Electronic Supplementary Information

Iron-Catalyzed (E)-Selective Hydrosilylation of Alkynes: Scope and Mechanistic Insights

Anirban Sen,^{a,c} Tanuja Tewari,^{a,c} Rohit Kumar,^{a,c} C. P. Vinod,^{b,c} Himanshu Sharma,^{c,d} Kumar Vanka,^{c,d} Samir H. Chikkali^{*,a,c}

^aPolymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

^bCatalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

^cAcademy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, U. P., INDIA

^dPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

Contents

1. Methods and materials:	2
2. Synthesis of iron complex [Fe(CO) ₃ BDA] and [HFe(CO) ₄ SiPh ₃]:	2
3. General procedure for iron catalyzed hydrosilylation of alkynes:	4
4. GC chromatogram for substrate scope of hydrosilylation of alkynes:	7
5. NMR of isolated compounds for hydrosilylation of alkynes:	22
6. Application:	40
6a. Gram scale synthesis:	40
6b. Protodesilylation reaction:	41
6c. Chemoselective hydrosilylation:	42
7. Mechanistic investigation:	43
7a. Test for homogeneity:	43
7b. Radical trap experiment:	44
7c. Procedure for XPS analysis:	45
7d. Kinetic analysis:	46
8. Computational Details:	52
9. References:	73

1. Methods and materials:

All manipulations were carried out under an inert atmosphere using standard Schlenk technique, cannula filtration or m-Braun glove box. Solvents were dried by standard procedures unless otherwise mentioned.^{1a} THF was dried on sodium/benzophenone. Di-iron nonacarbonyl, organosilanes, diphenyl acetylene were purchased from Sigma-Aldrich. All other reagents/chemicals, solvents were purchased from local suppliers (Spectrochem Pvt. Ltd.; Avra Synthesis Pvt. Ltd.; Thomas Baker Pvt. Ltd. etc). Other alkynes (1b-1i) were prepared from literature procedure.^{1b} Solution NMR spectra were recorded on a Bruker Avance 200, 400 and 500 MHz instruments at 298K unless mentioned otherwise. Chemical shifts are referenced to external reference TMS (¹H and ¹³C) or or 85% H₃PO₄ ($\Xi = 40.480747$ MHz, ³¹P). Coupling constants are given as absolute values. Multiplicities are given as follows s: singlet, d: doublet, t: triplet, m: multiplet, quat: quaternary carbon. Mass spectra were recorded on Thermo Scientific Q-Exactive mass spectrometer with Hypersil gold C18 column 150 x 4.6 mm diameter 8 µm particle size mobile phase used is 90% methanol + 10% water + 0.1% formic acid. The GC conversion of the products were determined by HP-5 column (30 m) on an Agilent 7890B GC system.

2. Synthesis of iron complex [Fe(CO)₃BDA] and [HFe(CO)₄SiPh₃]:

We began with the synthesis of $[Fe(CO)_3(BDA)]$ complex by following a known literature procedure (scheme S1).^{1c} 2.01 g (0.0137 mol) of benzylideneacetone, 5 g (0.0137 mol) of $[Fe_2(CO)_9]$ were suspended in dry toluene (30 ml) in a Schlenk flask. The above suspension was heated at 60 °C for 5 hours, after which volatiles were evaporated under vacuum. Then the residue was purified by silica gel column chromatography, eluting with pet ether/ethyl acetate (99/1). The product [Fe-1] was obtained as orange red crystals (1.25 g, 32%). Fe(CO)₅ also formed as side product which is used in the synthesis of [Fe-3].

$$Ph-CH=CHCOCH_{3} + [Fe_{2}(CO)_{9}] \xrightarrow{Toluene} [(Ph-CH=CHCOCH_{3})Fe(CO)_{3}] + [Fe(CO)_{5}] + CO$$

$$[Fe-1]$$

Scheme S1: Synthesis of [(Ph-CH=CHCOCH₃)Fe(CO)₃]. ¹H NMR (500 MHz, CDCl₃): δ = 7.2 (m, 4H), 7.13 (m, 1H), 5.98 (d, J = 9.7 Hz, 1H, Ph-CH), 3.05 (d, J = 9.7 Hz, 1H, =CHCO), 2.48 (s, 3H, -CH₃).

Figure S1: ¹H NMR spectrum of [Fe(CO)₃BDA].

The iron catalyst [HFe(CO)₄SiPh₃] or [Fe-3] was prepared by a modified literature procedure.² [Fe(CO)₅] (3.63g, 2.5 mL, 0.018 mol) and [(C₆H₅)₃SiH] (4.3 g, 0.016 mol) were taken in a Schlenk tube, and 35 ml of n-heptane was added to it. The Schlenk tube was linked to a silicon oil bubbler, and the reaction mixture was exposed to UV radiation for eight hours while being constantly stirred at a temperature of 15-20 °C using a pyrex filtered medium pressure mercury vapour lamp (450 W) with a pyrex filter (hv > 300). Initially, the rate of evolution of carbon monoxide was rapid (i.e., one bubble/4 sec.). But it had nearly ceased at the end of the reaction. The reaction mixture was then run through a celite pad after that. Vacuum was used to evaporate the yellow filtrate, which decreased the volume of the solution to 10-15 ml. This concentrated filtrate was left overnight for crystallization at 0 °C. White coloured crystals were obtained (yield ~70 %) and separated with the help of cannula filtration and were washed with ice-cold pentane before drying under vacuum. The crystalline compound was characterized by ¹H NMR spectroscopy. The crystalline compound was stable only below 10 °C.

[HFe(CO)₄(SiPh₃)]

¹**H NMR (500 MHz, C₆D₆):** δ = 7.46 (m, 6H), 6.93 (m, 9H), -9.18 (s, 1H).

Figure S2. ¹H NMR spectrum of [HFe(CO)₄(SiPh₃)].

3. General procedure for iron catalyzed hydrosilylation of alkynes:

Scheme S2: Fe-1 catalyzed Hydrosilylation of internal alkynes.

GP 1: Alkyne **1** (0.25 mmol), silane **2** (0.375 mmol), [Fe-1] (3.575 mg, 0.0125 mmol, 5 mol %), L5 (6.8 mg, 0.0125 mmol, 5 mol %) were introduced in a 10 mL teflon-valved flask equipped with a magnetic stir bar under argon atmosphere. Toluene (1 mL) was added to the reaction mixture. The reaction mixture was stirred at 60-70 °C for 24-48 h. The mixture was extracted with diethyl ether (3×10 mL). After that, the layers of mixed diethyl ether were dried over sodium sulphate and concentrated under vacuum. After evaporation of the solvent, the crude reaction mixture was purified by silica gel column chromatography (petroleum

ether/EtOAc 50/1), yielding the hydrosilylated product. The conversion was determined by gas chromatography with respect to starting alkyne.

Scheme S3: [HFe(CO)₄SiPh₃] catalyzed hydrosilylation of Diphenylacetylene

GP 2: Alkyne **1a** (44.55 mg, 0.25 mmol), silane **2a** (40 mg, 0.375 mmol), [HFe(CO)₄SiPh₃] (5.35 mg, 0.0125 mmol, 5 mol %), L5 (6.8 mg, 0.0125 mmol, 5 mol %) were introduced in a 10 mL teflon-valved flask equipped with a magnetic stirrer under argon atmosphere. Toluene (1 mL) was added to the reaction mixture. The reaction mixture was stirred at 60 °C for 16 h. The mixture was extracted with diethyl ether (3×10 mL). After that, the layers of mixed diethyl ether were dried over sodium sulfate and concentrated under vacuum. After evaporation of the solvent, the crude reaction mixture was purified by silica gel column chromatography (petroleum ether/EtOAc 50/1), yielding (92%) the hydrosilylated product.

GC method 1: GC analysis was carried out on an Agilent 7890B GC system using HP-05 column (30 m \times 320 μ m \times 0.25 μ m), split ratio 30:1, column pressure 10 psi, injector temperature of 260 °C, detector temperature of 330 °C, argon carrier gas. Temperature program: Initial temperature 70 °C, hold for 1 min.; ramp 1: 4 °C/min. to 120 °C; ramp 2: 10 °C/min. to 250 °C; ramp 3: 20 °C/min. to 320 °C, hold for 2 min.

GC method 2: GC analysis was carried out on an Agilent 7890B GC system using HP-05 column (30 m \times 320 μ m \times 0.25 μ m), split ratio 30:1, column pressure 10 psi, injector temperature of 260 °C, detector temperature of 330 °C, argon carrier gas. Temperature program: Initial temperature 70 °C, hold for 1 min.; ramp 1: 4 °C/min. to 120 °C; ramp 2: 10

°C/min. to 250 °C, hold for 3 min; ramp 3: 20 °C/min. to 320 °C, hold for 5 min.

GC method 1 was applied for substrates 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1j, 1k, 1l, 1m, 1n, 1o, 1p, 1q, 1r, 1s, 1t, 1u, 1v, 1w, 1x.

GC method 2 was applied for substrates 1h, 1i.

Substrate	Retention time	Product	Retention time	Conversion (%)
	(min)		(min)	
1a	17.7	3a	22.2, 22.5	>99
1b	20.7	3b	23.8	80
1c	23.9	3c	26.3	87
1d	22.8	3d	24.5	88
1e	22.5	3e	25.5	>99
1f	24.09	3f	27.14	77
1g	17.3	3g	21.5	>99
1h	29.2	3h	30.3	64
1i	30.2	3i	31.6	41
1j	17.3	3ј	20.4, 20.8	84
1k	20.7	3k	22.8, 23.1	61
11	17.7	31	21.1, 21.3	77
1m	17.7	3m	27.7, 28.0	38
1n	21.7	3n	28.3	79
10	23.5	30	29.7, 30.1	83
1p	18.3	3р	26.4, 26.6	91
1q	21.7	3q	29.2, 29.6	73
1r	3.7	3r	23.1, 23.3	97
1s	26.6	3s	29.6	92
1t	17.7	3t	28.2, 28.5	>99
1u	18.3	3u	27.2, 27.8	86

Table S1. GC retention time for alkynes, hydrosilylated products and conversion

1v	20.7	3v	25.6, 25.7	90
1w	24.7	3w	28.7, 28.8	98
1x	21.6	3x	26.8, 26.9	87

4. GC chromatogram for substrate scope of hydrosilylation of alkynes:

Figure S3. GC chromatogram of 3a (Table S1, under optimized condition).

Figure S4. GC chromatogram of 3b.

Figure S5. GC chromatogram of 3c.

Figure S6. GC chromatogram of 3d.

Retention Time	Area	Area %	Height	Height %
24.091	483260	23.42	171179	26.54
27.147	1579950	76.58	473798	73.46
Totals				
	2063210	100.00	644977	100.00

Figure S8. GC chromatogram of 3f.

Figure S9. GC chromatogram of 3g.

Retention Time	Area	Area %	Height	Height %
29.217	1374250	36.55	286564	34.26
30.341	2385578	63.45	549843	65.74
m . 1				
Totals				
	3759828	100.00	836407	100.00

Figure S10. GC chromatogram of 3h.

Figure S11. GC chromatogram of 3i.

Figure S12A. GC chromatogram of 3j.

Figure S12B. GC-MS chromatogram of 3j.

Figure S13A. GC chromatogram of 3k.

Figure S13B. GC-MS chromatogram of 3k.

Figure S14A. GC chromatogram of 31.

Figure S14B. GC-MS chromatogram of 3l.

Figure S15. GC chromatogram of 3m.

Figure S17A. GC chromatogram of 3o.

Figure S17B. GC-MS chromatogram of 3o.

Figure S18. GC chromatogram of 3p.

Figure.S21: GC-MS chromatogram of 3r

Figure S22. GC chromatogram of 3s.

Figure S23. GC-MS chromatogram of 3s.

Figure S24. GC chromatogram of 3t.

Figure S26. GC chromatogram of 3v.

Figure S27. GC chromatogram of 3w.

Figure S28. GC chromatogram of 3x.

