Dual-channel synthesis of H_2O_2 via photoelectrocatalytic water oxidation and oxygen reduction over TaON/Ta₃N₅/Cul/Cu foam electrode

Shaomang Wang^{a,b}, Jie Wang^a, Haokang Wu^a, Yuan Guan^c, Zhongyu Li^{a,*}, Shicheng Yan^{d,*}, Zhigang Zou^d

^a School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.

^b School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China.

^c Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.

^d Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.

*E-mail: zhongyuli@cczu.edu.cn, yscfei@nju.edu.cn

Catalyst	Synthesis method	Reaction pathway	H ₂ O ₂ production rate	reference
ZIF-8/C ₃ N ₄	РС	2e ⁻ ORR and WOR	2641.0 μmol g ⁻¹ h ⁻¹	1
Ni-CAT-CN ₆₀	PC	1e ⁻ ORR and 4e ⁻ WOR	1801.0 μmol g ⁻¹ h ⁻¹	2
C, N co-doped TiO ₂	EC	2e ⁻ WOR	$0.3 \ \mu mol \ L^{-1} \ cm^{-2} \ h^{-1}$	3
α-Fe ₂ O ₃ -GDE	PEC	2e ⁻ ORR	58.8 µmol L ⁻¹ cm ⁻² h ⁻¹	4
(1T-2H)-MoSe ₂ /TiO ₂	PEC	1e ⁻ ORR	38.0 µmol cm ⁻² h ⁻¹	5
SnO _{2-x} -BiVO ₄	PEC	2e ⁻ and 4e ⁻ WOR	48.0 µmol cm ⁻² h ⁻¹	6
Mo-doped BiVO ₄	PEC	2e ⁻ ORR and 4e ⁻ WOR	9.6 μmol cm ⁻² h ⁻¹	7
NiFeO _x /BiVO ₄ -pTTh	PEC	2e ⁻ ORR	1.1 mmol L ⁻¹ cm ⁻² h ⁻¹	8
CuWO ₄	PEC	2e ⁻ ORR and WOR	0.7 mmol cm ⁻² h ⁻¹	9
WO ₃ /FPC	PEC	2e ⁻ ORR	0.2 mmol L ⁻¹ cm ⁻² h ⁻¹	10

Table S1 Comparison of the activity of different catalysts for the synthesis of H_2O_2 by different methods

Photoanodes	Rs	CPE-T	CPE-P	R
	$(\Omega \text{ am}^2)$	$(\Omega^{-1}\mathrm{S}^{\mathrm{n}}\ \mathrm{cm}^{-2})$	$(\Omega^{-1}S^n \operatorname{cm}^{-2})$	$(\mathbf{O} \ \mathrm{am}^2)$
	(22 Cm)	×10 ³	×10 ³	(32 cm)
CuI/Cu	3.412	5.5718	468.41	39.792
TN/Cu	4.019	2.2699	539.27	37.817
CIT-1	3.6955	0.1342	41.517	16.892
CIT-2	4.940	2.383	494.01	70.398
CIT-3	3.397	13.899	409.91	22.542

Table S2 The fitting parameters of the R(C(RW)) equivalent circuit model

Fig. S1 C 1s high resolution XPS spectra of TaON/Ta $_3N_5$ /Cu, CuI/Cu, and CIT-1.

Fig. S2 The C-E curves of (a) TaON/Ta $_3N_5$ /Cu, (b) CuI/Cu, and (c) CIT-1 under dark and light.

Fig. S3 The J-t curves of TaON/Ta₃N₅/Cu, CuI/Cu, CIT-1, CIT-2 and CIT-3.

Fig. S4 The XRD patterns of CIT-1before and after reaction.

Fig. S5 EPR spectra of CIT-1 for (a) $\cdot OH$ and (b) $\cdot O_2^-$ under dark and light.

References

- 1 Y. Zhao, Y. Liu, J. Cao, H. Wang, M. Shao, H. Huang, Y. Liu and Z. Kang, Appl. Catal. B., 2020, **278**, 119289.
- Y. Zhao, Y. Liu, Z. Wang, Y. Ma, Y. Zhou, X. Shi, Q. Wu, X. Wang, M. Shao, H. Huang,
 Y. Liu and Z. Kang, Appl. Catal. B., 2021, 289, 120522.
- 3 S.g. Xue, L. Tang, Y.k. Tang, C.x. Li, M.I. Li, J.j. Zhou, W. Chen, F. Zhu and J. Jiang, ACS Appl. Mater. Interfaces., 2019, **12**, 4423-4431.
- 4 X. Mei, J. Bai, S. Chen, M. Zhou, P. Jiang, C. Zhou, F. Fang, Y. Zhang, J. Li, M. Long and B. Zhou, Environ. Sci. Technol., 2020, 54, 11515-11525.
- 5 X. Zhang, Y. Zeng, W. Shi, Z. Tao, J. Liao, C. Ai, H. Si, Z. Wang, A.C. Fisher and S. Lin, Chem. Eng. J., 2022, 429, 131312.
- 6 K. Zhang, J. Liu, L. Wang, B. Jin, X. Yang, S. Zhang and J.H. Park, J. Am. Chem. Soc., 2020, 142, 8641-8648.
- 7 T.H. Jeon, H. Kim, H.i. Kim and W. Choi, Energy Environ. Sci., 2020, 13, 1730-1742.
- 8 W. Fan, B. Zhang, X. Wang, W. Ma, D. Li, Z. Wang, M. Dupuis, J. Shi, S. Liao and C. Li, Energy Environ. Sci., 2020, **13**, 238-245.
- 9 L. Li, K. Xiao, P.K. Wong, Z. Hu and J. C. Yu, ACS Appl. Mater. Interfaces., 2022, 14, 7878-7887.
- 10 F. Ye, T. Wang, X. Quan, H. Yu and S. Chen, Chem. Eng. J., 2020, 389, 123427.