Electronic Supplementary Information

Highly active and stable RuO₂/MgF₂ catalysts for efficient HCl oxidation in the

fluorochemical industry

Yufeng Gong^{†,a}, Siheng Nie^{†,a}, Honglin Ji^a, Linying Fu^a, Rui Ma^{a,b,*}, Xinqing Lu^{a,b}, Yanghe Fu^{a,b}, Weidong Zhu^{a,b,c,*}

^a Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China

^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China

^c National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People's Republic of China

[†]These authors contributed equally to this work.

*To whom correspondence should be addressed.

Tel./Fax: +86 579 82282234; E-mail: <u>mr@zjnu.cn</u> (R. Ma); Tel./Fax: +86 579 82282932; E-mail: <u>weidongzhu@zjnu.cn</u> (W. Zhu)

Models for the kinetic adsorption of Ru ions on MgF2-SRT supports

Evaluation on mass transfer limitations

Table S1. Extracted parameter values for the kinetic adsorption of Ru ions on MgF₂-

SRT supports at 30.0 °C.

Table S2. Measured reaction rates over RuO_2/MgF_2 -SRT catalysts at different reaction temperatures for E_a calculations.

Table S3. Data for calculating the Mears (C_M) and Weisz-Prater (C_{WP}) criterion parameters.

Table S4. Evaluation on the Mears and Weisz-Prater criterion parameters.

Fig. S1. Adsorption-desorption isotherms of N₂ on MgF₂-SRT supports at -196.0 °C.

Fig. S2. SEM images of MgF₂-SRT supports.

Fig. S3. Ru 3d XPS spectra of RuO₂/MgF₂-SRT catalysts.

Fig. S4. Raman spectra of RuO₂/MgF₂-SRT catalysts.

Fig. S5. TEM (A) and HRTEM (B) images of RuO₂/MgF₂-1 catalyst.

Fig. S6. H₂-TPR curves at different heating rates for RuO₂/MgF₂-SRT catalysts and the Kissinger plots for the reduction peaks of RuO₂/MgF₂-SRT catalysts. The apparent activation energy of the Ru-O bond dissociation was calculated by the Kissinger equation.

Fig. S7. Differential adsorption heat of O_2 on RuO₂/MgF₂-SRT as a function of O_2 coverage (θ) at 40.0 °C.

Fig. S8. HCl conversion as a function of time on stream over RuO_2/MgF_2 -SRT catalysts. Reaction conditions: 350.0 °C and a GHSV of 48,000.0 mL (STP)·(h·g_{catal})⁻¹. Fig. S9. XRD pattern of the used RuO₂/MgF₂-1 catalyst.

Fig. S10. TEM (C) and HRTEM (D) images of the used RuO₂/MgF₂-1 catalyst.

Fig. S11. Raman spectrum of the used RuO_2/MgF_2 -1 catalyst.

Fig. S12. Ru 3d (A) and Cl 2p (B) XPS spectra of the used RuO₂/MgF₂-1 catalyst.

Models for the kinetic adsorption of Ru ions on MgF2-SRT supports

To quantitatively analyze the adsorption kinetics of Ru ions on MgF₂-SRT supports, the plots of q_t versus t were further analyzed by employing the pseudo first-order and pseudo second-order models as shown in Equations (S1) and (S2) [1].

Pseudo first-order model:

$$\ln\left(q_e - q_t\right) = \ln q_e - k_1 t \tag{S1}$$

Pseudo second-order model:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_t}$$
(S2)

where q_t and q_e in μ mol·g⁻¹ are the adsorption amounts of Ru ions at time t and equilibrium, respectively, t represents the contact time (min), and k_1 (min⁻¹) and k_2 (g· μ mol⁻¹·min⁻¹) are denoted as the rate constants for the above two models, respectively.

Reference

1. S. S. Gupta, K.G. Bhattacharyya, Adv. Colloid Interface Sci., 2011, 162, 39-58.

Evaluation on mass transfer limitations

The influence of mass transfer limitations on reaction kinetics was evaluated using the Mears (C_M) and Weisz-Prater (C_{WP}) criteria, which were calculated using Equations (S3) and (S4), respectively [1,2].