5. NMR of isolated compounds for hydrosilylation of alkynes: **Triethyl-[(Z)-(1,2-diphenylvinyl)]silane (3a)**

The desired product 3a was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): δ 7.32 (m, 2H), 7.22 (m, 1H), 7.11 (m, 3H), 7.03 (m, 2H), 6.98 (m, 2H), 6.8 (s, C=CH, 1H), 0.99 (t, J = 7.9 Hz, 9H), 0.68 (q, J = 7.9 Hz, 6H). This compound has been

previously characterized.³

Figure S29: ¹H NMR of 3a in CDCl₃

(E)-(1,2-di-p-tolylvinyl)triethylsilane (3b)

The desired product 3b was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): δ 7.14 (s, 1H), 7.12 (s, 1H), 6.92 (m, 6H), 6.75 (s, 1H), 2.38 (s, 3H, CH₃-Ar), 2.26 (s, 3H, CH₃-Ar), 0.98 (t, J = 8 Hz, 9H, -Si(CH₂CH₃)₃), 0.66 (q, J = 8 Hz, 6H, -Si(CH₂CH₃)₃). This compound has been previously characterized.³

Figure S30: ¹H NMR of 3b in CDCl₃

(E)-(1,2-bis(4-methoxyphenyl)vinyl)triethylsilane (3c)

The desired product 3c was obtained as a colorless oil by silica gel column chromatography. $\delta = 6.91-6.86$ (m, 6H), 6.68-6.62 (m, 3H), 3.81 (s, 3H, -OCH₃), 3.71 (s, 3H, -OCH₃), 0.94 (t, J = 7.8 Hz, 9H, -Si-C-(CH₃)₃), 0.62 (q, J = 7.9 Hz, 6H, -Si(CH₂)₃). This compound has been previously characterized.³

(E)-(1,2-bis(2-methoxyphenyl)vinyl)triethylsilane (3d)

The desired product 3d was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.15$ (m, 2H), 7.06 (m, 1H), 6.83 (m, 2H), 6.79 (m, 3H), 6.56 (t, J = 5.6 Hz, 1H), 3.85 (s, 3H, -OCH₃), 3.75 (s, 3H, -OCH₃), 0.97 (t, J = 7.8 Hz, 9H, -Si-C-(CH₃)₃), 0.65 (q, J = 7.8 Hz, 6H, -Si(CH₂)₃). ¹³C

NMR (100 MHz, CDCl₃): δ = 157.5, 156.5, 140.3, 134.3, 132.3, 129.6, 129.0, 128.1, 127.4, 126.9, 120.8, 120.0, 110.8, 110.2, 55.9, 55.1, 7.5, 3.6.

Figure S33: ¹³C NMR of 3d in CDCl₃

(E)-(1,2-bis(4-chlorophenyl)vinyl)triethylsilane (3e)

The desired product 3e was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (500 MHz, CDCl₃): δ = 7.27 (d, J = 8.38 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 6.92-6.86 (m, 4H), 6.73 (s, 1H, -C=CH), 0.95 (t, J = 8.0 Hz, 9H, -Si-C-(CH₃)₃), 0.63 (q, J = 7.75 Hz, 6H, -Si(CH₂)₃). The characterization of this compound has been

previously reported.³

Figure S34: ¹H NMR of 3e in CDCl₃

(E)-(1,2-bis(4-bromophenyl)vinyl)triethylsilane (3f)

The desired product 3f was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (500 MHz, CDCl₃): δ = 7.45 (s, 1H), 7.43 (s, 1H), 7.27 (d, J = 3 Hz, 1H), 7.25 (s, 1H), 6.88 (s, 1H), 6.86 (s, 1H), 6.84 (s, 1H), 6.82 (s, 1H), 6.74 (s, 1H), 0.97 (t, J = 7.6 Hz, 9H, -Si-C-(CH₃)₃), 0.65 (q, J = 7.6 Hz, 6H, -Si(CH₂)₃). This compound has

been previously characterized.³

Figure S35: ¹H NMR of 3f in CDCl₃

(E)-(1,2-bis(4-(trifluoromethyl)phenyl)vinyl)triethylsilane (3g)

The desired product 3g was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.58$ (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H), 6.87 (s, 1H, C=C-H), 0.98 (t, J = 7.6 Hz, 9H, -Si-C-(CH₃)₃), 0.68 (q, J = 7.6 Hz, 6H, -Si(CH₂)₃). ¹³C NMR (125 MHz, CDCl₃): $\delta = 146.9$, 146.3, 140.4, 138.3, 129.7, 129.4,

129.0, 128.6, 128.3, 127.7, 125.9 (q, ${}^{3}J_{C-F} = 3.82 \text{ Hz}$), 125.1 (q, ${}^{3}J_{C-F} = 3.05 \text{ Hz}$), 123.1, 122.8, 7.4, 2.9.

Figure S36: ¹H NMR of 3g in CDCl₃

Figure S37: ¹³C NMR of 3g in CDCl₃

(E)-(1,2-di(naphthalen-1-yl)vinyl)triethylsilane (3h)

The desired product 3h was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): δ = 8.27 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.78 (m, 3H), 7.63 (m, 2H), 7.52 (m, 2H), 7.35 (m, 3H), 7.08 (m, 1H), 6.94 (m, 2H), 1.03(t, J = 7 Hz, 9H, -Si-C-(CH₃)₃), 0.76 (q, J = 7 Hz, 6H, -

Si(CH₂)₃). This compound has been previously characterized.³

Figure S38: ¹H NMR of 3h in CDCl₃

(E)-(1,2-di(naphthalen-2-yl)vinyl)triethylsilane (3i)

The desired product 3i was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (400 MHz, CDCl₃): δ = 7.8 (m, 8H), 7.65 (m, 1H), 7.55 (m, 3H), 7.47 (m, 2H), 7.41 (d, J = 9.46 Hz, 1H), 7.36 (m, 2H), 7.2 (d, J = 8.35 Hz, 1H), 7.06 (s, 1H), 7.0 (d, J = 8.35 Hz, 1H), 1.03 (t, J = 7.8 Hz, 9H, -Si-C-

(CH₃)₃), 0.73 (q, J = 7.8 Hz, 6H, -Si(CH₂)₃). ¹³C NMR (100 MHz, CDCl₃): δ = 144.5, 141.1, 139.3, 135.3, 134.0, 133.3, 132.5, 132.0, 129.5, 128.4, 128.2, 127.9, 127.6, 127.3, 127.2, 127.1, 126.1, 126.0, 125.4, 125.3, 7.8, 3.1.

Figure S39: ¹H NMR of 3i in CDCl₃

Figure S40: ¹³C NMR of 3i in CDCl₃

(E)-(1,2-bis(4-(trifluoromethyl)phenyl)vinyl)diethoxy(methyl)silane (3j)

Although GC analyses showed 80% conversion to product; however, concentration of the reaction mixture and attempts at purification of the resulting residue by column chromatography on silica gel or silica gel treated with NEt₃ resulted in decomposition of the

product.

(E)-(1,2-di-p-tolylvinyl)diethoxy(methyl)silane (3k)

Although GC analyses showed 61% conversion to product; however, concentration of the reaction mixture and attempts at purification of the resulting residue by column chromatography on silica gel or silica gel treated with NEt_3 resulted in decomposition of the product.

(E)-(1,2-diphenylvinyl)diethoxy(methyl)silane (3l)

Although GC analyses showed 77% conversion to product; however, concentration of the reaction mixture and attempts at purification of the resulting residue by column chromatography on silica gel or silica gel treated with NEt3 resulted in decomposition of the product.

(E)-(1,2-diphenylvinyl)diphenylsilane (3m)

The desired product 3m was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (500 MHz, CDCl₃): δ = 7.6 (m, 2H), 7.58 (d, 2H) 7.42 (m, 2H), 7.38 (m, 4H), 7.19 (m, 3H), 7.12 (m, 3H), 7.03 (m, 5H), 5.31 (s, 1H). This compound has been previously

characterized.4

Figure S41: ¹H NMR of 3m in CDCl₃

(E)-(1,2-di-p-tolylvinyl)diphenylsilane (3n)

The desired product 3n was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): $\delta = 7.54$ (d, J = 2.2 Hz, 1H), 7.51 (d, J = 2.7 Hz, 2H) 7.36 (s, 1H), 7.33 (m, 3H), 7.30 (s, 1H), 6.99 (s, 1H), 6.95 (s, 2H), 6.87 (m, 8H), 5.22 (s, 1H, -SiHPh₂), 2.25 (s, 3H, CH₃-Ar), 2.19 (s, 3H, CH₃-Ar). This compound has been

previously characterized.4

Figure S42A: ¹H NMR of 3n in CDCl₃

(E)-(1,2-bis(4-methoxyphenyl)vinyl)diphenylsilane (30)

The desired product 30 was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.57$ (d, J = 6.4 Hz, 4H), 7.44-7.36 (m, 6H), 6.98 (s, 1H), 6.96 (d, J = 2.5 Hz, 2H), 6.93 (d, J=3.5 Hz, 2 H), 6.76 (d, J=8.8 Hz, 2H), 6.65 (d, J=8.8 Hz, 2 H), 5.26 (s, 1 H), 3.78 (s, 3 H), 3.74 (s, 3 H). The characterization of this compound has been previously reported.⁴

Figure S42B: ¹H NMR of 30 in CDCl₃

(E)-(1,2-bis(4-(trifluoromethyl)phenyl)vinyl)diphenylsilane (3p)

characterized.4

The desired product 3p was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): $\delta = 7.56$ (s, 2H), 7.54 (d, J = 1.4 Hz, 2H) 7.46 (s, 1H), 7.44 (s, 2H), 7.42 (s, 1H), 7.39 (s, 1H), 7.37 (s, 3H), 7.35 (m, 2H), 7.06 (m, 4H), 7.03 (s, 1H), 5.29 (s, 1H, -SiHPh₂). This compound has been previously

Figure S43: ¹H NMR of 3p in CDCl₃

(E)-(1,2-bis(4-chlorophenyl)vinyl)diphenylsilane (3q)

The desired product 3q was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): δ = 7.49 (t, J = 1.7 Hz, 2H), 7.45 (d, J = 2.2 Hz, 2H) 7.40 (m, 1H), 7.36 (s, 1H), 7.33 (m, 3H), 7.29 (s, 1H), 7.17 (s, 1H), 7.12 (t, J = 2.2 Hz, 1H), 7.07 (m, 1H), 7.04 (m, 1H), 7.0 (m, 1H), 6.88 (s, 1H), 6.84 (d, J = 1.8 Hz,

2H), 6.80 (d, J = 1.6 Hz, 1H), 5.18 (s, 1H, -SiHPh₂). This compound has been previously characterized.⁴

Figure S44: ¹H NMR of 3q in CDCl₃

(E)-(1,2-diphenylvinyl)dimethyl(phenyl)silane (3t)

The desired product 3t was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): $\delta = 8.03$ (br s, 1H), 7.86-7.69 (m, 9H), 7.59 (br s, 3H), 7.45-7.32 (m, 3H), 0.30 (s, 6H). This compound has been previously characterized.⁵

Figure S45: ¹H NMR of 3t in CDCl₃

(E)-(1,2-bis(4-(trifluoromethyl)phenyl)vinyl)dimethyl(phenyl)silane (3u)

The desired product 3u was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): δ = 7.50-7.41 (m, 4H), 7.33-7.28 (m, 4H), 7.23-7.18 (m, 1H), 6.93-6.88 (m, 4H), 6.82 (s, 1H), 0.34 (s, 6H). This compound has been previously characterized.⁵

Figure S46: ¹H NMR of 3u in CDCl₃

(E)-(1,2-di-p-tolylvinyl)dimethyl(phenyl)silane (3v)

The desired product 3v was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): δ = 7.85 (m, 1H), 7.65 (d, J = 2Hz, 1H) 7.63 (m, 1H), 7.50 (s, 2H), 7.40 (s, 1H), 7.35 (s, 1H), 7.31 (s, 1H), 7.16 (m, 3H), 7.11 (s, 1H), 7.07 (s, 1H), 7.03 (s, 1H), 2.61 (s, 3H, CH₃-Ar), 2.58 (s, 3H, CH₃-Ar), 0.67 (s, 3H, -

Si(CH₃)₂), 0.11 (s, 3H, -Si(CH₃)₂). This compound has been previously characterized^{.5}

Figure S47: ¹H NMR of 3v in CDCl₃

(E)-(1,2-bis(4-methoxyphenyl)vinyl)dimethyl(phenyl)silane (3w)

The desired product 3w was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (200 MHz, CDCl₃): $\delta = 7.84$ (m, 1H), 7.65 (m, 3H), 7.51 (s, 3H), 7.11 (s, 3H), 7.05 (s, 1H), 7.0 (s, 1H), 6.96 (s, 2H), 4.10 (s, 3H), 4.08 (s, 3H), 0.67 (s, 3H, -Si(CH₃)₂), 0.14 (s, 3H, -Si(CH₃)₂). This compound has been previously characterized.⁵

Figure S48: ¹H NMR of 3w in CDCl₃

(E)-(1,2-bis(4-chlorophenyl)vinyl)dimethyl(phenyl)silane (3x)

The desired product 3x was obtained as a colorless oil by silica gel column chromatography. ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (d, J = 2 Hz, 1H), 7.53 (m, 1H), 7.39 (d, J = 2 Hz, 2H), 7.37 (m, 1H), 7.24 (m, 1H), 7.20 (s, 1H), 7.11 (s, 1H), 7.06 (s,1H), 6.89 (s, 1H), 6.85 (s, 1H), 6.82 (s, 1H), 6.80 (s, 1H), 6.78 (s, 1H), 0.41 (s, 6H, -Si(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃): δ = 145.0, 140.5, 138.6,

137.2, 135.6, 134.4, 133.3, 132.0, 130.9, 129.5, 129.2, 129.1, 128.4, 128.1, -3.1.

