Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Selective Linear Ethylene Oligomerization over Nickel-Containing Zeotypes with Tetravalent Framework Heteroatoms

Yunfei Bai ^{a,b}, Tomás Cordero-Lanzac ^c, Ainara Nova ^c, Unni Olsbye ^c, Esben Taarning ^a, Juan S. Martinez-Espin ^{a*}

^aTopsoe A/S, Haldor Topsøes Allé 1, 2800 Kongens Lyngby, Denmark

^bAarhus University, Nordre Ringgade 1, 8000 Aarhus C, Denmark

^cCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo,

Blindern, 0315 Oslo, Norway

Table of contents

Figure S1 XRD patterns of representative nickel loaded Beta zeotypes
Figure S2 N_2 -adsorption/desorption isotherms for: (a) different heteroatom-incorporated Beta
zeotypes with 1 wt% nickel loading; and (b) tin-incorporated Beta zeotypes with various nickel
loadings
Figure S3 SEM images of representative Beta zeotype supports4
Figure S4 IR spectra within C=N stretching region for CD_3CN adsorbed over M-Beta zeotypes5
Figure S5 Correlation between exchanged nickel content and (a) tin content of Sn-Beta support, as
well as (b) nickel loading of Ni/Sn-Beta catalysts
Figure S6 FTIR CO vibration region of Si-Beta (heteroatom-free) with and without nickel loading
upon CO adsorption at liquid nitrogen temperature
Figure S7 Carbon balance calculated based on carbon atoms
Figure S8 Ethylene conversion over Sn-Beta (nickel-free), Ni/Si-Beta (heteroatom free) and Ni/Sn-
Beta catalysts7
Figure S9 TOF comparison of Ni/Sn-Beta with various nickel to tin ratios with TOS=60 min7
Figure S10 Butene product distribution obtained from ethylene oligomerization over Ni/M-Beta
catalysts
Figure S11 Results of 1-butene isomerization experiment
Figure S12 TOF-TOS profiles of catalysts for TPO experiments9
Figure S13 Weight change profile of TPO experiments10

Table S1 Textural properties of representative Ni/M-Beta catalysts.	.9
Table S2 Ion exchange capacity of different zeotype supports.	.9
Table S3 Total mass loss of catalyst samples after TPO experiments under air atmosphere	10

Figure S1 XRD patterns of representative nickel loaded Beta zeotypes.

Figure S2 N₂-adsorption/desorption isotherms for: (a) different heteroatom-incorporated Beta zeotypes with 1 wt% nickel loading; and (b) tin-incorporated Beta zeotypes with various nickel loadings.

Figure S3 SEM images of representative Beta zeotype supports.

Figure S4 IR spectra within C≡N stretching region for CD₃CN adsorbed over M-Beta zeotypes.

Figure S5 Correlation between exchanged nickel content and (a) tin content of Sn-Beta support, as well as (b) nickel loading of Ni/Sn-Beta catalysts.

Figure S6 FTIR CO vibration region of Si-Beta (heteroatom-free) with and without nickel loading upon CO adsorption at liquid nitrogen temperature.

Figure S7 Carbon balance calculated based on carbon atoms.

Reference reaction conditions: 30 bar total pressure, $P_{ethylene} = 10$ bar, T= 250 °C and contact time of 0.017 min g_{cat}/mL .

Figure S8 Ethylene conversion over Sn-Beta (nickel-free), Ni/Si-Beta (heteroatom free) and Ni/Sn-Beta catalysts.

Reference reaction conditions: 30 bar total pressure, $P_{ethylene} = 10$ bar, T= 250 °C and contact time of 0.017 min g_{cat}/mL .

Figure S9 TOF comparison of Ni/Sn-Beta with various nickel to tin ratios with TOS=60 min.

Reference reaction conditions: 30 bar total pressure, $P_{ethylene} = 10$ bar, T= 250 °C and contact time of 0.017 min g_{cat}/mL .

Figure S10 Butene product distribution obtained from ethylene oligomerization over Ni/M-Beta catalysts.

Reference reaction conditions: 30 bar total pressure, $P_{ethylene} = 10$ bar, T= 250 °C and contact time of 0.017 min g_{cat}/mL .

Figure S11 Results of 1-butene isomerization experiment.

(a) 1-butene conversion and yield of butene isomers; (b) carbon balance of the reaction. Reference reaction conditions: atmospheric pressure, T= 250 °C and contact time of 0.0083 min g_{cat}/mL .

Figure S12 TOF-TOS profiles of catalysts for TPO experiments.

Reference reaction conditions: 30 bar total pressure, $P_{ethylene} = 10$ bar, T= 250 °C and contact time of 0.017 min g_{cat}/mL .

Figure S13 Weight change profile of TPO experiments.

Entry	Sample	Nominal Ni loading (wt%)	Surface Area (m²/g)	Micropore volume (cc/g)
1	0.5Ni/150Sn-Beta	0.5	579	0.21
2	1Ni/150Sn-Beta	1	583	0.21
3	2Ni/150Sn-Beta	2	583	0.21
4	1Ni/100Sn-Beta	1	578	0.21
5	1Ni/100Zr-Beta	1	587	0.22
6	1Ni/100Hf-Beta	1	573	0.21
7	1Ni/100Al-Beta	1	591	0.21
8	1Ni/Si-Beta	1	537	0.20

Table S1 Textural properties of representative Ni/M-Beta catalysts.

Table S2 Ion exchange capacity of different zeotype supports.

		content	ratio			Ni	Ni/heteroatom
		mmol/g		wt%	mmol/g	mmol/g	
1	Ni/Sn-Beta	0.174	94	1	0.170	0.068	0.39
2	Ni/Zr-Beta	0.143	110	1	0.170	0.044	0.31
3	Ni/Ti-Beta	0.131	123	1	0.170	0.008	0.06
4	Ni/Al-Beta	0.110 (nominal)	150 (nominal)	1	0.170	0.043	0.39
5	Ni/Si-Beta	0	-	1	0.170	0.008	-
6	Ni/Sn-Beta	0.088	185	1	0.170	0.021	0.24
7	Ni/Sn-Beta	0.110	150	0.5	0.085	0.037	0.34
8	Ni/Sn-Beta	0.110	150	1	0.170	0.034	0.31
9	Ni/Sn-Beta	0.110	150	2	0.341	0.019	0.18
10	NiO/Sn- Beta	0.110	150	1	0.170	0.002	0.02

Table S3 Total mass loss of catalyst samples after TPO experiments under air atmosphere.

Entry	Sample	Mass loss (%)
1	Ni/Al-Beta (300 °C, used)	12.0
2	Ni/Al-Beta (250 °C, used)	11.6
3	Ni/Hf-Beta (250 °C, used)	12.0
4	Ni/Sn-Beta (250 °C, used)	10.2
5	Ni/Sn-Beta (Fresh)	0.4