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1. Representative Chemical Structures of Polymer Library

Supplementary Table 1. Representative chemical structures of polymer library dataset.

Polymer Name Abbreviation Chemical Structure
Hydroxypropyl methyl cellulose HPMC

Hydroxypropyl cellulose HPC

Carboxymethyl cellulose CMC

Dextran from Leuconostoc 
mesenteroides

DEX

Poloxamer 407 P407

Poly(2-ethyl-2-oxazoline) PEOZ

Poly(vinylpyrrolidone) PVP

Poly((2-dimethylamino)ethyl 
methacrylate)

PDMAEMA



Poly-(N-(2-
hydroxypropyl)methacrylamide)

PHPMA

Poly(acrylic) acid PAA

Polyethylene glycol PEG

Poly(vinyl) alcohol 86-89% PVA

2. δ 1H Chemical Shift Feature 

2.1.  Fingerprint Generation

To incorporate proton cohort information as a macromolecular fingerprint vector, for each proton sample we conducted 
a hashing workflow as follows: (1) bin the NMR spectrum into 0.1ppm step size intervals (2) identify the chemical shifts 
of the cohort for a given proton sample, (3) encode the presence or absence of cohort chemical shifts in terms of the 
binned intervals of the NMR spectrum. After the workflow was conducted for all proton samples in the dataset, binned 
intervals that contained no examples were dropped. 

2.2. Fingerprint Interpretation

Ultimately, including the cohort chemical shift vector provided a contextual polymer fingerprint vector associated with 
each proton observation. Cohort vector chemical shift intervals, as principal component factor loadings, can be applied 
to suggest polymer functionalization design suggestions post-hoc for achieving interactive or inert properties. It merits 
noting, however, that by definition the chemical shift interval of a sample proton is excluded from its cohort fingerprint. 
Hence cohort interval factor loadings should be interpreted with this inverse relationship in mind. For instance, loadings 
indicating a cohort shift interval is negatively correlated with interaction may be in reference to the fact the chemical 
shift of an interactive sample proton was by definition excluded from its cohort vector. Reviewing the true identities, 
and chemical shifts, of the protons being classified as interactive by the final heuristics should thus be prioritized, and 
will reveal when this is the case.



3. Disco Effect Feature 

3.1. Benchmarking Study

To compare the different means of incorporating information from proton DISCO Effect(t) buildup curves in modelling, 
we performed a model pipeline benchmarking exercise with nested cross validation. Data standardization, PCA, and 
hyperparameter optimization were all fit to training folds, and transformations applied to the validation folds, using 
scikit-learn Pipeline estimators to mitigate data leakage (1,2). 

In the inner nested cross validation fold, the same decision tree hyperparameter grid was used (Supplementary Table 
2) with Stratified 5-Fold Grid Search Cross Validation (GridSearchCV estimator in scikit-learn), to automatically construct 
a cross validated model to the dataset with the highest ROC-AUC. In nested cross validation, holdout sets are iteratively 
separated from the remainder of the data, creating an “outer fold.” We used Leave-One-Out Cross Validation (LOO-CV) 
to construct the outer folds for nested cross validation, as is common for small datasets (2–5). Each inner fold then 
comprised the training and validation data, which were used to construct the optimal model to the fold, without seeing 
the holdout. The best performing models for each inner fold were constructed using the hyperparameter grid in ESI 
Table 2, where Stratified 5-Fold GridSearchCV identifies the decision tree with highest ROC-AUC from the training and 
validation data. Similarly, all data standardization and PCA transforms were fit to training folds, and transformed on 
validation folds. Then, the data transforms and best model were fit to all of the training and validation data, and applied 
to transform the untrained holdout data for prediction at the optimal classification threshold. The workflow resulted in 
99 outer folds, such that all samples were eventually assigned unbiased, untrained predictions. Additionally, given 
decision trees are sensitive to the random seed used for initialization, we conducted technical replicates of each 
benchmark at three different random seeds (0, 148, 601). Scikit-learn Pipeline estimators, with an additional 
ColumnTransformer estimator step isolating the first-pass PCA for CDE computation, were used respectively to compute 
the benchmarks. 