Figure S49: ¹H NMR of 3x in CDCl₃

Figure S50: ¹³C NMR of 3x in CDCl₃

6. Application:

6a. Gram scale synthesis: Diphenylacetylene 1a (1 g, 5.62 mmol), triethylsilane 2a (980 mg, 8.43 mmol), [Fe-1] (80 mg, 0.281 mmol, 5 mol %), L5 (150 mg, 0.281 mmol, 5 mol %) were introduced in a 100 mL Schlenk flask equipped with a magnetic stir bar under argon

atmosphere. Toluene (20 mL) was added to the reaction mixture. The reaction mixture was stirred at 70 °C for 24 h. The mixture was extracted with diethyl ether (3×20 mL). After that, the layers of mixed diethyl ether were dried over sodium sulfate and concentrated under vacuum. After evaporation of the solvent, the crude reaction mixture was purified by silica gel column chromatography (petroleum ether/EtOAc 50/1), yielding the hydrosilylated product. GC analysis showed full conversion with no starting alkyne (Rt = 17.7 min) with excellent E/Z ratio (98/2). The product was isolated in 90% yield (1.48 g).

Figure S51: GC chromatogram for gram scale reaction of 1a.

6b. Protodesilylation reaction: 3a (74 mg, 0.25 mmol), TBAF (1 M in THF, 1 mL, 1 mmol) were taken to a 10 mL teflon-valved flask equipped with a magnetic stir bar under argon atmosphere. THF (2 mL) was added to the reaction mixture. The reaction mixture was stirred at 80 °C for 24 h. The solvent was evaporated under vacuum. The residue was purified by silica gel column chromatography eluting with petroleum ether/EtOAc (v/v 50/1) to give a colourless viscous liquid (39 mg, 86%). GC analysis showed that it was Z/E mixture alkene in 71/29 ratio.

6c. Chemoselective hydrosilylation: Diphenylacetylene **1a** (44.55 mg, 0.25 mmol), triethylsilane **2a** (40 mg, 0.375 mmol), [Fe-1] (3.575 mg, 0.0125 mmol, 5 mol %), L5 (6.8 mg, 0.0125 mmol, 5 mol %) were introduced in a 10 mL teflon-valved flask equipped with a magnetic stir bar under argon atmosphere. Styrene (26 mg, 0.25 mmol) was also added to it under argon. Toluene (1 mL) was added to the reaction mixture. The reaction mixture was stirred at 60 °C for 24 h. The mixture was extracted with diethyl ether (10 mL) and passed through a short pad of silica and then injected in GC. GC analysis showed no presence of starting alkyne (R_t = 17.7 min). However, styrene (R_t = 2.2 min.) and hydrosilylated product of alkyne (R_t = 22.6, 22.8) were present there.

Figure S53: GC chromatogram for chemoselective hydrosilylation reaction.

7. Mechanistic investigation:

7a. Test for homogeneity: Diphenylacetylene **1a** (44.55 mg, 0.25 mmol), triethylsilane **2a** (40 mg, 0.375 mmol), [Fe-1] (3.575 mg, 0.0125 mmol, 5 mol %), L5 (6.8 mg, 0.0125 mmol, 5 mol %) were introduced in a 10 mL teflon-valved flask equipped with a magnetic stir bar under argon atmosphere. DCT (10.2 mg, 0.05 mmol) or [dppe (20 mg, 0.05 mmol) or bpy (7.8 mg, 0.05 mmol)] was also added to it under argon. Toluene (1 mL) was added to the reaction mixture. The reaction mixture was stirred at 60 °C for 16 h. The mixture was extracted with diethyl ether (10 mL) and passed through a short pad of silica and then injected in GC. GC analysis showed 45% conversion with respect to starting alkyne ($R_t = 17.7$ min) for DCT. However, in case of dppe or bpy, there was no conversion.

Figure S54: GC chromatogram for hydrosilylation reaction of 1a in presence of DCT.

7b. Radical trap experiment: Diphenylacetylene **1a** (44.55 mg, 0.25 mmol), triethylsilane **2a** (40 mg, 0.375 mmol), [Fe-1] (3.575 mg, 0.0125 mmol, 5 mol %), L5 (6.8 mg, 0.0125 mmol, 5 mol %) were introduced in a 10 mL teflon-valved flask equipped with a magnetic stir bar under argon atmosphere. DPE (90 mg, 0.5 mmol) or [BHT (110 mg, 0.5 mmol)] was also added to it under argon. Toluene (1 mL) was added to the reaction mixture. The reaction mixture was stirred at 60 °C for 16 h. The mixture was extracted with diethyl ether (10 mL) and passed through a short pad of silica and then injected in GC. GC analysis showed 93% conversion (85% isolated yield) in presence of DPE whereas 78% conversion (72% isolated yield) in presence of BHT with respect to starting alkyne ($R_t = 17.7$ min).

Figure S55: GC chromatogram for hydrosilylation reaction of 1a in presence of DPE.

Figure S56: GC chromatogram for hydrosilylation reaction of 1a in presence of BHT.

7c. Procedure for XPS analysis:

Procedure for XPS analysis: X-ray photoemission spectroscopy (XPS) measurements were carried out using a Thermo Scientific Kalpha+ spectrometer using micro-focused and monochromatic Al K α radiation with an energy of 1486.6 eV. The pass energy for the spectral

acquisition was kept at 50 eV for individual core levels. The electron flood gun was utilized for providing charge compensation during data acquisition. The samples for XPS were prepared inside the glove box and transferred to a vacuum transfer module. By this way, the sample's exposure to the atmosphere was minimized.

Diphenylacetylene **1a** (44.55 mg, 0.25 mmol), triethylsilane **2a** (40 mg, 0.375 mmol), [Fe-1] (18 mg, 0.0625 mmol, 25 mol %), L5 (34 mg, 0.0625 mmol, 25 mol %) were introduced in a 10 mL teflon-valved flask equipped with a magnetic stir bar inside the glove-box. To the above mixture, toluene (1.0 mL) was added, and the resultant reaction mixture was stirred at 60 °C in a preheated oil bath for 12 min. After this, the reaction tube was transferred to the glove box. Inside the glove box, the sample for the XPS analysis was prepared. The sample was prepared before being moved to a vacuum transfer module, which was then evacuated in the glove box's antechamber. Using this vacuum transfer module, the samples were placed onto the spectrometer and then pumped down by turbo molecular pumps attached to the load lock chamber. Thus, samples were transferred effectively without being exposed to the atmosphere. The charge correction was done with C1s at 284.6 eV as standard. The same procedure was followed to perform other controlled XPS experiments, such as (i) [Fe-1], (ii) [Fe-1] + L5, (iii) [Fe-1] + L5 + Et₃SiH.

7d. Kinetic analysis:

Rate order determination

The initial rate method was used to determine the rate of the hydrosilylation reaction with different reaction components. Using MS Excel, the product concentration vs. time (min) plot data was linearly fitted. The reaction rate is represented by the slope of the linear fitting. The reaction rate is represented by the slope of the linear fitting. The log(rate) vs. log(conc) plot for each component was then used to determine the order of the reaction.

Rate order determination for [Fe-1]/L5:

To determine the order of the hydrosilylation reaction with respect to [Fe-1]/L5 catalyst system, the initial rates at different concentration of [Fe-1]/L5 were determined. In an oven dried teflonscrew capped tube, diphenylacetylene (0.25 mmol, 44.55 mg), triethylsilane (0.375 mmol, 40 mg) were taken under argon atmosphere. Specific amount of [Fe-1] and $P(C_6F_5)_3$ were added (as shown in table 2.3) to the tube. Dodecane (0.25 mmol, 42.6 mg, 57 µL) was added to the tube as an internal standard. The required amount of toluene was added to make the volume 1.0 mL. The tube was closed under argon and placed in a pre-heated oil bath at 60 °C. The aliquot was collected first after 6 min. Then it was collected at a constant interval of 3 min and the yield of the 3a (M) was determined with the help of GC. The data were collected till 18 min.

Entry	[Fe-1] (mg)	P(C ₆ F ₅) ₃ (mg)	Initial Conc. of	Initial rate	\mathbf{R}^2
			[Fe-1]/L5 [M]	(M/min)	
1	1.8	3.4	0.00625	0.0002	0.9843
2	3.6	6.8	0.0125	0.0004	0.9988
3	5.4	10.2	0.01875	0.0006	0.9897
4	7.2	13.6	0.025	0.0008	0.9448

Table S2. Rate of hydrosilylation reaction at different initial concentration of catalyst

Figure S57: a) Time dependent formation of 3a at different concentration of catalyst. b) Plot of log(rate) vs. log[Cat.].

Rate order determination for triethylsilane:

To determine the order of the hydrosilylation reaction with respect to triethylsilane, the initial rates at different concentrations of triethylsilane were determined. In an oven dried teflon-screw capped tube, diphenylacetylene (0.25 mmol, 44.55 mg), [Fe-1] (0.00625 mmol, 1.8 mg), $P(C_6F_5)_3$ (0.00625 mmol, 3.4 mg) were taken under argon atmosphere. Specific amount of triethylsilane was added (as shown in table 2.4) to the tube. Dodecane (0.25 mmol, 42.6 mg, 57 µL) was added to the tube as an internal standard. The required amount of toluene was added to make the volume 1.0 mL. The tube was closed under argon and placed in a pre-heated oil bath at 60 °C. The aliquot was collected at constant 15 minutes interval and the yield of the 3a (M) was determined with the help of GC. The data were collected till 75 min.

Table S3. Rate of hydrosilylation reaction at different initial concentration of silane

Entry	Et ₃ SiH	Initial Conc. of	Initial rate	\mathbb{R}^2
	(mg)	[Et ₃ SiH] [M]	(M/min)	
1	29	0.25	0.0002	0.9896
2	58	0.5	0.0004	0.9958
3	87	0.75	0.0007	0.9986
4	116	1.0	0.0008	0.9917

Figure S58: a) Time dependent formation of 3a at different concentration of Et₃SiH. b) Plot of log(rate) vs. log[Silane].

Rate order determination for diphenylacetylene:

To determine the order of the hydrosilylation reaction with respect to diphenylacetylene, the initial rates at different concentrations of diphenylacetylene were determined. In an oven dried teflon-screw capped tube, [Fe-1] (0.00625 mmol,1.8 mg), $P(C_6F_5)_3$ (0.00625 mmol, 3.4 mg), triethylsilane (0.375 mmol, 40 mg) were taken under argon atmosphere. Specific amount of diphenylacetylene was added (as shown in table 2.5) to the tube. Dodecane (0.25 mmol, 42.6 mg, 57 µL) was added to the tube as an internal standard. The required amount of toluene was added to make the volume 1.0 mL. The tube was closed under argon and placed in a pre-heated oil bath at 60 °C. The aliquot was collected at constant 15 min interval and the yield of the 3a (M) was determined with the help of GC. The data were collected till 75 minutes.