$$C_M = \frac{n \cdot r_{\text{obs}} \cdot \rho_{\text{cat}} \cdot R_{\text{cat}}}{k_c \cdot C_{\text{HCl}}}$$
(S3)

$$C_{WP} = \frac{r_{\rm obs} \cdot \rho_{\rm cat} \cdot R_{\rm cat}^2}{D_{\rm eff} \cdot C_{\rm HCl,s}}$$
(S4)

where *n* is the reaction order, r_{obs} is the observed reaction rate, ρ_{cat} is the bulk density of catalyst bed, R_{cat} is the particle radius of catalyst, k_c is the external mass transfer coefficient, C_{HCl} is the bulk concentration of HCl, D_{eff} is the effective diffusion coefficient and $C_{HCl,s}$ is the HCl concentration on the surface of a catalyst particle, which is equal to C_{HCl} when the external mass transfer limitation is neglected.

 k_c was estimated with Equations (S5)-(S7) by means of similarity numbers such as the Sherwood number *Sh*, the Reynolds number of the catalyst pellet Re_p , and the Schmidt number S_c [1].

$$Sh = \frac{k_{\rm c} \cdot d_{\rm cat}}{D_{\rm eff}} = 2 + 0.6 \cdot Re_{\rm p}^{1/2} \cdot Sc^{1/3}$$
(S5)

$$Re_{\rm p} = \frac{U \cdot \rho \cdot d_{\rm cat}}{\mu} \tag{S6}$$

$$Sc = \frac{\mu}{D_{\text{eff}} \cdot \rho} \tag{S7}$$

where d_{cat} is the diameter of a catalyst particle, U is the free-stream velocity, ρ and μ are the density and viscosity of a feed mixture, which can be determined from Aspen Plus software.

 $D_{\rm eff}$ was estimated with Equations (S8)-(S11) using the coefficients for Knudsen

diffusion D_A^K and bulk diffusion D_A^b [1].

$$\frac{l}{D_{\rm eff}} = \frac{l}{D_{\rm A}^{\rm K}} + \frac{l}{D_{\rm A}^{\rm b}}$$
(S8)

$$D_{\rm A}^{\rm K} = \frac{2}{3} \cdot r_{\rm po} \cdot \sqrt{\frac{8 \cdot {\rm R} \cdot T}{\pi \cdot M_{\rm i}}} \cdot \frac{\varepsilon}{\tau}$$
(S9)

$$r_{\rm po} = 4 \cdot \frac{\varepsilon}{S_{\rm cat} \cdot \rho_{\rm cat,g}} \tag{S10}$$

$$D_{\rm A}^{\rm b} = D_{\rm A} \cdot \frac{\varepsilon}{\tau} \tag{S11}$$

where ε , τ , r_{po} , S_{cat} , and $\rho_{cat,g}$ are the porosity, tortuosity, average pore radius, surface area, and grain density of catalyst, T and M_i are the temperature and relative molecular weight of component *i*, and D_A is the free diffusion coefficient, which can be determined from Aspen Plus software.

The data used in the above-mentioned equations and the calculations of the Mears and Weisz-Prater parameters are given in Tables S3 and S4. Apparently, C_M/n is less than 0.15 while *n* ranges from 1 to 2, implying that there is no external mass-transfer limitation. In addition, C_{WP} is much less than 1 at different temperatures, indicating that the internal diffusion limitations can be neglected.

References:

 H. S. Fogler, *Diffusion and reaction in elements of chemical reaction engineering*, Pearson Education Inc.: New York, 2016, pp 734-743.

2. T. R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data, 1972, 1, 1-118.

Support	Pseudo first-order parameters			Pseudo second-order parameters		
	<i>q</i> e	k_1	R^2	<i>q</i> e	k_2	R^2
	$(\mu mol \cdot g^{-1})$	(min ⁻¹)		$(\mu mol \cdot g^{-1})$	(g·µmol ⁻¹ ·min ⁻¹)	
MgF ₂ -1	117	0.51	0.834	120	0.63	0.993
MgF ₂ -8	101	0.43	0.786	104	0.52	0.996
MgF ₂ -24	75	0.38	0.802	77	0.41	0.995
MgF ₂ -36	56	0.32	0.819	58	0.34	0.995

Table S1. Extracted parameter values for the kinetic adsorption of Ru ions on MgF₂-SRT supports at 30.0 $^{\circ}$ C

Catalyst	Temperature	HCl conversion	Reaction rate
	(°C)	(%)	$(\times 10^{-4} mol \cdot g^{-1} \cdot s^{-1})$
	305	1.58	7.9
	315	1.86	9.3
	325	1.96	9.8
RuO ₂ /MgF ₂ -1	335	2.28	11.4
	345	2.71	13.6
	355	3.62	18.1
	305	1.27	6.4
	315	1.48	7.4
$D_{\rm MO}/M_{\rm e}E_{\rm e}$	325	1.79	9.0
KuO2/IVIgF2-0	335	2.10	10.5
	345	2.47	12.4
	355	3.10	15.5
	305	0.94	4.7
	315	1.13	5.7
RuO_2/MgF_2-24	325	1.45	7.3
	335	1.69	8.5
	345	1.94	9.7