We ultimately benchmarked performance using the macro average Holdout F1 scores (n=3) obtained for the different 
implementations of the DISCO Effect(t) features. To provide baselines for comparison in benchmarking, we include the 
performance metrics of a null model (a majority “dummy classifier”) reporting all samples as the majority class label (0), 
as well as a version of the model with only the chemical descriptors, and no DISCO Effect(t) feature. The results of the 
benchmarking are summarized in Supplementary Figure 1, with the full benchmarking data provided in Supplementary 
Table 1 and Supplementary Table 2. Fully trained performance metrics of the best descriptive model resulting from each 
pipeline are also provided. Descriptive models (equivalently fully trained models) were created using the same 
methodology described in the main manuscript to create the final descriptive model. 



Supplementary Fig. 1  Influence of DISCO Effect. Incorporating DISCO Effect as a modelling feature significantly improved model performance in terms of Holdout F1 
scores from nested cross validation, compared with exclusively chemical descriptors. Models trained from chemical descriptors only performed worse on average 
than the null model baseline F1=0.46. Normality of data for statistical testing was verified by Q-Q plot, and equality of variance verified by Bartlett’s test. Statistical 
testing was conducted by One-Way ANOVA (n=3, p=0.000028). Following ANOVA, a post-hoc t-test for multiple comparisons after Bonferroni correction revealed no 
significant differences between the three DISCO Effect feature implementations (p>0.12), but significantly worse performance by the models trained from chemical 
descriptors only, relative to all three disco effect features (p<0.032). * indicates a statistically significant difference in Holdout F1 scores from all other modelling 
approaches respectively (n=3, p<0.05). Error bars indicate standard error of the mean. 

The three implementations of DISCO Effect features tested were: the direct inclusion of the mean absolute DISCO 
Effect(t) datapoints at each saturation time (+7 additional dimensions), including buildup curve attributes (linear region 
slope (t=1.0 – t=0.25), maximum point, steady state (t=1.75), for +3 additional dimensions), and the Cumulative DISCO 
Effect computed by retaining the first component following a Linear PCA of the 7-dimensional buildup curve data (+1 
dimension). Statistical testing revealed that all three DISCO Effect feature implementations significantly improved 
holdout F1 scores over the pipeline comprising chemical-only descriptors. Models constructed using chemical 
descriptors only (i.e. sample proton chemical shift, parent polymer molecular weight, cohort proton chemical shift 
fingerprint only) ultimately scored worse on average than the majority classifier (F1=0.46) in terms of nested cross 
validation Holdout F1 (n=3). Prior to statistical testing, normality of data was verified by Q-Q plot, and equality of 
variance verified by Bartlett’s test. Significant F-test results were obtained by one-way ANOVA (n=3, p=0.000028). 
Following ANOVA, a post-hoc t-test for multiple comparisons after Bonferroni correction revealed the three DISCO 
Effect feature implementations performed equally, without a statistically significant best performer, in terms of Holdout 
F1 score (n=3, p<0.05), yet all significantly improved over the chemical-only descriptor pipeline (n=3, p<0.032). The 
Python packages pingouin (version 0.5.1), and scikit-posthocs (version 0.7.0) were used to conduct the analysis. The 
code to regenerate this analysis is available in the GitHub for this paper.  

Following this benchmarking, we elected to include the Cumulative DISCO Effect as calculated by Linear PCA (retaining 
first component only) of the mean absolute DISCO Effect(t) buildup curves. We chose this implementation as it added 
the least additional dimensionality to the modelling dataset, thus facilitating greatest interpretability over the analogous 
seven column implementation of DISCO Effect(t). However, a slight trend in increased Holdout F1 scores in pipelines 
applying all seven DISCO Effect(t) saturation times as independent variables suggest that downstream predictive works 
may improve their out of sample performance by including the whole buildup curve in the feature set, at the expense 
of facile interpretability. 

https://github.com/Frank-Gu-Lab/infrno


Supplementary Table 2. DISCO Effect Feature Benchmarking Results. The final model interpreted in the main paper 
body is indicated in green. The null model baseline predicts all samples to be members of the majority class (0), 
which results in F1=0.46 as a minimum performance threshold. Best hyperparameters are those returned by 
GridSearchCV as the parameters that maximized ROC-AUC after Stratified 5-Fold Cross Validation on the full 
dataset.