	Table S4. Ra	te of hydrosilylation	reaction at different	t initial concentration	ı of alkyne
--	--------------	-----------------------	-----------------------	-------------------------	-------------

Entry	PhCCPh	Initial Conc. of	Initial rate	\mathbb{R}^2
	(mg)	[PhCCPh] [M]	(M/min)	
1	44.5	0.25	0.0003	0.9882
2	66.75	0.375	0.0003	0.9974
3	89	0.5	0.0004	0.999
4	111.25	0.625	0.0004	0.995

Figure S59. a) Time dependent formation of 3a at different concentration of diphenylacetylene. b) Plot of log(rate) vs. log[Substrate].

Rate determination for hydrosilylation of substituted alkynes with triethylsilane

As mentioned in the earlier section, representative procedure of rate measurement was followed by taking [Fe-1] (0.00625 mmol, 1.8 mg), $P(C_6F_5)_3$ (0.00625 mmol, 3.4 mg), triethylsilane (0.375 mmol, 40 mg) and 1,2-di-p-tolylethyne (0.25 mmol, 52 mg) or [1,2-bis(4methoxyphenyl)ethyne (0.25 mmol, 59.57 mg); 1,2-diphenylethyne (0.25 mmol, 44.55 mg); 1,2-bis(4-chlorophenyl)ethyne (0.25 mmol; 61.8 mg); 1,2-bis(4-(trifluoromethyl)phenyl)ethyne (0.25 mmol, 78.55 mg)] under argon atmosphere. Dodecane (0.25 mmol, 42.6 mg, 57 μ L) was added to the tube as an internal standard. The required amount of toluene was added to make the volume 1.0 mL. The tube was closed under argon and placed in a pre-heated oil bath at 60 °C. The aliquot was collected at constant 15 minutes interval and the yield of the 3a (M) was determined with the help of GC. The data were collected till 75 minutes. The initial rate for the coupling reactions are shown below (Figure S60). The Hammett plot was drawn from the correlation between the initial rates and the σ_p values, i.e log(k_R/k_H) vs. σ_p and slope obtained was 0.289 (Figure 4;manuscript).

Figure S60. Time dependent formation of hydrosilylation products for the coupling of triethylsilane with different para-substituted alkynes.

Eyring analysis:

In an oven dried teflon-screw capped tube, diphenylacetylene (0.25 mmol, 44.55 mg), $[Fe(BDA)(CO)_3]$ (2.5 mol %, 0.00625 mmol, 1.8 mg), $P(C_6F_5)_3$ (2.5 mol %, 0.00625 mmol, 3.4 mg), triethylsilane (0.375 mmol, 40 mg) were taken under argon atmosphere. Then internal standard dodecane (0.25 mmol, 42.6 mg, 57 µL) and 1 mL toluene were added to it under argon and transferred to a preheated oil bath set at different temperatures 45 °C, 50 °C, 55 °C, 60 °C. The aliquot was taken at 15-minute intervals, and GC was used to track the yield. The reaction rate is represented by the slope of the linear fitting.

k [M/min]	T (K)	1/T	ln (k/T)	ln (k)
1.00E-04	318	0.003145	-14.972	-9.21
2.00E-04	323	0.003096	-14.295	-8.517
3.00E-04	328	0.003049	-13.905	-8.112
4.00E-04	333	0.003003	-13.632	-7.824

 Table S5. Rate of hydrosilylation reaction at different temperature

Evring equation

 $ln(k/T) = -\Delta H^{\#}/RT + ln(k_{B}/h) + \Delta S^{\#}/R$ $\Delta H^{\#} = 77.731 \ kJ \ mol^{-1}$ $\Delta S^{\#} = -76.72 \ J \ K^{-1} \ mol^{-1}$ $\Delta G^{\#}_{(323 \ K)} = 102.51 \ kJ \ mol^{-1}$

Supporting Information

8. Computational Details:

The density functional calculations were conducted using the Turbomole 7.5.0 suite of programs.⁶ All geometries presented in the proposed mechanism were optimized using the B3LYP functional⁷ and def2-TZVP basis set.⁸ To account for long-range interactions, Grimme's dispersion correction (D3)⁹ was employed. Accurate and efficient treatment of the

electronic Coulomb term in the DFT calculations was achieved through the utilization of the resolution of identity (RI)¹⁰ and multipole accelerated resolution of identity (marij)¹¹ approximations. The reported values correspond to ΔG values, which consider zero-point energy corrections, internal energy, and entropic contributions obtained through frequency calculations on the optimized minima at a temperature of 298.15 K. Solvent corrections were included in all calculations using the COSMO model¹² with an epsilon (\in) value of 2.38, representing toluene as the solvent utilized in the experimental studies. Harmonic frequency calculations were performed for all stationary points to confirm their classification as local minima. The absence of imaginary frequencies confirmed the minima, while the presence of a single imaginary frequency verified the transition states. Additionally, intrinsic reaction coordinate (IRC)¹³ calculations were performed on all transition states to further validate their authenticity and confirm the correct determination of reactant and product structures.

Figure S62. The Gibbs free energy (ΔG_{sol}) for the dissociation of all phosphine ligands (L1-L5) have been shown here. The DFT calculations have been done at the B3LYP-D3/def2-TZVP level of theory using toluene as solvent (ϵ =2.38). All the values are in kcal/mol.

XYZ Coordinates

Catalyst

Ele	ectronic Energy	y (-2065.9208	391Hartree)
Fe	-9.6229807	1.7728443	2.9757032
С	-8.8602069	0.3308585	2.1789393
С	-11.1145280	1.1232532	3.8023786
С	-8.7045697	1.6917809	4.5075329
0	-12.0545698	0.7049968	4.2909998
0	-8.3634061	-0.5538323	1.6622193
0	-8.1163236	1.6590248	5.4836243
С	-5.8587607	2.7512173	1.4982066
С	-4.5093529	2.8563868	1.8067536
С	-4.1086573	3.4673324	2.9918592
С	-5.0727183	3.9692583	3.8619349
С	-6.4223838	3.8610347	3.5532869
С	-6.8421777	3.2510668	2.3633263
Н	-6.1629506	2.2721126	0.5746309
Η	-3.7694818	2.4605822	1.1219288
Η	-3.0569595	3.5504856	3.2355796
Н	-4.7722971	4.4443453	4.7877846
Н	-7.1520401	4.2493516	4.2520994
С	-8.2564883	3.1063157	1.9851078
H	-8.4196724	2.8138808	0.9540164
С	-9.3277093	3.8078403	2.6038994
Н	-9.1831794	4.5365278	3.3887495

С	-10.6472158	3.4515374	2.2041240
0	-10.7428556	2.4436887	1.3974499
С	-11.8721099	4.1902387	2.6518387
Н	-12.6909673	3.4947619	2.8312023
Н	-11.6829346	4.7819524	3.5470469
Н	-12.1770957	4.8670307	1.8488092
In	t1		
Ele	ectronic Energ	y (-4590.691	617 Hartree)
Р	-0.8317628	0.1650227	-0.2746398
С	-2.0322178	1.0553236	0.8612357
С	-1.8525192	1.4614139	2.1841668
С	-3.2811509	1.3546200	0.3113378
С	-2.8162166	2.1782588	2.8821351
С	-4.2649171	2.0565759	0.9863034
С	-4.0261607	2.4852118	2.2829774
С	-1.7057444	-1.4728544	-0.1775389
С	-2.1870487	-2.1237060	-1.3127141
С	-1.9895753	-2.0829630	1.0466754
С	-2.9119868	-3.3075365	-1.2345769
С	-2.7017553	-3.2629229	1.1524241
С	-3.1707474	-3.8794052	-0.0004289
C	0.6763713	-0.0721744	0.7757650
С	1.3522228	1.0664605	1.2139430

С	1.3090611	-1.2857825	1.0274042	0	-0.5514620	4.1167062	-1.8796042
С	2.5409879	1.0127179	1.9175885	0	-2.8202676	1.1996337	-3.6241323
С	2.4958766	-1.3717678	1.7441351	С	6.5900635	0.6080111	-0.1169522
С	3.1132474	-0.2195029	2.2010832	С	5.4639587	-0.1977274	-0.3542480
F	-4.9574829	3.1606648	2.9502988	С	5.5252918	-1.5551305	-0.0033056
F	-2.5877442	2.5521955	4.1433072	С	6.6732834	-2.0949625	0.5584579
F	-0.7518661	1.1525520	2.8797197	С	7.7807185	-1.2843905	0.7844495
F	-3.5903142	0.9180224	-0.9177458	С	7.7343507	0.0684049	0.4459136
F	-5.4398708	2.3047399	0.4057136	Н	6.5622969	1.6626821	-0.3577936
F	0.8040981	-2.4447631	0.5799001	Н	4.6616338	-2.1865764	-0.1711629
F	-1.9852584	-1.6392318	-2.5380201	Н	6.7017928	-3.1435743	0.8249941
F	-1.5457235	-1.5372823	2.1878852	Н	8.6760949	-1.7001558	1.2291501
F	-3.3633677	-3.8929987	-2.3445711	Н	8.5930674	0.7012671	0.6305241
F	-3.8619360	-5.0115637	0.0819517	C	4.2291018	0.3177048	-0.9175114
F	-2.9344686	-3.8146746	2.3447430	Н	3.3809398	-0.3591009	-0.8864112
F	0.8374904	2.2798103	0.9745894	С	4.0149120	1.5190717	-1.4877154
F	3.1461581	2.1342054	2.3144282	Н	4.8157987	2.2308946	-1.6412482
F	4.2565279	-0.2883386	2.8762475	С	2.6993922	1.8825327	-1.9985621
F	3.0547861	-2.5635094	1.9741040	0	1.7021024	1.2411656	-1.6311778
Fe	-0.2725209	1.1982030	-2.2174122	C	2.5907212	3.0290595	-2.9537505
С	0.3127607	0.1164138	-3.5369408	Н	1.8006958	2.8238936	-3.6751565
С	-0.4434616	2.9778187	-2.0037860	Н	2.2968898	3.9234130	-2.3951699
С	-1.8454058	1.1871260	-3.0205567	Н	3.5356275	3.2314772	-3.4549327
0	0.7116265	-0.5352300	-4.3960236	Int2	2		

Ele	ectronic Energ	gy (-4656.181	61 Hartree)	F	-0.8154735	-2.7737361	-4.2882594
Р	-0.3132721	-0.0700325	0.0250708	F	0.3223410	2.5197127	-1.3132446
С	-1.0359759	-0.2240271	-1.6795727	F	-3.3632452	0.0031131	0.0066616
С	-1.8199316	0.7020900	-2.3693506	F	0.1742353	-2.4119175	2.0520506
С	-0.7346109	-1.4005978	-2.3706294	F	-5.1233139	-1.6437450	1.1575492
С	-2.2230018	0.4978639	-3.6818473	F	-4.2600295	-3.6702272	2.7541611
С	-1.1321804	-1.6333629	-3.6762385	F	-1.5988584	-4.0160138	3.1849413
С	-1.8757367	-0.6702277	-4.3419069	F	-1.7322123	0.9525078	2.6661888
С	-1.5100960	-1.1607468	0.9197199	F	-1.9666770	3.4539719	3.5107221
С	-2.8888399	-1.0042212	0.7500310	F	-1.0684343	5.5272897	1.9933571
С	-1.1105884	-2.1924365	1.7697765	F	0.0760062	5.0331746	-0.4290674
С	-3.8185197	-1.8340154	1.3493697	Fe	1.9194027	-0.3177759	0.1670601
С	-2.0238731	-3.0395155	2.3848577	Н	2.0065054	1.1973064	0.2213671
С	-3.3813628	-2.8649707	2.1707241	Si	4.3261589	-0.1220559	0.3686283
С	-0.7345321	1.6288512	0.6080880	C	1.9663383	-0.0294618	1.9287504
С	-1.2975953	1.9208040	1.8478750	C	2.2356460	0.0299440	-1.5531847
С	-0.2622459	2.7197145	-0.1253080	C	2.1269946	-2.1128507	0.0867608
С	-1.4173063	3.2225480	2.3184817	0	1.9873534	0.2543449	3.0373176
С	-0.3730281	4.0243238	0.3167231	0	2.4181725	0.3140111	-2.6461260
С	-0.9576584	4.2794949	1.5510206	0	2.3049193	-3.2377152	0.0084125
F	-2.2685152	-0.8747098	-5.5938532	C	4.8671339	1.6918162	0.2889976
F	-2.9621631	1.4154324	-4.3052188	Н	4.4221668	2.2036707	1.1488415
F	-2.2501802	1.8272992	-1.7931197	Н	5.9496771	1.6946824	0.4675831
F	-0.0498370	-2.3778952	-1.7607531	С	5.1906898	-1.1010964	-1.0137571

