(12), 22.0429 (19)				
α, β, γ (°)	90, 93.349 (2), 90				
$V(Å^3)$	4044.3 (6)				
Ζ	4				
Density (calculated)g/cm ⁻³	1.426				
F(000)	1816				
Radiation type	Μο <i>Κ</i> α				
Wavelength (λ)	0.71073				
$\mu (mm^{-1})$	0.678				
Crystal size (mm)	0.28 imes 0.23 imes 0.20				
Data Collection					
Diffractometer	Bruker APEX-II CCD				
Absorption correction	multi-scan				
No. of measured,	16769, 4637, 3883				
independent and observed					
$[I > 2\sigma(I)]$ reflections					
Theta range for data	1.851 to 27.528				
collection (°)					
R _{int}	0.044				
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.650				
Data Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.109, 1.05				
No. of reflections	4637				
No. of parameters	271				
H-atom treatment	H-atom parameters constrained				
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.36, -0.25				

Table S1. SC-XRD Experimental details of ZnMOF.

Table S2. Selected bond lengths (Å) and bond angles (°) in ZnMOF. Symmetry codes are (ii) 1-x, y, 1/2-z; (iv) 1/2+x, -1/2+y, z; (v) 1/2-x, -1/2+y, 1/2-z.

Bo	nd lengths	Bond	Bond angles			
Zn1—O1	1.9592 (14)	O ⁱⁱ —Zn1—O1	99.37 (9)			
Zn1—O1 ⁱⁱ	1.9592 (14)	$O1^{ii}$ — $Zn1$ — $O4^{iv}$	107.61 (6)			
Zn1—O4 ^{iv}	1.9612 (13)	O1—Zn1—O4 ^{iv}	117.92 (6)			
Zn1—O4 ^v	1.9612 (13)	O1 ⁱⁱ —Zn1—O4 ^v	117.92 (6)			
O1—C1	1.274 (2)	$O1$ — $Zn1$ — $O4^{v}$	107.61 (6)			
O2—C1	1.236 (2)	$O4^{iv}$ —Zn1— $O4^{v}$	106.88 (9)			

<i>D</i> —H··· <i>A</i>	D —Н	H···A	D ····A	< <i>(D</i> —H··· <i>A)^o</i>
N1— $H1$ ···O6 ^{vi}	0.86	2.06	2.859 (2)	153
N2— $H2A$ ····O5 ⁱ	0.89	2.10	2.851 (3)	142
N2—H2 B ···O2 ^{vii}	0.89	2.23	2.827 (3)	124
N2—H2 <i>B</i> ···O3	0.89	2.37	2.962 (3)	124
N2—H2 B ····O4 ⁱ	0.89	2.40	2.989 (2)	124
C16—H16A····O3	0.96	2.50	3.062 (4)	117
C17—H17 <i>C</i> ····O2 ^{vii}	0.96	2.51	3.009 (4)	112

Table S3. Hydrogen-bond geometry (Å, °) for ZnMOF.

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (vi) -*x*+1, -*y*, -*z*; (vii) -*x*+1/2, *y*+1/2, -*z*+1/2.

Figure S1. Packing diagram of ZnMOF. Only selected H-atoms are shown for clarity.

Figure S2. Graphical representation of channels (15 \times 7.6) Å² along *a*-axis.

Figure S3. Important 2D fingerprint plots of (a-d) ZnMOF, (e-h) DMF, and (i-l) DHMA.

Figure S4. The O 1s XPS spectra of Cu-MOFs (a) and Zn-MOF (b).

Figure S5. XPS survey of both Cu- and Zn-MOF

Table S4. The cycloaddition of epoxides and CO_2 from the literature catalysed by TBAB.

	Substrate	Reaction Conditions			Conversion			
Substrate	Loading	Т	Р	t	(%)	TON	TOF	Ref.
	(mmol)	(°C)	(bar)	(h)				
РО	25	40	20	24	13	-	-	1
SO	17.4	80	10	12	02	-	-	2
ECH	10	120	1	3	39	390	130	3
	Substrate PO SO ECH	SubstrateSubstrateLoading (mmol)PO25SO17.4ECH	SubstrateSubstrate Loading (mmol)Reaction T (°C)PO2540SO17.480ECH10120	SubstrateSubstrateReaction ConditLoading (mmol)TPPO254020SO17.48010ECH101201	SubstrateSubstrateReaction ConditionsLoading (mmol)TPt(°C)(bar)(h)PO25402024SO17.4801012ECH1012013	SubstrateSubstrateReaction ConditionsConversion $IoadingTPt(%)(mmol)(°C)(bar)(h)(%)PO2540202413SO17.480101202ECH101201339$	SubstrateSubstrateReaction Conditions TConversion (%)TONSubstrate $I = 0$ PO25402024 $I = 0$ $-$ SO17.480101202 $-$ ECH1012013390390	SubstrateSubstrateReaction Conditions TConversion (%)TONTOFSubstrateImage: Conversion (°C)TONTOF(%)TONTOFPO2540202413SO17.480101202ECH101201339390130

SO = Styrene oxide; ECH = Epichlorohydrin, PO = Propylene oxide

NMR Spectra of Carbon Dioxide Fixation Reactions

Figure S6: ¹H-NMR spectrum in CDCl₃ of the reaction mixture obtained from the conversion of epichlorohydrin.

Figure S7: ¹H-NMR spectrum in CDCl₃ of the reaction mixture obtained from the conversion of propylene oxide.

Figure S8: ¹H-NMR spectrum in CDCl₃ of the reaction mixture obtained from the conversion of allyl glycidyl ether

Figure S9: ¹H-NMR spectrum in CDCl₃ of the reaction mixture obtained from the conversion of glycidyl isopropyl ether.

The proposed mechanism in the absence of TBAB

Scheme S1. Catalytic mechanism involving Lewis Acid and Lewis Base sites of the MOF for the cycloaddition of CO_2 to epoxide.

The proposed mechanism in the presence of TBAB

Scheme S2. Catalytic mechanism involving MOF and cocatalyst TBAB for the cycloaddition of CO_2 to epoxide.

The carbon dioxide sorption-desorption

Figure S10: CO₂ sorption (black-colored filled circles)-desorption (empty circles) at 273

The FTIR of the as-synthesized and recovered catalyst

Figure S11: The FTIR of the as-synthesized and recycled (after 5th catalytic run) of ZnMOF

References

- 1. L. Xu, M.-K. Zhai, X.-C. Lu and H.-B. Du, *Dalton Trans.*, 2016, 45, 18730-18736.
- 2. U. Patel, P. Patel, B. Parmar, A. Dadhania and E. Suresh, *Crystal Growth & Design*, 2021, 21, 1833-1842.
- 3. S. Suleman, H. A. Younus, N. Ahmad, Z. A. K. Khattak, H. Ullah, J. Park, T. Han, B. Yu and F. Verpoort, *Appl. Catal. A: Gen.*, 2020, 591, 117384.