DISCO Effect(t) feature 
approach:

Added 
dimensionality

Random 
seed

Best max 
depth

Best min 
samples 
per leaf

Best min 
samples per 

split

Fully trained 
F1

Holdout 
F1

Full Buildup Curve 7 148 4 5 2 0.818681 0.571892

Full Buildup Curve 7 0 4 7 2 0.817190 0.582719

Full Buildup Curve 7 601 4 20 2 0.728592 0.571892

Curve max, slope, 
steady state 3 148 4 3 7 0.857963 0.546703

Curve max, slope, 
steady state 3 0 4 3 7 0.857963 0.523225

Curve max, slope, 
steady state 3 601 5 3 7 0.898148 0.498734

Cumulative DISCO 
Effect 1 148 5 3 2 0.869737 0.551284

Cumulative DISCO 
Effect 1 0 5 3 15 0.818681 0.530063

Cumulative DISCO 
Effect 1 601 4 5 40 0.812025 0.558642

None - Chemical Only 0 148 4 10 30 0.660140 0.446064

None - Chemical Only 0 0 4 10 30 0.660140 0.427314

None - Chemical Only 0 601 4 10 2 0.660140 0.445689

Null Model: Majority 
Classifier N/A N/A N/A N/A N/A 0.46

Supplementary Table 3 Decision Tree Hyperparameter Grid. Hyperparameter grid used for all Grid Searches 
performed 
during 
benchmark
ing.

Maximum depth 4, 5, 6, 7, 8, 9, 10
Minimum samples per split 2, 3, 5, 7, 10, 15, 20, 30, 40



Minimum samples per leaf 1, 2, 3, 5, 7, 10, 15, 20



3.2. Cumulative DISCO Effect Calculation by Linear PCA

To provide an optimal implementation of a cumulative sum for buildup curve comparison (“Cumulative DISCO Effect”), 
we applied linear PCA to the absolute, standardized, saturation transfer buildup curves and retained only the first 
component. The retained component in the final model had positive factor loadings at all saturation time points 
(Supplementary Table 3), making it representative of an optimized cumulative sum for buildup curve comparison, and 
explained 68.8% of the variance in proton saturation transfer buildup curves. 

Supplementary Table 4. Cumulative DISCO Effect Feature Creation. Linear PCA factor loadings for the Cumulative 
DISCO Effect feature.

t=0.25 t=0.5 t=0.75 t=1.0 t=1.25 t=1.5 t=1.75
PC1 0.391 0.397 0.300 0.320 0.377 0.418 0.425



4. Principal Component Analysis

4.1. Full Dataset Principal Component Analysis

To remove linear intercorrelations from the full feature set prior to modelling, the full dataset was standardized, and 
transformed by Linear PCA. The optimal number of components to retain was selected automatically using Minka’s 
MLE. The scree plot and factor loadings of the Linear PCA performed upon the full feature set are provided. 31 factors 
were retained, having 98.4% explained variance.           

Supplementary Fig. 2 Principal component scree plot. Scree plot describing the variance explained by each component of the full feature set.

Supplementary Fig. 3 Principal Component Factor Loadings. All factor loadings relating the retained 31 principal components for modelling, and original features, 
are tabulated.