Η	4.8606631	-0.7102941	-1.9801913	С	-1.1312807	-1.2395835	-3.7770044
Н	4.8379585	-2.1364675	-0.9775465	C	-2.0125943	-0.2900243	-4.2885449
C	4.9922702	-0.7708366	2.0251260	C	-1.2844038	-1.1240086	0.8985481
Η	6.0792008	-0.6384556	1.9714072	C	-2.5562133	-1.5036916	0.4580370
Η	4.6552045	-0.1039550	2.8237965	С	-0.7959188	-1.6617070	2.0918766
C	4.6664882	-2.2248406	2.3841388	С	-3.3208927	-2.3983027	1.1981577
Η	3.5942213	-2.3705274	2.5322778	С	-1.5635842	-2.5505869	2.8352347
Η	4.9808270	-2.9160505	1.5984505	С	-2.8280251	-2.9217457	2.3894510
Η	5.1640628	-2.5300427	3.3081479	С	-0.8789566	1.7175063	0.6202759
С	4.5548725	2.4636576	-0.9977164	C	-1.9393095	1.8185335	1.5228089
Η	3.4785927	2.5564330	-1.1557386	C	-0.2542763	2.8883561	0.1771426
Н	4.9675374	3.4751268	-0.9657814	C	-2.3643252	3.0650486	1.9744129
Η	4.9717916	1.9679595	-1.8778390	С	-0.6882156	4.1311308	0.6175914
С	6.7256364	-1.0723917	-0.9466725	C	-1.7435718	4.2227880	1.5218032
Η	7.1687080	-1.6251539	-1.7794383	Fe	1.9748582	-0.1715500	0.1152367
Н	7.1117951	-0.0510386	-0.9923727	Н	2.1267795	1.3406068	0.0073594
Н	7.0984375	-1.5217271	-0.0237045	Si	4.3765556	-0.2408271	0.3207303
Int	2 with L1			C	2.0853773	0.3200050	1.8202436
Ele	ctronic Energ	gy (-3167.542	66 Hartree)	C	2.3167215	0.0463304	-1.6151682
Р	-0.2732513	0.1068045	-0.0162615	C	1.9537277	-1.9657622	0.1881944
С	-0.9707310	0.0095960	-1.7103622	0	2.1727691	0.7336942	2.8870766
С	-1.8567393	0.9551979	-2.2282446	0	2.5415965	0.2685560	-2.7167040
С	-0.6103519	-1.0871808	-2.5001150	0	1.9499158	-3.1115734	0.1993019
С	-2.3706576	0.8066684	-3.5137754	С	5.1377248	1.4915328	0.1711474

С	5.1369056	-1.3708074	-1.0104669
Н	4.8525726	-0.9873594	-1.9943994
Н	4.6667931	-2.3565161	-0.9314318
С	4.9827113	-0.8811985	2.0072486
Н	6.0772163	-0.8845944	1.9470844
Н	4.7320602	-0.1362237	2.7680370
С	4.4861841	-2.2624128	2.4482372
Η	3.4048146	-2.2672624	2.6017856
Η	4.7093918	-3.0299606	1.7030898
Η	4.9479244	-2.5745655	3.3888622
С	4.9470236	2.2270281	-1.1595288
Н	3.8906309	2.4172564	-1.3601103
Η	5.4595332	3.1927247	-1.1612421
Η	5.3373261	1.6477629	-2.0001696
С	6.6645965	-1.5149597	-0.9373531
Η	7.0445983	-2.1480413	-1.7441309
Η	7.1641209	-0.5464832	-1.0211231
Η	6.9830397	-1.9644876	0.0058314
Η	0.1896367	-1.3908513	2.4437765
Η	-1.1693793	-2.9573689	3.7579232
Η	-3.4243928	-3.6189485	2.9647503
Η	-4.3027478	-2.6852209	0.8426449

Η	4.7346861	2.0960130	0.9911725	Н	-3.1828100	3.1265982	2.6809063
Н	6.2086365	1.3796497	0.3815130	Н	-2.0753447	5.1916405	1.8737962
С	5.1369056	-1.3708074	-1.0104669	Н	-0.1962853	5.0279137	0.2619948
Η	4.8525726	-0.9873594	-1.9943994	Н	0.5779627	2.8274778	-0.5118756
Η	4.6667931	-2.3565161	-0.9314318	Н	0.0829957	-1.8254702	-2.1161213
С	4.9827113	-0.8811985	2.0072486	Н	-0.8439544	-2.0947008	-4.3759040
Η	6.0772163	-0.8845944	1.9470844	Н	-2.4137780	-0.4044099	-5.2878220
Η	4.7320602	-0.1362237	2.7680370	Н	-3.0539692	1.5499765	-3.9054908
С	4.4861841	-2.2624128	2.4482372	Н	-2.1511854	1.8094223	-1.6339236
Η	3.4048146	-2.2672624	2.6017856	Н	-2.9539399	-1.1033282	-0.4648087
Η	4.7093918	-3.0299606	1.7030898	Н	-2.4380965	0.9290322	1.8819721

Int2 with L2

Electronic Energy (-3403.37680 Hartree)				
Р	-0.2724679	0.0755465	-0.0590200	
С	-0.9626078	-0.0720182	-1.7536361	
С	-1.9563820	0.7779097	-2.2388742	
С	-0.5117392	-1.1226369	-2.5537241	
С	-2.5032820	0.5862300	-3.5079638	
С	-1.0423993	-1.3389354	-3.8227576	

- C -2.0391673 -0.4767874 -4.2807497
- C -1.3552833 -1.0571655 0.8994125
- C -2.7279406 -1.1297221 0.6320810
- C -0.8219977 -1.8369372 1.9189966
- C -3.5574818 -1.9624458 1.3731204

С	-1.6311630	-2.6876664	2.6782127	Н	5.9949703	-1.2179248	1.9958219
С	-2.9910861	-2.7343819	2.3936933	Н	4.6252992	-0.5616617	2.8554179
С	-0.7677483	1.7509623	0.4887289	C	4.3816373	-2.6312211	2.2748372
С	-1.5582288	1.9667821	1.6103122	Н	3.2972565	-2.6427340	2.4054655
С	-0.2563541	2.8490686	-0.2146086	Н	4.6128137	-3.3035387	1.4448200
С	-1.8493636	3.2669101	2.0420521	Н	4.8210024	-3.0627676	3.1781803
С	-0.5418871	4.1475940	0.1829464	C	4.9765699	2.2550151	-0.7550771
С	-1.3399480	4.3376544	1.3184391	Н	3.9266129	2.4770521	-0.9562088
Fe	1.9655220	-0.2549361	0.1205960	Н	5.4945085	3.2097981	-0.6285912
Η	2.1153272	1.2599835	0.1865974	Н	5.3847874	1.7770070	-1.6492199
Si	4.3532829	-0.3679899	0.4011559	C	6.6833486	-1.4746146	-0.9372743
С	2.0197696	0.0701223	1.8661378	Н	7.0878459	-2.0156935	-1.7974641
С	2.3501794	0.1605355	-1.5621521	Н	7.1719557	-0.4974775	-0.9083942
С	1.9425401	-2.0447901	-0.0043267	Н	6.9880589	-2.0176783	-0.0396315
0	2.0736331	0.3808194	2.9701263	Н	0.2371235	-1.7948665	2.1315209
0	2.6000846	0.5136939	-2.6241582	Н	-3.6317464	-3.3898572	2.9749314
0	1.9412486	-3.1856193	-0.1215344	Н	-1.5611126	5.3498087	1.6414876
С	5.1283607	1.3636130	0.4825071	Н	0.3727248	2.6870644	-1.0816430
Η	4.7044958	1.8682539	1.3574799	Н	0.2635090	-1.7846399	-2.1877836
Η	6.1924128	1.2198743	0.7068826	Н	-2.4643291	-0.6387476	-5.2662151
С	5.1561282	-1.3381468	-1.0276641	Н	-2.3168281	1.5956251	-1.6279652
Η	4.8877477	-0.8531800	-1.9706815	Н	-3.1567298	-0.5324188	-0.1624938
Η	4.6957722	-2.3309570	-1.0659357	Н	-1.9558343	1.1275498	2.1663967
С	4.8989692	-1.2113905	2.0188723	С	-2.6994927	3.4779925	3.2680184

Η	-2.8331773	4.5382657	3.4841089
Η	-3.6886401	3.0306516	3.1405013
Η	-2.2444855	3.0083653	4.1437116
С	0.0069128	5.3328450	-0.5679524
Η	-0.7877974	6.0352568	-0.8302785
Η	0.7314912	5.8782314	0.0428068
Η	0.5071125	5.0256230	-1.4866784
С	-5.0345332	-2.0447231	1.0874533
Η	-5.3169361	-3.0536653	0.7756807
Η	-5.6200987	-1.8065882	1.9790120
Η	-5.3265550	-1.3542082	0.2959309
С	-1.0196267	-3.5449463	3.7550347
Η	-0.4410840	-4.3618824	3.3147394
Η	-0.3366799	-2.9653614	4.3794636
Η	-1.7819358	-3.9850418	4.3986518
С	-3.5570376	1.5224586	-4.0397012
Η	-3.1026127	2.3101853	-4.6477971
Η	-4.2743410	0.9954064	-4.6713075
Η	-4.1044056	2.0078471	-3.2304974
С	-0.5278444	-2.4550278	-4.6936178
Η	-1.3208714	-2.8690764	-5.3187763
Η	0.2587153	-2.0905570	-5.3609906
Η	-0.1030507	-3.2631884	-4.0967899

Int2 with L3

Electronic Energy (-3511.09380 Hartree)

Р	-0.3915510	-0.0027932	-0.0825772
С	-1.1185304	-0.2003631	-1.7607084
С	-1.8584839	0.8002599	-2.3843268
С	-0.9312235	-1.4157582	-2.4449634
С	-2.3774112	0.6334830	-3.6619442
С	-1.4446785	-1.5878160	-3.7322307
С	-2.1604529	-0.5609575	-4.3360261
С	-1.4554258	-1.1065706	0.9310747
С	-2.8662820	-1.0485594	0.8776969
С	-0.8684956	-2.0705182	1.7465306
С	-3.6342702	-1.9548886	1.6102695
С	-1.6287087	-2.9707532	2.4849547
С	-3.0124130	-2.9112102	2.4067933
С	-0.8370391	1.6914228	0.4660378
С	-1.5217281	1.9091967	1.6592711
С	-0.3357718	2.8112313	-0.2290999
С	-1.7277057	3.1919324	2.1566330
С	-0.5483661	4.0997496	0.2597085
С	-1.2428889	4.2840693	1.4511865
Fe	1.8760829	-0.2804196	0.1320049
Н	1.9749691	1.2334712	0.2028912