Table S2. Measured reaction rates over RuO_2/MgF_2 -SRT catalysts at different reactiontemperatures for E_a calculations^a

	355	2.24	11.2
	305	0.84	4.2
	315	1.03	5.2
$D_{\rm M}$ $O_{\rm C}$ $M_{\rm C}$ $E_{\rm C}$ 26	325	1.16	5.8
KuO2/Mgr2-30	335	1.29	6.5
	345	1.49	7.5
	355	1.77	8.9

^a The different, high gas hourly space velocities were set in order to maintain HCl conversions always below 10%, and the reaction rates were measured after 1 h of the oxidation reaction.

Parameters	Values
$ ho_{ m cat}$	806 kg·m ⁻³
$R_{\rm cat}$	0.20 mm
$ ho_{cat,g}$	3,074 kg·m ⁻³
Е	0.65
$ au^{ m a}$	3

 Table S3. Data for calculating the Mears and Weisz-Prater criterion parameters

^a The pore tortuosity was assumed to be 3 for a spherical catalyst particle.

Catalyst	Temperature (°C)	C_{M}	C_{WP}
	325	4.5×10 ⁻³	1.8×10 ⁻²
	335	5.5×10 ⁻³	2.2×10 ⁻²
RuO ₂ /MgF ₂ -1	345	6.9×10 ⁻³	2.7×10 ⁻²
	355	8.9×10 ⁻³	3.5×10 ⁻²
	325	5.6×10 ⁻³	2.2×10 ⁻²
	335	6.5×10 ⁻³	2.6×10 ⁻²
RuO ₂ /MgF ₂ -8	345	7.5×10 ⁻³	3.0×10 ⁻²
	355	8.8×10 ⁻³	3.5×10 ⁻²
	325	7.4×10 ⁻³	3.1×10 ⁻²
	335	8.6×10 ⁻³	3.6×10 ⁻²
RuO ₂ /MgF ₂ -24	345	9.9×10 ⁻³	4.1×10 ⁻²
	355	1.1×10 ⁻²	4.7×10 ⁻²
	325	5.8×10 ⁻³	2.4×10 ⁻²
	335	6.7×10 ⁻³	2.7×10 ⁻²
KuO ₂ /MgF ₂ -36	345	8.1×10 ⁻³	3.3×10 ⁻²
	355	9.7×10 ⁻³	3.9×10 ⁻²

Table S4. Evaluation on the Mears (C_M) and Weisz-Prater (C_{WP}) criterion parameters

Fig. S1. Adsorption-desorption isotherms of N₂ on MgF₂-SRT supports at -196.0 °C.

Fig. S2. SEM images of MgF₂-SRT supports.

Fig. S3. Ru 3d XPS spectra of RuO₂/MgF₂-SRT catalysts.

Fig. S4. Raman spectra of RuO₂/MgF₂-SRT catalysts.

Fig. S5. TEM (A) and HRTEM (B) images of RuO_2/MgF_2 -1 catalyst.

Fig. S6. H₂-TPR curves at different heating rates for RuO₂/MgF₂-SRT catalysts and the Kissinger plots for the reduction peaks of RuO₂/MgF₂-SRT catalysts. The apparent activation energy of the Ru-O bond dissociation was calculated by the Kissinger equation.

Fig. S7. Differential adsorption heat of O_2 on RuO_2/MgF_2 -SRT as a function of O_2 coverage (θ) at 40.0 °C.

Fig. S8. HCl conversion as a function of time on stream over RuO_2/MgF_2 -SRT catalysts. Reaction conditions: 350 °C and a GHSV of 48,000.0 mL (STP)·(h·g_{catal})⁻¹.

Fig. S9. XRD pattern of the used RuO_2/MgF_2-1 catalyst.

Fig. S10. TEM (A) and HRTEM (B) images of the used RuO_2/MgF_2 -1 catalyst.

Fig. S11. Raman spectrum of the used RuO_2/MgF_2 -1 catalyst.

Fig. S12. Ru 3d (A) and Cl 2p (B) XPS spectra of the used RuO_2/MgF_2 -1 catalyst.