5. Decision Tree Tuning & Regularization

5.1. Hyperparameter Tuning 

To constrain splitting within our final model, maximum tree depth, minimum samples per leaf, and minimum samples 
per split were optimized to the dataset using Stratified 5-Fold Grid Search Cross Validation (1). The grid search evaluated 
all parameter combinations from the ranges provided (504 candidates per fold) under 5-folds of cross-validation and 
selected the best tree hyperparameters from the search space in terms of maximum average area under the receiver 
operating characteristic curve (ROC-AUC). Parameter range inputs to the grid search were selected in accordance with 
literature in decision tree hyperparameter optimization (6). The exact range used is provided in Supplementary Table 
2. The hyperparameters selected for the final model were a maximum tree depth of 5, 3 minimum proton samples per 
leaf, and no restraint on minimum proton samples per split. Scikit-learn Pipeline estimators were used to prevent data 
leakage between training and validation splits. By constructing the final model via grid search, the ultimate regions 
classifying interaction behavior were created without human bias. 

5.2. Decision Tree Classification Metrics

Classification metrics are reported in terms of F1 score, the harmonic mean of precision and recall, given the class 
imbalance in the proton data (7): 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

=  
𝑇𝑃

𝑇𝑃 +  
1
2

(𝐹𝑃 + 𝐹𝑁)

where TP = number of true positives, FP = number of false positives, and FN = number of false negatives. 

6. Detailed Description of Machine-Learned Heuristics

In Supplementary Table 4, a detailed breakdown of each machine learned heuristic, and the decision tree data 
underlying it is provided.



Supplementary Table 5. Summary of descriptive interaction heuristics. †

ID Model Heuristic Protons in Heuristic Scope Rationale Rule Plot
H1 PAA’s mucoadhesive mechanism is similar at 

each of its protons. The mechanism is 
characteristic in the dataset to the molecular 

weight, CDE, and chemical composition of PAA 
in tandem.

PAA 450kDa 
(2.03, 1.54, 1.28)

PC 12 > 1.7 classified all 
PAA protons interactive

Fig. 4B

H2 PDMAEMA’s chemical shifts and CDE 
characterize its mechanism. Proton clustering 
juxtaposed PEOZ and PDMAEMA as chemical 

and interactive “opposites.”

PDMAEMA 10kDa 
(4.4, 3.46, 2.05, 1.42, 1.13, 0.92)

PC 3 <= -3.17 grouped 
protons from PDMAEMA, 
high PC3 scores clustered 

protons from PEOZ 

Fig. 4B

H3 Monotonic increase in chemical shift (i.e. 
electronegativity of neighboring groups) 
correlated with PDMAEMA interaction.

PDMAEMA 10kDa 
(4.4, 3.46, 2.05, 1.42, 1.13, 0.92) 

PC 31 < =-0.06 classified 
monotonically increasing 
chemical shifts from H2 

as interactive 

ESI Fig. 4B

H4 HPC’s chemical composition distinguished a 
subset of 8 protons, across two HPC molecular 

weights, as similar. 

HPC 370kDa (4.07, 3.77, 3.46, 3.14, 1.13) 
HPC 80kDa (4.07, 3.77, 1.13)

PC 7 > 2.38 groups HPC 
protons together

ESI Fig. 5B

H5 Tuning molecular weight, without any 
additional chemical functionalization, 

unlocked interaction in HPC. 

HPC 370kDa (4.07, 3.77, 3.46, 3.14, 1.13) 
HPC 80kDa (4.07, 3.77, 1.13)

PC11 <=-0.65 classifies 
interactive H5 protons 

(370kDa) vs inert (80kDa)

Fig 4D

H6 Protons across polymer species of downfield 
chemical shifts (avg. ppm 9>1.03=4.14ppm, avg. 

ppm 9<=1.03=3.14ppm), high CDE (avg. CDE 
9>1.03= 3.63, avg. CDE 9<=1.03= -0.41), and 
molecular weights in 80-150kDa (avg. 

MW9>1.03=111kDa, avg. MW9<=1.03=212.3kDa) 
show similar propensity for interaction.

PVA 105kDa (4.08, 1.58), 
CMC 131kDa (4.58),

HPMC 86kDa (4.48), HPMC 120kDa (4.48), 
HPC 80kDa (4.58), 
DEX 150kDa (5.20)

PC9 > 1.03 groups 
together seven cross-

species protons from the 
remaining unclassified 

set, similar protons 
cluster nearby

Fig 5B

H7 A reduction in CDE (avg. CDE11>0.22= 5.83, avg. 
CDE11<=0.22= 0.704) provided the fine resolution 

necessary to characterize dominant 
interactions within a mechanistically similar 

proton group across species and MW.