С	1.8685287	0.0258249	1.8821090	Н	7.1224415	-1.6294087	-1.7785984
С	2.1762590	0.1092970	-1.5770766	Н	7.0577743	-0.0605349	-0.9805236
С	2.0282837	-2.0639934	0.0346326	Н	7.0435485	-1.5366025	-0.0220598
0	1.8729308	0.3205906	2.9915635	Н	0.2083295	-2.1196709	1.8008985
0	2.3645287	0.4295571	-2.6613546	Н	-1.1408152	-3.7088835	3.1076857
0	2.1853972	-3.1983896	-0.0393924	Н	-3.6220355	-3.6068929	2.9703467
С	4.8688578	1.6426146	0.3586874	Н	-4.7128996	-1.9171562	1.5686565
Н	4.3989456	2.1542740	1.2054774	Н	-1.8947781	1.0636543	2.2200594
Н	5.9423975	1.6139969	0.5825821	Н	-2.2610033	3.3303401	3.0880868
С	5.1389984	-1.1105252	-1.0133279	Н	-1.3982230	5.2889157	1.8242219
Н	4.8085341	-0.7061506	-1.9746200	Н	-0.1707159	4.9570372	-0.2778783
Н	4.7846716	-2.1462933	-0.9929651	Н	-1.2943854	-2.5164369	-4.2625320
С	4.9022539	-0.8529712	2.0265123	Н	-2.5535772	-0.7046940	-5.3350761
Η	5.9921357	-0.7381234	1.9964295	Н	-2.9467633	1.4304916	-4.1226862
Η	4.5588897	-0.1996089	2.8344377	Н	-2.0482434	1.7230594	-1.8571195
С	4.5447456	-2.3080367	2.3492716	0	-3.4015143	-0.0726397	0.1097843
Н	3.4665374	-2.4360902	2.4679730	0	-0.2572287	-2.3845103	-1.7762236
Н	4.8632293	-2.9882535	1.5552710	0	0.3400408	2.5458015	-1.3723261
Η	5.0156997	-2.6434968	3.2774902	C	0.9317292	3.6036221	-2.1148249
С	4.6299301	2.4406114	-0.9275226	Н	1.6528798	4.1584952	-1.5088011
Н	3.5636406	2.5354821	-1.1389070	Н	1.4473315	3.1242422	-2.9429451
Н	5.0428576	3.4510716	-0.8592278	Н	0.1723423	4.2889895	-2.5018590
Η	5.0896298	1.9567939	-1.7931668	C	-4.8119518	0.0256334	-0.0328019
С	6.6729234	-1.0830138	-0.9442269	Н	-5.2333930	-0.8889824	-0.4588988

Н -	5.2945268	0.2403991	0.9250344
Н -	4.9800664	0.8538465	-0.7169054
C -	0.0261788	-3.6417266	-2.4015165
Н	0.5684317	-3.5274014	-3.3121269
Н	0.5304726	-4.2306104	-1.6783457
Н -	0.9685906	-4.1434172	-2.6384352
Int2	with L4		
Elect	ronic Energ	y (-3178.386	19 Hartree)
Р-(0.3562170	0.2745201	-0.2954174
Fe	1.8991123	-0.0753980	0.0061222
H	2.1343882	1.3666944	-0.4262602
Si 4	4.2631786	-0.2143971	0.4685492
С	1.9096149	0.7254564	1.5896834
C 2	2.4348581	-0.2548210	-1.6718385
C	1.7598566	-1.8137485	0.4131934
0	1.9319520	1.3283653	2.5676349
0	2.8222474	-0.3040536	-2.7529521
0	1.6876341	-2.9374659	0.6342164
C :	5.1473482	1.4155182	0.0627814
Н	4.7006408	2.1930265	0.6918846
Н	6.1820210	1.3067182	0.4104376
C :	5.0804935	-1.6247704	-0.5179951
H	4.9192234	-1.4422863	-1.5837324
Н	4.5453962	-2.5536619	-0.2939464

С	4.6632936	-0.5348519	2.3028735
Η	5.7551631	-0.6120750	2.3600550
Η	4.4021005	0.3588696	2.8770690
С	4.0228311	-1.7702432	2.9453650
Η	2.9350473	-1.6798007	2.9854761
Η	4.2489109	-2.6813448	2.3857558
Η	4.3729572	-1.9191737	3.9704230
С	5.1381139	1.8642905	-1.4026238
Н	4.1208538	2.0505800	-1.7528766
Η	5.7081397	2.7866524	-1.5435900
Н	5.5732589	1.1067495	-2.0593490
С	6.5815677	-1.8118199	-0.2514323
Η	7.0020206	-2.6058373	-0.8751898
Η	7.1438309	-0.8991027	-0.4651130
Η	6.7774766	-2.0789344	0.7894275
С	-0.9889964	0.0884119	-2.0350248
С	-0.4146422	1.1522254	-2.9883025
С	-0.7479438	-1.3327183	-2.5751437
Η	-2.0707247	0.2454676	-1.9821397
С	-0.9534869	0.9752117	-4.4119089
Η	0.6737633	1.0856562	-3.0085874
Η	-0.6571887	2.1530006	-2.6301325
С	-1.2742711	-1.4893465	-4.0059037
Н	0.3223009	-1.5519342	-2.5620954

Н	-1.9347780	5.0359762	-0.7175566
С	-1.3305764	-1.0130374	0.6590762
С	-1.0401961	-0.9722881	2.1704334
С	-2.8486396	-1.1058097	0.4284223
Н	-0.8924598	-1.9422847	0.2793911
С	-1.6219789	-2.2021742	2.8770600
Н	-1.4807600	-0.0681899	2.6039050
Н	0.0317969	-0.9202103	2.3562747
С	-3.4242158	-2.3514243	1.1151527
Н	-3.3386254	-0.2237563	0.8476486
Н	-3.0880703	-1.1298107	-0.6358877
С	-3.1224779	-2.3506427	2.6156993
Н	-1.4265453	-2.1344472	3.9505445
Н	-1.0993402	-3.0951639	2.5167240
Н	-4.5030338	-2.4000441	0.9432092
Н	-2.9899456	-3.2471032	0.6564434
Н	-3.4996536	-3.2658778	3.0796866
Н	-3.6540621	-1.5157476	3.0874536
Int	3		

Electronic Energy (-2131.366288 Hartree) Fe 0.8734366 0.2075392 -0.1313441 H 0.3788082 0.9979907 -1.3433864 C 1.3155244 -0.8065666 1.3116365 C 2.4985373 0.8287461 -0.6473178

- Н -1.2263118 -2.0729785 -1.9309781
- C -0.6822478 -0.4338204 -4.9416874
- Н -0.5024502 1.7240651 -5.0683857
- Н -2.0340577 1.1614559 -4.4158537
- Н -1.0457359 -2.4948477 -4.3690684
- Н -2.3667475 -1.3958738 -4.0012590
- Н -1.0919095 -0.5471860 -5.9490089
- Н 0.4001126 -0.5865581 -5.0188219

С

-1.0145411 1.9247471 0.3077763

- C -0.0501487 3.1114216 0.1189082
- C -2.4105673 2.3131627 -0.2211718
- Н -1.1011698 1.7576689 1.3880939
- C -0.5783831 4.3691621 0.8179670
- H 0.0780691 3.3158524 -0.9481087
- H 0.9375156 2.8696523 0.5024559
- C -2.9427346 3.5642734 0.4887215
- Н -2.3469655 2.5207136 -1.2929752
- Н -3.1227431 1.4988905 -0.1054694
- C -1.9814346 4.7440928 0.3381664
- H 0.1161135 5.1970787 0.6521990
- H -0.6011747 4.1901226 1.8993721
- H -3.9279213 3.8198690 0.0885761
- Н -3.0821640 3.3415634 1.5531818
- H -2.3540120 5.6120631 0.8887395

С	0.5385137	-1.1341832	-1.1952722	Н	-0.69(
0	1.5702093	-1.4760699	2.2013538	Н	-1.838
0	3.4986101	1.1964127	-1.0570871	Int4	ļ
0	0.2989691	-1.9889712	-1.9245568	Elec	tronic
Si	-1.3439990	0.3330847	0.3024395	Fe	-0.082
С	-0.4295644	1.8040071	1.0898951	Н	1.290
Η	-0.5032088	1.7125434	2.1752880	С	-1.601
Η	0.6996627	1.7284435	0.9473162	С	-0.652
С	-2.5932861	0.8316763	-1.0136171	С	0.698
Η	-3.4323586	1.3198103	-0.5032300	Ο	-2.579
Η	-2.1282413	1.5939898	-1.6434997	0	-0.977
С	-2.1054918	-0.8366515	1.5756781	0	1.240
Η	-3.1403810	-0.5232073	1.7551477	Si	0.949
Η	-1.5705282	-0.6842633	2.5185261	C	0.220
С	-2.0679405	-2.3277050	1.2017302	Н	0.404
Η	-2.6106258	-2.5293773	0.2762710	Н	0.860
Η	-1.0423279	-2.6737834	1.0578263	С	2.805
Η	-2.5159915	-2.9422897	1.9860718	Н	3.146
С	-3.1177916	-0.3199398	-1.8863224	Н	2.924
Η	-2.3050439	-0.8263301	-2.4108461	С	0.864
Η	-3.6429917	-1.0697918	-1.2912345	Н	1.668
Η	-3.8194828	0.0465798	-2.6393173	Н	1.161
С	-0.8010764	3.2082674	0.5963958	С	-0.437
Н	-0.1660614	3.9726002	1.0502608	Н	-0.718

Η	-0.6903988	3.2843478	-0.4857985
H	-1.8381808	3.4421088	0.8437602
r 4	4		

Electronic Energy (-2670.721323 Hartree)				
Fe	-0.0824562	0.8918283	-0.9438559	
Η	1.2900943	0.4628340	-1.4118247	
С	-1.6018772	1.5581598	-0.2366005	
С	-0.6527013	0.5255288	-2.6430266	
С	0.6987580	2.4219951	-1.3202836	
0	-2.5795907	1.9903775	0.1667948	
0	-0.9776384	0.3434189	-3.7201620	
0	1.2403259	3.3940156	-1.5935290	
Si	0.9494420	1.4296877	1.2268308	
С	0.2201213	0.3686639	2.6292385	
Η	0.4048725	-0.6815375	2.3857853	
Η	0.8605913	0.5872650	3.4935428	
С	2.8059895	1.0212696	1.2605700	
Η	3.1462392	1.3453750	2.2525291	
Η	2.9246112	-0.0643787	1.2449343	
С	0.8641850	3.2628588	1.7451861	
Η	1.6681770	3.7812701	1.2128392	
Η	1.1615515	3.2669409	2.8016447	
С	-0.4375856	4.0546032	1.5753915	
Н	-0.7182750	4.1439734	0.5239548	

Η	-1.2757375	3.5856015	2.0927797
Н	-0.3355393	5.0701246	1.9670085
С	3.6923969	1.6552046	0.1843642
Н	4.7431044	1.3865792	0.3230619
Η	3.4021537	1.3254301	-0.8149791
Η	3.6291525	2.7456210	0.1951162
С	-1.2488855	0.5615357	3.0198278
Η	-1.4599228	1.5953413	3.3002753
Η	-1.9228428	0.2999818	2.2041376
Η	-1.5183959	-0.0688268	3.8718694
С	0.4272904	-1.1579920	-0.3790022
С	-0.8089700	-1.0761674	-0.2884844
С	-2.1382594	-1.5422602	-0.0187536
С	-3.2425724	-1.1467018	-0.7843449
С	-2.3363000	-2.4408761	1.0428229
С	-4.5063749	-1.6468935	-0.5060090
Н	-3.1052121	-0.4463976	-1.5964573
С	-3.6037132	-2.9304787	1.3209938
Н	-1.4934715	-2.7360064	1.6531234
С	-4.6930597	-2.5374828	0.5475105
Н	-5.3494175	-1.3345143	-1.1091917
Н	-3.7428024	-3.6166787	2.1470042
Н	-5.6821214	-2.9180886	0.7688606
С	1.6583430	-1.9006293	-0.2891129

С	2.7631945	-1.6628582	-1.1124283				
С	1.7315449	-2.9346174	0.6585940				
С	3.9068631	-2.4395266	-0.9991109				
Н	2.7204350	-0.8613361	-1.8367025				
С	2.8803568	-3.7038807	0.7732673				
Н	0.8867905	-3.1221638	1.3077861				
С	3.9728868	-3.4597833	-0.0544739				
Н	4.7526526	-2.2419135	-1.6455306				
Н	2.9239917	-4.4926820	1.5138027				
Н	4.8708913	-4.0573049	0.0388778				
TS4a							

Electronic Energy (-2670.72099 Hartree) Imaginary frequency (1, -33.30 cm⁻¹)

Fe	-0.1765057	0.9645982	-1.4574557
Н	1.2164042	0.4863753	-1.7891711
С	-1.7015659	1.6908339	-0.8398479
С	-0.7046013	0.5731975	-3.1710811
С	0.6721290	2.4581494	-1.8410413
0	-2.6780691	2.1671263	-0.4844989
0	-1.0166137	0.3730063	-4.2483551
0	1.2657789	3.4008790	-2.1085751
Si	0.7378224	1.5007159	0.7602615
С	-0.1330800	0.5216360	2.1405404