PVA 105kDa (4.08), 
CMC 131kDa (4.58),
HPMC 86kDa (4.48) 

PC 11<=0.22 narrows the 
H6 group to classify three 

interactive protons 
across polymer species 

from inert

Fig 5B

H8 Protons across species are bimodally 
distributed on chemical composition. One 

distribution contains a secondary interactive 
proton, which suggests others in its cluster 

may have propensity for secondary 
interaction. The second distribution contains 

purely inert protons.

CMC 131kDa (4.36, 4.25, 4.09, 3.93, 3.76, 
3.58, 3.35, 3.14)

CMC 90kDa (4.58, 4.36, 4.25, 4.09, 3.94, 3.76, 
3.58, 3.35, 3.14)

DEX 150kDa (3.48, 3.72, 3.88, 4.02, 4.22, 5.3)
HPC 370kDa (4.58), HPC 80kDa (3.14, 3.46)
HPMC 120kDa (1.16, 3.08, 3.38, 3.71, 4.05)
HPMC 86kDa (1.16, 3.08, 3.38, 3.71, 4.05)

PDMAEMA 10kDa (1.3, 2.09)
PHPMA 40kDa (0.94, 1.16, 1.82, 3.04, 3.19, 3.92)

PVP 55 (1.54, 1.78, 2.03, 2.27, 2.51, 3.22, 3.6, 
3.89), PVP 1300kDa (1.54, 1.78, 2.03, 2.27, 2.51, 

3.22, 3.6, 3.89), P407 13kDa (1.19, 3.47, 3.54, 
3.6, 3.76), PEG 2, 10, 20 kDa (3.7)

PEOZ 50kDa (1.01, 2.22, 2.32, 2.41, 3.42, 3.62)
PVA 105kDa (2.12)

PC15 <= -0.84 classifies 
the secondary interaction 

site in CMC131kDa, 
similar protons cluster 

nearby

Fig 6B

† Boldface indicates a true interactive proton. Underline indicates an “undervalued” inert proton candidate for physical property tuning towards interaction, without additional chemical 
functionalization.



7. Decision Tree Rule Plots & Interpretations

7.1. Rule 1

Heuristic 1

The first heuristic applied PC12 > 1.7 to classify all three protons in PAA as interactive (Fig 3B). PAA scored highly 
on PC 12 due to its cohort chemical shifts (1.5, 1.6] and (1.2, 1.3], and as PAA possessed the highest molecular 
weight in the dataset where interactions result (450kDa). PAA CDE was additionally correlated to the model’s 
classification. In PAA, positive correlation with CDE is likely a function of PAA proton buildup curves each having 
positive linear slope, a characteristic of interactive protons. All three PAA protons scored similarly on PC12 relative 
to the other protons, which reflected their nonspecific interaction mechanism of chain interpenetration and 
entanglement (8). Some research directions derived from Heuristic 1 that merit investigation include molecular 
weight as a contributing factor to PAA’s interaction mechanism, and whether reductions in molecular weight, or 
functionalization of PAA with more downfield chemical shifts negatively factor loaded to PC12 silences interactions. 
In this regard, evidence has been reported of linear 450kDa PAA weakening its mucoadhesion by decreasing its 
molecular weight to 100kDa (9).