Η	-0.0257796	-0.5425030	1.9108223	(С	-2.2540135	-2.3262102	0.7323770
Н	0.4911996	0.6947854	3.0266008	(С	-4.5646848	-1.5355346	-0.5988804
С	2.5522763	0.9497521	0.9018116]	Η	-3.2724006	-0.3631974	-1.8439040
Н	2.8400369	1.1728811	1.9372495	(С	-3.4900377	-2.8012989	1.1450342
Η	2.5893829	-0.1388770	0.8120023]	Η	-1.3568925	-2.6195337	1.2604432
С	0.7460222	3.3480673	1.2257267	(С	-4.6497920	-2.4091076	0.4816667
Η	1.6006442	3.8027168	0.7148660]	Η	-5.4623939	-1.2248545	-1.1183266
Η	0.9953994	3.3712359	2.2942971]	Η	-3.5490618	-3.4760059	1.9899507
С	-0.5005803	4.2032576	0.9687212]	Η	-5.6139450	-2.7780395	0.8079864
Η	-0.7276100	4.2692684	-0.0972887	(С	1.5629130	-1.8832561	-1.0116276
Η	-1.3862138	3.7989054	1.4606559	(С	2.6867642	-1.5478013	-1.7726163
Η	-0.3601025	5.2254455	1.3300839	(С	1.5861685	-3.0739547	-0.2645424
С	3.5645804	1.5844636	-0.0566025	(С	3.8025977	-2.3726497	-1.7888825
Η	4.5731813	1.1990600	0.1156726]	Η	2.6820595	-0.6337168	-2.3503537
Н	3.3143712	1.3795937	-1.0992581		С	2.7041571	-3.8942194	-0.2826817
Н	3.6052602	2.6698659	0.0583461]	Η	0.7246821	-3.3458485	0.3303677
С	-1.5940219	0.8356346	2.4791107	(С	3.8186105	-3.5468798	-1.0428799
Η	-1.7305564	1.8870957	2.7401077]	Η	4.6635894	-2.0931971	-2.3827937
Н	-2.2606893	0.6150398	1.6459460]	Η	2.7078712	-4.8055282	0.3021311
Η	-1.9386582	0.2410709	3.3297178]	Η	4.6928611	-4.1853188	-1.0511511
С	0.3614083	-1.0879553	-0.9649051]	Int	4a		
С	-0.8630556	-0.9740061	-0.7612513]	Ele	ctronic Energ	y (-5195.538	338Hartree)
С	-2.1582543	-1.4404162	-0.3533698]	Р	1.1404303	-0.2933264	0.5442649
С	-3.3321862	-1.0491579	-1.0101986	(С	2.9678705	0.0638389	0.6450434

С	3.9303932	-0.1144237	-0.3506305	F	0.5473247	-1.3503532	3.3690232
С	3.4486387	0.4939081	1.8843237	F	2.4977693	-5.3193627	0.2384114
С	5.2730747	0.1689002	-0.1403013	F	1.8039840	-5.8061117	2.8248022
С	4.7817431	0.7821556	2.1207884	F	0.8394985	-3.7872259	4.3681113
С	5.7029192	0.6227120	1.0969678	F	-0.4974565	-2.4737624	-1.0439955
С	1.2887704	-2.0149106	1.2144034	F	-1.2829019	-2.3849837	-3.5790445
С	1.8301974	-3.0693570	0.4722286	F	-0.4609206	-0.3753629	-5.2169062
С	0.9912052	-2.2964195	2.5473375	F	1.1572250	1.5890508	-4.2373521
С	1.9931334	-4.3411530	0.9909752	Fe	-0.3031332	1.4213006	1.3018352
С	1.1564415	-3.5611059	3.0950980	Н	-2.4780541	0.6900060	-0.8251901
С	1.6476061	-4.5912444	2.3124402	Si	-1.8192657	3.3069708	1.9344426
С	0.7745189	-0.4762530	-1.2547780	С	1.0597012	2.5806024	1.3960358
С	-0.0647036	-1.4516843	-1.7884447	С	-0.3002746	1.2186278	3.1019783
С	1.1589231	0.5419160	-2.1264410	0	1.9340483	3.3143943	1.4254413
С	-0.4810122	-1.4285535	-3.1115048	0	-0.2687812	1.1814459	4.2397309
С	0.7667999	0.5869855	-3.4514823	С	-3.1903612	2.8497662	3.1652178
С	-0.0621578	-0.4075202	-3.9501458	Н	-2.7836699	2.2760014	4.0000682
F	6.9872791	0.8877767	1.3044868	Η	-3.4716465	3.8196162	3.5961475
F	6.1566978	-0.0065449	-1.1222867	С	-2.7251371	4.1514673	0.4861383
F	3.6113162	-0.5808958	-1.5611070	Н	-3.6036981	4.6065146	0.9590026
F	2.6091142	0.6199207	2.9222106	Н	-3.1230844	3.4030399	-0.2024439
F	5.1822320	1.1959886	3.3217024	С	-0.8169963	4.6993473	2.7559814
F	1.9115434	1.5571212	-1.6740941	Н	-0.0893430	5.0914017	2.0399057
F	2.2358272	-2.8780958	-0.7885417	Н	-1.5553534	5.5003928	2.8884761

С	-0.1285295	4.4200048	4.0963309	Н -6.
Η	-0.8222542	4.0048932	4.8304811	C -2.
Η	0.6939582	3.7105014	3.9922042	С -2.0
Η	0.2919866	5.3351016	4.5202682	С -2.:
С	-4.4420827	2.1722122	2.5914257	C -2.2
Η	-4.9381594	2.8130722	1.8599515	Н -1.
Η	-4.2027149	1.2379947	2.0863655	С -2.8
Η	-5.1672828	1.9513409	3.3787571	Н -2.
С	-1.9578714	5.2395645	-0.2787095	C -2.0
Η	-1.7122770	6.0797163	0.3729873	Н -2.
Η	-1.0221671	4.8732603	-0.7028563	Н -3.
Н	-2.5543608	5.6306869	-1.1068808	Н -2.
С	-2.6945539	0.0045416	-0.0163196	C -0.
С	-1.9315458	0.0333180	1.0965443	O -0.
С	-3.8399515	-0.8636557	-0.3685657	TS4b
С	-4.7879505	-1.3429216	0.5463873	Electro
С	-4.0182626	-1.1912319	-1.7208629	Imagin
С	-5.8471581	-2.1374340	0.1273972	Fe -0.
Η	-4.6983022	-1.0928895	1.5931062	Н 1.0
С	-5.0683322	-1.9975957	-2.1407986	C -1.9
Η	-3.3133916	-0.8135837	-2.4527903	С -0.0
С	-5.9892597	-2.4786822	-1.2152099	C 0.4
Η	-6.5674956	-2.4915227	0.8550294	O -3.0
Н	-5.1695253	-2.2459815	-3.1903583	O -0.

Η	-6.8125773	-3.1043452	-1.5367345
С	-2.1738063	-1.0098715	2.1356418
С	-2.0240672	-2.3646833	1.8045852
С	-2.5954363	-0.7158267	3.4365382
С	-2.2700169	-3.3714744	2.7283309
Η	-1.7320280	-2.6283089	0.8005946
С	-2.8514004	-1.7193258	4.3623818
Η	-2.7448296	0.3088506	3.7313140
С	-2.6833446	-3.0561712	4.0180657
Η	-2.1426440	-4.4070190	2.4353951
Η	-3.1826963	-1.4522792	5.3587235
Η	-2.8734213	-3.8387322	4.7419061
С	-0.7159895	2.0452309	-0.3194272
0	-0.9458405	2.4608534	-1.3591053

Electronic Energy (-2670.698137 Hartree) Imaginary frequency (1, -112.44 cm⁻¹)

- Fe -0.2762664 1.3207760 -1.5668277
- Н 1.0106658 0.8990208 -2.2791498
- C -1.9757609 1.7052922 -1.0043183
- C -0.6724601 1.1550023 -3.2846036
- C 0.4938541 2.9446599 -1.6955852
- O -3.0946777 1.8627668 -0.8440196
- O -0.8690728 1.0340131 -4.4036707

0	0.9993691	3.9579443	-1.8409259	C	0.2669194	-0.2647385	-0.1844726
Si	0.2927224	1.4910136	1.0980599	C	1.3792542	-1.1411167	0.2650955
С	-0.7922790	0.6566028	2.4192433	C	1.2040551	-2.0426992	1.3187834
Н	-0.2407334	-0.2048886	2.8011115	C	2.5965089	-1.1308191	-0.4192718
Н	-0.8258115	1.3768207	3.2452365	C	2.2303014	-2.9053843	1.6872790
С	2.1074383	1.4851131	1.6476070	Н	0.2558380	-2.0802669	1.8374479
Н	2.1055292	2.0365854	2.5951463	C	3.6232051	-1.9892742	-0.0450902
Η	2.4380957	0.4763473	1.8900468	Н	2.7314397	-0.4460910	-1.2457326
С	-0.0827603	3.3649658	1.2982725	C	3.4473699	-2.8762977	1.0133442
Н	0.6926307	3.9350385	0.7842423	Н	2.0767358	-3.6001789	2.5038381
Н	0.1429516	3.4703999	2.3677248	Н	4.5622431	-1.9664870	-0.5843634
С	-1.4486184	3.9902121	1.0225228	Н	4.2493486	-3.5419641	1.3066269
Н	-1.6500051	4.0698180	-0.0457898	C	-1.2507526	-1.7221581	-1.6888174
Н	-2.2637487	3.4189057	1.4702203	C	-2.3263654	-1.5569964	-2.5740125
Н	-1.4964099	5.0033806	1.4302621	C	-0.8234035	-3.0318582	-1.3978929
С	3.0995426	2.1455660	0.6799812	C	-2.9523433	-2.6529318	-3.1526023
Н	4.1201080	2.0975989	1.0678013	Н	-2.6804797	-0.5592179	-2.7926934
Н	3.0968822	1.6552192	-0.2944711	C	-1.4401964	-4.1226195	-1.9902789
Н	2.8639703	3.1984431	0.5132831	Н	0.0040774	-3.1872261	-0.7217006
С	-2.2172753	0.2367320	2.0442575	C	-2.5085420	-3.9397750	-2.8670793
Н	-2.8362339	1.0930911	1.7733836	Н	-3.7849830	-2.5010125	-3.8277722
Н	-2.2189437	-0.4495251	1.1952492	Н	-1.0872352	-5.1220533	-1.7674400
Η	-2.7091164	-0.2698436	2.8784657	Н	-2.9907720	-4.7958733	-3.3221965
С	-0.6214820	-0.5674096	-1.0907820				

Int4b

Electronic Energy (-5195.519455 Hartree)
---	---

Р	1.6851645	-0.2834226	1.2445652
С	1.0892713	1.2674440	0.4243917
С	0.7310556	2.4776809	1.0181412
С	1.0238635	1.2257141	-0.9709926
С	0.4090723	3.5992829	0.2657537
С	0.7029719	2.3273269	-1.7438797
С	0.4046549	3.5300048	-1.1188595
С	0.1339049	-1.2748307	1.0863370
С	-1.0970630	-0.7387366	1.4766600
С	0.1026828	-2.5640828	0.5566617
С	-2.2920889	-1.4172213	1.3215348
С	-1.0835082	-3.2669140	0.3889176
С	-2.2857545	-2.6907308	0.7669242
С	1.8001622	0.0679094	3.0506911
С	1.2880585	-0.7687411	4.0408887
С	2.6299405	1.1021364	3.4887628
С	1.5468961	-0.5640375	5.3899900
С	2.8961975	1.3337764	4.8251177
С	2.3478054	0.4943597	5.7863449
F	0.0876737	4.5974084	-1.8407594
F	0.0823710	4.7393855	0.8728275
F	0.6464668	2.6122927	2.3430105