The positive factor loadings in PC12 underlying this analysis were, in ascending order: 0.11 molecular weight, 0.19 
(1.5, 1.6] chemical shift, 0.24 CDE, and 0.35 for the (1.2, 2.3] chemical shift. Negative factor loadings in PC12, 
oppositely correlated to PAA mucoadhesion, were: -0.1 ppm, -0.1 (3.0, 3.1], -0.11 (3.1, 3.2], -0.14 (4.3, 4.4], -0.17 
(3.4, 3.5], -0.18 (3.8, 3.9], -0.18 (3.2, 3.3], -0.19 (2.5, 2.6], -0.19 (4.4, 4.5], -0.19 (0.9, 1.0], -0.2 (2.8, 2.9], -0.2 (1.7, 
1.8], -0.21 (2.2, 2.3], -0.22 (4.5, 4.6], -0.22 (1.4, 1.5], -0.25 (4.0, 4.1], -0.27 (1.1, 1.2], -0.36 (2.1, 2.2].  

7.2. Rule 2

Heuristic 2

Heuristic 2 was constructed for PDMAEMA protons, which had characteristically low scores on PC3 (<= - 3.171). 
Figure 4A annotates the decision tree at this juncture. Figure 4B then shows the principal component biplot of 
protons classified by Heuristics 1 and 2, annotated with their true binding outcomes, and 1H chemical shifts. 𝛿
Chemical composition and CDE both amplified the low PC3 scores of PDMAEMA protons. As with PAA, positive 
linear buildup curve slope contributed to PDMAEMA proton CDE. Juxtaposing PDMAEMA protons with low scores 
on PC3, a second inert proton cluster from PEOZ scored highly on PC3. With this, Heuristic 2 frames PDMAEMA and 
PEOZ as “opposites” in both their proton chemical composition and propensity for interaction.
 
Underlying Heuristic 2, the negative factor loadings in PC3 score (associated with PDMAEMA) were: -0.11 (CDE), -
0.14 (1.1, 1.2], -0.18 (4.3, 4.4], -0.22 (2.0, 2.1], -0.22 (0.9, 1.0], -0.23 (1.2, 1.3], -0.24 (1.4, 1.5], -0.24 (2.8, 2.9]. 
Positive factor loadings on PC3 (associated with PEOZ) were: 0.1 (3.4, 3.5], 0.14 (2.2, 2.3], 0.38 (3.6, 3.7], 0.38 (2.3, 
2.4], 0.38 (2.4, 2.5], 0.38 (1.0, 1.1]. In terms of research directions from Heuristic 2, further exploration of 
PDMAEMA and PEOZ for “opposing interaction behavior triggers” is merited. Specifically, functionalizing 
PDMAEMA with chemical shifts positively factor loaded on PC3, or PEOZ with chemical shifts negatively loaded to 
PC3. Recently, the functionalization of PEOZ by methacrylation, and application of PEOZ in combination with 
Carbopols® both served to trigger its mucoadhesion (10,11).
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7.3. Rule 3

Heuristic 3

Heuristic 3 was constructed within the PDMAEMA proton subset identified by Heuristic 2. Interactive PDMAEMA 
protons were separated from inert using PC31 (PC31<= -0.06), as shown in ESI Fig. 4. All applicable factor loadings 
in PC31 to this subset were minute (<0.1), except for one PDMAEMA cohort proton group, 0.3 (4.3, 4.4]. 
Nonetheless, PC31 globally ranked the protons: 0.92 > 1.13 > 1.42 > 2.05 > 3.46 > 4.4, where monotonic increases 
in chemical shift downfield characterized interactive from inert sites (interactive bolded). Proton chemical shift is 
related to the electronic environment of neighboring functional groups, where an increase in chemical shift is a 
result of proton deshielding. Hence, it is possible the model reflected that a reduction in functional group shielding 
(for example by the introduction of groups with high electronegativity) increased propensity for interaction in 
PDMAEMA, as a short chain linear polymer.

Supplementary Fig 4: Principal component plot of Heuristic 3. A) Decision tree classification node. B) Principal component scores of each proton annotated with 1H 
Chemical Shift.

7.4. Rule 4

Heuristic 4

The model identified and separated eight HPC protons with mechanistic similarities by maximizing scoring on PC 7 
(PC7 > 2.384) in Heuristic 4, depicted in ESI Fig. 5. Three proton chemical shifts from HPC at 80kDa (1.13, 3.77, 
4.07ppm), and five from 370kDa (1.13, 3.14, 3.46, 3.77, 4.07ppm), were grouped together. The positive PC7 factor 
loadings underlying these high scores reflected HPC’s chemical makeup: 0.1 molecular weight, 0.16 (2.1, 2.2], 0.21 
(1.1, 1.2], 0.26 (3.1, 3.2], 0.29 (3.4, 3.5], 0.3 (4.5, 4.6]. In turn, negative PC7 factor loadings were the chemical shifts 
characteristic of other polymers in the dataset, but absent in HPC’s binding region: -0.11 (1.4, 1.5], -0.11 (2.8, 2.9], 
-0.14 (3.8, 3.9], -0.14 (0.9, 1.0], -0.18 (3.9, 4.0], -0.2 (4.3, 4.4], -0.21 (5.1, 5.2], -0.21 (5.2, 5.3], -0.26 (4.2, 4.3], -0.31 
(4.4, 4.5], -0.31 (3.0, 3.1], -0.34 (3.3, 3.4]. 

14



Supplementary Fig 5: Principal component plot of Heuristic 4. A) Decision tree classification node. B) Principal component scores of each proton labeled where HPC 
protons are sectioned to generate Heuristic 5. Marker shapes correspond to each unique polymer sample.

7.5. Rule 5
Heuristic 5

Heuristic 5 revealed that tuning molecular weight, without additional chemical functionalization, unlocked 
interaction in HPC. The decision rule PC11 <=0.65 cleaved Heuristic 4’s proton subset into two groups, primarily by 
molecular weight. HPC 370kDa achieved stable mucoadhesive interactions at 4.07, 3.77, 3.46, and 1.13 ppm, and 
remained inert at 3.14ppm. No interactions resulted at any HPC 80kDa molecular weight protons. Additionally, the 
average CDE of protons below the decision boundary was lower than those above it, and ppm were shifted more 
downfield (avg. CDE PC11<=0.65  =-0.74, avg. CDE PC11>0.65  =-0.62), (avg. ppm PC11<=0.65  =3.77ppm, avg. ppm PC11>0.65  

=2.64ppm). The applicable factor loadings and their signs reflected these trends: -0.19 (1.1, 1.2], -0.49 ppm, and -
0.59 molecular weight, 0.39 CDE, 0.2 (3.7, 3.8], 0.13 (3.4, 3.5]. 

7.6.  Rule 6
Heuristic 6

Heuristic 6 was the first to draw cross-species comparison, PC9 > 1.03 sectioned off seven protons from various 
polymers which displayed similar propensities for interaction (Fig. 4B). These protons were (interactive in bold): 
CMC 131kDa 4.58ppm, CMC 90kDa 4.58ppm, HPMC 86kDa 4.48ppm, HPMC 120kDa 4.48ppm, DEX 5.20ppm, PVA: 
4.08, 1.58ppm. Protons scoring above the threshold in Heuristic 6 possessed on average more downfield chemical 
shifts (avg. ppm 9>1.03=4.14ppm, avg. ppm 9<=1.03=3.14ppm), high CDE (avg. CDE 9>1.03= 3.63, avg. CDE 9<=1.03= -0.41), 
and lower molecular weights (avg. MW9>1.03=111kDa, avg. MW9<=1.03=212.3kDa), than those below it.
Reflecting these trends, the applicable factor loadings on PC9 and their signs underlying this classification were: 
0.14 (1.5, 1.6], 0.48 CDE, 0.49 ppm, and 0.58 (2.1, 2.2], and -0.12 molecular weight, -0.12 (3.7, 3.8], -0.19 (3.4, 3.5], 
-0.19 (4.4, 4.5], and -0.21 (4.5, 4.6]. The high weighting of the (1.5, 1.6] and (2.1, 2.2] cohort groups explain the 
elevated PC9 scorings of PVA protons relative to the others classified, as PVA was the only material to contain both 
cohort shifts.
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7.7. Rule 7
Heuristic 7