1	1.2434493	0.0700739	-1.6133234
F	0.6604967	2.2346568	-3.0718333
F	3.2000971	1.9209965	2.5973306
F -	1.1518878	0.4666921	2.0557251
F	1.2211341	-3.1971843	0.1994232
F -	3.4411566	-0.8669481	1.7106692
F -	3.4242657	-3.3533843	0.6113409
F -	1.0685351	-4.4943441	-0.1271602
F	0.5370251	-1.8352215	3.7355911
F	1.0327854	-1.3881374	6.3016578
F	2.5963459	0.7016623	7.0739380
F	3.6736382	2.3502469	5.1936603
Fe	3.7460666	-0.9767252	0.5302694
Fe H	3.74606664.3043721	-0.9767252 -0.4102305	0.5302694 1.8276758
Fe H Si	3.74606664.30437216.0091111	-0.9767252 -0.4102305 -0.1184423	0.5302694 1.8276758 -2.7559202
Fe H Si C	 3.7460666 4.3043721 6.0091111 4.2879160 	-0.9767252 -0.4102305 -0.1184423 0.6879029	0.5302694 1.8276758 -2.7559202 0.1484962
Fe H Si C C	 3.7460666 4.3043721 6.0091111 4.2879160 3.3067818 	-0.9767252 -0.4102305 -0.1184423 0.6879029 -1.8179904	0.5302694 1.8276758 -2.7559202 0.1484962 -1.0251049
Fe H Si C C O	3.7460666 4.3043721 6.0091111 4.2879160 3.3067818 4.6997458	-0.9767252 -0.4102305 -0.1184423 0.6879029 -1.8179904 1.7460176	0.5302694 1.8276758 -2.7559202 0.1484962 -1.0251049 0.0336470
Fe H Si C C O O	3.7460666 4.3043721 6.0091111 4.2879160 3.3067818 4.6997458 3.0904377	-0.9767252 -0.4102305 -0.1184423 0.6879029 -1.8179904 1.7460176 -2.4086673	0.5302694 1.8276758 -2.7559202 0.1484962 -1.0251049 0.0336470 -1.9733352
Fe H Si C C O O C	3.7460666 4.3043721 6.0091111 4.2879160 3.3067818 4.6997458 3.0904377 7.2833832	-0.9767252 -0.4102305 -0.1184423 0.6879029 -1.8179904 1.7460176 -2.4086673 1.2809376	0.5302694 1.8276758 -2.7559202 0.1484962 -1.0251049 0.0336470 -1.9733352 -2.8805045
Fe H Si C C O O C H	3.7460666 4.3043721 6.0091111 4.2879160 3.3067818 4.6997458 3.0904377 7.2833832 7.2378287	-0.9767252 -0.4102305 -0.1184423 0.6879029 -1.8179904 1.7460176 -2.4086673 1.2809376 1.8517305	0.5302694 1.8276758 -2.7559202 0.1484962 -1.0251049 0.0336470 -1.9733352 -2.8805045 -1.9464884
Fe H Si C C O O C H H	3.7460666 4.3043721 6.0091111 4.2879160 3.3067818 4.6997458 3.0904377 7.2833832 7.2378287 8.2800230	-0.9767252 -0.4102305 -0.1184423 0.6879029 -1.8179904 1.7460176 -2.4086673 1.2809376 1.8517305 0.8330573	0.5302694 1.8276758 -2.7559202 0.1484962 -1.0251049 0.0336470 -1.9733352 -2.8805045 -1.9464884 -2.9050259
Fe H Si C C O O C H H H C	3.7460666 4.3043721 6.0091111 4.2879160 3.3067818 4.6997458 3.0904377 7.2833832 7.2378287 8.2800230 4.2938478	-0.9767252 -0.4102305 -0.1184423 0.6879029 -1.8179904 1.7460176 -2.4086673 1.2809376 1.8517305 0.8330573 0.6869291	0.5302694 1.8276758 -2.7559202 0.1484962 -1.0251049 0.0336470 -1.9733352 -2.8805045 -1.9464884 -2.9050259 -2.9689616

3.5347475	0.1845486	-2.3774939	Η	6.7166210	-0.3793759	2.3298744
6.3183439	-1.3176820	-4.1899723	С	7.6694963	-3.5281968	3.1587563
6.1741086	-0.7508206	-5.1156636	Η	7.3629680	-5.2617545	1.9258361
7.3789166	-1.5825269	-4.1690408	Η	7.8349691	-1.6224611	4.1412018
5.4620563	-2.5905645	-4.2266068	Η	8.1514621	-4.0769107	3.9582205
5.5650877	-3.1715137	-3.3077568	С	7.8800861	-1.4150063	-1.1562378
4.4004889	-2.3613637	-4.3335079	С	8.3316372	-2.5727885	-1.7940660
5.7446073	-3.2382590	-5.0608814	С	8.8265686	-0.5934505	-0.5359458
7.1120430	2.2303719	-4.0757746	С	9.6825559	-2.9029917	-1.8086135
6.1567373	2.7585834	-4.0396353	Η	7.6160647	-3.2297773	-2.2706034
7.9004190	2.9877886	-4.0965599	С	10.1773795	-0.9183355	-0.5490297
7.1535963	1.6934964	-5.0268816	Η	8.4930089	0.3057930	-0.0336809
3.7984542	0.7739519	-4.4226831	С	10.6125716	-2.0758726	-1.1875008
2.8567362	1.3261377	-4.4768455	Η	10.0076242	-3.8111443	-2.3024366
4.5135414	1.2812523	-5.0722644	Η	10.8908363	-0.2685502	-0.0561865
3.6211947	-0.2166474	-4.8451759	Η	11.6650368	-2.3318432	-1.1974644
5.7323748	-1.3643074	-0.0091107	С	3.6537277	-2.4212408	1.6240275
6.4156903	-1.0426179	-1.1265782	0	3.5712305	-3.2426270	2.4072555
6.4155337	-2.1036760	1.0878048	Fe($(CO)_3P(C_6F_5)$)3	
6.6081314	-3.4849523	0.9940148	Ele	ctronic Energ	y (-4128.447	453 Hartree)
6.8622797	-1.4490997	2.2396619	Р	0.0561937	-0.0764282	-0.4119280
7.2254862	-4.1913453	2.0195342	С	-0.5089818	1.6561889	-0.0538886
6.2685600	-4.0049387	0.1067570	С	0.0680963	2.5751711	0.8237975
7.4880498	-2.1509360	3.2613033	С	-1.6539763	2.0909532	-0.7288733

Η

С

Η

Н

С

Η

Η

Η

С

Η

Η

Н

С

Η

Η

Η

С

С

С

С

С

С

Η

С

С	-0.4290767	3.8606347	0.9845415	F	-4.1643830	-2.9557997	2.6528894
С	-2.1691010	3.3686914	-0.5870595	F	-2.5995215	-1.1764550	3.9706535
С	-1.5491169	4.2627000	0.2732392	F	2.4245804	1.6246156	-0.8906839
С	-1.1612516	-0.9676871	0.6354721	F	4.9788899	1.2995170	-0.1068648
С	-1.9823487	-1.8859241	0.0021712	F	5.6381092	-0.7341019	1.5838595
С	-1.3942887	-0.7388590	1.9877146	F	3.7084197	-2.4305721	2.4764380
С	-2.9965063	-2.5674412	0.6500514	Fe	-0.0602407	-1.1510686	-2.3467832
С	-2.3968606	-1.4030214	2.6749286	С	1.3263466	-0.3694892	-3.0910216
С	-3.2001721	-2.3187287	2.0018185	С	-1.1501240	-0.5716371	-3.6819683
С	1.7001411	-0.2184910	0.3941369	С	0.8094397	-2.7353131	-2.3228673
С	2.7208719	0.6192815	-0.0523531	0	2.2376453	0.1335426	-3.5700533
С	2.0747824	-1.2516803	1.2485068	0	-1.8158520	-0.2182834	-4.5441524
С	4.0388793	0.4668070	0.3371733	0	1.3829727	-3.7289330	-2.3344760
С	3.3895243	-1.4297946	1.6555189	Pro	oduct		
С	4.3763315	-0.5681213	1.2002778	Ele	ctronic Energ	y (-1067.084	237 Hartree)
F	-2.0372392	5.4880132	0.4294272	С	0.5488354	-1.1770553	0.2984961
F	0.1532950	4.7065067	1.8350625	Н	0.0756342	-2.1147888	0.6135571
F	1.1253151	2.2520027	1.5756280	С	-0.2759711	-0.1566558	-0.0465181
F	-2.3280788	1.2534603	-1.5269691	С	0.1920826	1.2133925	-0.3859585
F	-3.2618528	3.7352187	-1.2562198	С	0.0979230	1.7201342	-1.6953884
F	1.1747932	-2.1356546	1.7010579	С	0.6963056	2.0590631	0.6208851
F	-1.8030844	-2.1367985	-1.3238928	С	0.5174558	3.0198137	-1.9924955
F	-0.6338123	0.1320123	2.6563897	Н	-0.2830539	1.0775935	-2.4915892
F	-3.7656900	-3.4380473	0.0032122	С	1.1068865	3.3601011	0.3255311
Η	0.7734227	1.6792291	1.6417968	Н	-3.9801530	0.9438648	1.0956972
----	------------	------------	------------	---	------------	------------	------------
С	1.0221643	3.8462266	-0.9836971	C	-2.4586342	0.8076301	2.6530011
Η	0.4499123	3.3876772	-3.0186628	Н	-1.3629615	0.8193072	2.7603506
Η	1.4986625	3.9972760	1.1214091	Н	-2.8588545	1.6210592	3.2781703
Η	1.3464183	4.8625130	-1.2158779	Н	-2.8158931	-0.1411698	3.0821936
С	2.0186216	-1.2395963	0.3487901	C	-2.6044433	-2.1226329	0.6798011
С	2.8767870	-0.3796679	-0.3693897	Н	-2.1474801	-2.8763925	0.0168836
С	2.6095259	-2.2441890	1.1452160	Н	-2.1258628	-2.2539368	1.6646811
С	4.2622217	-0.5075982	-0.2705634	C	-4.1180524	-2.3698241	0.7933081
Η	2.4547552	0.3873620	-1.0175218	Н	-4.6182282	-2.2844717	-0.1836084
С	3.9955127	-2.3639378	1.2532831	Н	-4.3364752	-3.3756189	1.1846350
Η	1.9622027	-2.9337035	1.6938726	Н	-4.5982924	-1.6453034	1.4693429
С	4.8301942	-1.4921004	0.5465675	C	-2.9221368	-0.1506961	-1.7192504
Η	4.9053696	0.1658829	-0.8412570	Н	-4.0194757	-0.2121089	-1.6160154
Η	4.4261620	-3.1434219	1.8854067	Н	-2.7127084	0.8808359	-2.0476498
Η	5.9153288	-1.5842767	0.6235351	C	-2.4272982	-1.1618853	-2.7634495
Si	-2.1744498	-0.3825493	0.0228297	Н	-2.6828477	-2.1943797	-2.4789140
С	-2.8802695	0.9577484	1.1837854	Н	-2.8692790	-0.9775677	-3.7551447
Н	-2.5570029	1.9368660	0.7921143	Н	-1.3325564	-1.1229810	-2.8772865

9. References:

^{1 (}a) D. D. Perrin, W. L. Armarego and L. F. Willfred, Purification of Laboratory Chemicals, Pergamon, Oxford, 1988. (b) C. Fan, J. Hou, Y.-J. Chen, K.-L. Ding and Q.-L. Zhou, *Org. Lett.*

2021, *23*, 2074–2077. (c) J. A. S. Howell, B. F. G. Johnson, P. L. Josty and J. Lewis, *J. Organomet. Chem.*, **1972**, *39*, 329-333.

- 2 W. Jetz and W. A. G. Graham, *Inorg. Chem.* 1971, **10**, 4–9.
- 3 W. Guo, R. Pleixats, A. Shafir, T. Parella, Adv. Synth. Catal. 2015, 357, 89–99.
- 4 X. Wang and C. Wang, Angew. Chem., Int. Ed. 2018, 57, 923–928.
- 5 M. Mori, S. Kuroda and F. Dekura, J. Am. Chem. Soc. 1999, 121, 5591-5592.
- 6 TURBOMOLE V7.5.0 2016, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007.
- 7 (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789. (c) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211. d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627.
- 8 (a) A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835. (b) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- 9 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104-154119.
- 10 K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, 240, 283-290.
- 11 M. Sierka, A. Hogekamp and R. Ahlrichs, J. Chem. Phys., 2003, **118**, 9136-9148.
- 12 A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans.2., 1993, 799-805.
- 13 K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.