Applying the rule PC11 <= 0.22 in Heuristic 7 perfectly classified three dominant interactions from three distinct 
polymer species, within the subset identified by Heuristic 6. These were: CMC 131kDa 4.58ppm, HPMC 86kDa 
4.48ppm, PVA: 4.08ppm. A reduction in CDE across the decision border (avg. CDE11>0.22= 5.83, avg. CDE11<=0.22= 
0.704) provided the fine resolution necessary to distinguish dominant interactions within this mechanistically 
similar proton group, across species and molecular weight. Molecular weights and chemical shifts were similar 
between the groups, indicating CDE primarily enabled classification (avg. MW11<=0.22=107.3kDa, avg. 
MW11>0.22=113.8kDa) (avg. ppm11<=0.22=4.38, avg. ppm11>0.22=3.96). The applicable factor loadings on PC11 to the 
proton sample and their signs underlying this classification reflect the observed trends: 0.12 (4.0, 4.1], 0.39 CDE 
and -0.49 ppm, 0.59 molecular weight. 

7.8. Rule 8
Heuristic 8 

Heuristic 8 pertains to the remaining unclassified protons in the dataset, which are bimodally distributed in two 
clusters along PC15 (Fig. 5A). PC15 scores correlated predominantly to cohort chemical shift patterns (ESI, 
Supplementary Table 4), without loadings above 0.1 in magnitude for CDE, ppm, or molecular weight. Overall, the 
protons exhibited inert interactions, with the exception of one proton, a secondary interaction from CMC 131kDa 
at 3.76ppm. The decision rule PC 15<=-0.84 partitioned three protons from the smaller cluster (Fig. 5B), including 
the interactive site (interactive in bold): CMC 131kDa 3.76ppm, HPMC 120kDa 3.71ppm, PVP 55kDa 1.54ppm. The 
three protons segregated by the decision rule demonstrated on average similar chemical shifts (avg. ppm 15<= -

0.84=3.0, avg. ppm 15>-0.84=3.15), higher CDE (avg. CDE 15<= -0.84 = 0.40, avg. CDE 15>-0.84 = -0.43), and lower molecular 
weight (avg. MW15<=-0.84=102, avg. MW 15>-0.84=217) than the inert proton bulk opposite the decision border. It is 
possible the model identified that these characteristics correlate to propensity for secondary interaction at these 
sites in their respective species. 
Broader examination of the cluster containing the decision rule revealed recurring proton pairings from the same 
parent polymer with chemical shifts in the (4.0, 4.1] and (3.7, 3.8] intervals. These pairings were: CMC 131kDa 
(4.09ppm, 3.76ppm), CMC 90kDa (4.09ppm, 3.76ppm), DEX 150kDa (4.02ppm, 3.72ppm), HPMC 86kDa (4.05ppm, 
3.71ppm), and HPMC 120kDa (4.05ppm, 3.71ppm). P407 at 3.76ppm additionally clustered, without a (4.0, 4.1] 
shift. The molecular weight gated structure-activity relationship shared by DEX, CMC, HPC, and HPMC identified in 
discussion of Heuristics 6 & 7 can be expanded to include any influences exerted by, or secondary interactions 
occurring at (3.7, 3.8] shifts in this regard. Unintuitively, the 1.54ppm shift from PVP 1300kDa, and two sites from 
PHPMA (1.82ppm, 0.94ppm) additionally clustered in this group associated with secondary interaction.
The PC15 factor loadings and signs underlying Heuristic 8 reflect the observed trends: 0.11 (4.3, 4.4], 0.11 (2.8, 2.9], 
0.13 (1.4, 1.5], 0.19 (1.8, 1.9], 0.21 (0.9, 1.0], 0.34 (1.5, 1.6], 0.38 (4.0, 4.1], 0.43 (3.7, 3.8], and -0.12 (2.0, 2.1], -0.13 
(2.1, 2.2], -0.13 (4.4, 4.5], -0.2 (3.0, 3.1], -0.21 (1.2, 1.3], -0.22 (3.3, 3.4], -0.25 (3.4, 3.5], and -0.38 (3.1, 3.2]. 
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