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S1 Reproducibility
We provide all data, code, figures, and explanations in open-access repositories. Some data are
archived separately to keep main repositories as small as possible.

• github.com/keithgroup/mbGDML - Foundational code for preparing, training, and analyzing
many-body machine learning (mbML) models.

• github.com/aalexmmaldonado/reptar - Supporting code for data parsing and management.

• github.com/keithgroup/mbgdml-h2o-meoh-mecn - Main repository with scripts, data, and
figures presented in this manuscript.

• github.com/keithgroup/mbgdml-h2o-meoh-mecn-engrads - All energy and gradient calcula-
tion output files.

• zenodo.org/record/7464581 - All trained GDML, SchNet, GAP, and NequIP models. Train-
ing logs are kept in the above main repository.

• zenodo.org/record/7112198 - ASE trajectories and submissions scripts for NVT MD simu-
lations. A working copy of the data (exdir files) is kept in the main repository.

S1.1 Model chemistry

All n-body energies and forces were calculated in ORCA (v4.2.0)1,2 with second-order Møller–
Plesset perturbation (MP2) theory,3 def2-TZVP basis set,4 and the frozen core approximation.
ORCA’s tight self-consistent field (SCF) convergence criteria were used (< 10−8 and < 10−5 Eh
change in total electronic energy and one-electron energy between two cycles, respectively). An
integral screening threshold of 2.5×10−11 was also used.

MBE predictions must be benchmarked against supersystem calculations employing the same
level of theory used to calculate n-body interactions. MP2/def2-TZVP with the same convergence
criteria in ORCA was used to calculate energies and forces of various isomers of water,5,6 ace-
tonitrile,7,8 and methanol.9,10 The resolution of identity (RI) approximation11 was used for 16 and
20mers from literature to reduce memory requirements. The RI approximation had minimal im-
pact on the (H2O)16 results, which resulted in a 0.4 kcal mol−1 error and 0.01 kcal (mol Å)−1 force
RMSE.

S1.2 Sources of error
MBEs are known to suffer from basis set superposition error (BSSE), where basis functions of
one molecule are used by others to lower the energy.12–14 Many recommend the Boys-Bernardi
“function counterpoise” (CP) correction where lower order contributions (e.g., monomers in a
dimer) are calculated in the full cluster basis set. BSSE can also be reduced by using sufficiently
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large basis sets, extrapolating to the complete basis set (CBS) limit, or using explicitly correlated
methods (e.g., F12).15,16 Practical applications can easily implement these corrections; however,
the focus here is on reproducing these data with ML potentials, not having the most accurate MBEs.

Data precision and SCF convergence criteria can also induce uncertainty in MBE predic-
tions.17–19 Computational chemistry output files must provide enough significant figures to cal-
culate many-body interactions correctly. ORCA output files print energies down to 1× 10−12 Eh
(6.3×10−10 kcal mol−1) and gradients to 1×10−8 Eh/Bohr [1.2×10−5 kcal (mol Å)−1]. Richard
et al.17 presented a simple propagation-of-errors analysis where MBE uncertainty, dE, can be esti-
mated by approximating the uncertainty in each subsystem calculation, δE, based on SCF energy
convergence criteria. They state δE can be approximated by assuming that, in an SCF calculation
using a 10−a convergence criteria, the a+1 decimal digit is a random number. Using this approach
with a = 8 (i.e., ORCA tight SCF convergence) results in an energy uncertainty of less than 0.01
kcal mol−1 for a 50mer—which is sufficient for our purposes here.

S2 Configurational sampling
A crucial aspect of training accurate ML potentials is curating data sets for 1-, 2-, and 3-body
energies and forces. Accurate models require expansive sampling, typically involving global op-
timizations and lengthy molecular dynamics (MD) simulations driven by quantum chemical or
classical methods. Data sets can quickly explode to thousands of structures, especially when n-
body energies and forces are desired.

Initial spherical structures (radius of 10 Å) were generated using packmol20 (v20.2.2). The
number of monomers was determined by using the mass density of the solvent at 300 K. These
structures contained 140 water, 48 acetonitrile, and 62 methanol molecules. A spherical, confining
logfermi potential (β = 6; T = 300) was used to prevent dissociation and maintain the selected
mass density during the simulation. A 4 ps simulation was used to equilibrate the system before
the 1 ps production simulation (all using a 1 fs time step).

S3 Distance-based screening
Many methods have been proposed to reduce the amount of n-body contributions considered due to
challenging combinatorics for MBEs on larger systems.21,22 Distance-based screening is a straight-
forward technique that assumes the size of n-body contributions is inversely proportional to the
distance between the monomers. If monomer distances are higher than some cutoff, it is ignored
during MBE predictions. Here, we employed a distance-based size descriptor, L, of the sum of
each monomer’s center of mass, CMi, to the center of mass of the whole structure, CM:

L =
N

∑
i
∥CMi −CM∥ . (1)

Note that ∥ . . .∥ is the L2 norm. This is visually shown in Fig. S1.

S3



Figure S1: A visual representation of the distance-based size descriptor, L, for a typical water
trimer. The center of masses of the monomers and structure are shown as gray circles. Dashed
lines are the distances from the monomers’ center of mass to the structure’s center of mass.

S3.1 Optimizing the many-body cutoff
Determining cutoffs typically relies on empirical data such as the acceptable convergence of a large
structure’s n-body energy. We calculated 2-, 3-, and 4-body energies of a 16mer local minima
for water,6 acetonitrile,8 and methanol10 with respect to L. Geometry optimizations were not
performed.

Table S1: n-body energies calculated with MP2/def2-TZVP of 16mers from literature in kcal
mol−1.

Structure 2-body 3-body 4-body
(H2O)16 −153.9 −31.1 −4.8

(MeCN)16 −130.3 3.1 −0.8
(MeOH)16 −117.8 −20.6 −2.2

Table S1 shows total n-body energies for each structure and Fig. S2 demonstrates its depen-
dence on the cutoff. The L cutoffs that balanced n-body accuracy and number of clusters are shown

Table S2: Many-body cutoff, L, is used for 2- and 3-body models in Å.

Solvent 2-body 3-body
H2O 6 10

MeCN 9 17
MeOH 8 14

in Table S2 for 2- and 3-body models.
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(a) Converged 2-body energy is −153.9 kcal mol−1. (b) Converged 3-body energy is −31.1 kcal mol−1.

Figure S2: MP2/def2-TZVP n-body energies of (H2O)16 calculated with respect to L.

(a) Converged 2-body energy is −130.3 kcal mol−1. (b) Converged 3-body energy is 3.1 kcal mol−1.

Figure S3: MP2/def2-TZVP n-body energies of (MeCN)16 calculated with respect to L.

S5



(a) Converged 2-body energy is −117.8 kcal mol−1. (b) Converged 3-body energy is −20.6 kcal mol−1.

Figure S4: MP2/def2-TZVP n-body energies of (MeOH)16 calculated with respect to L.

S4 Data set curation
Trimer data sets were curated by randomly sampling 5000 structures from the production GFN2-
xTB MD simulation while enforcing the L cutoff. Monomer and dimer data sets contained all
unique structures composing the trimer data set. Data set sizes are shown in Table S3. While this
introduces some sampling bias, it also minimizes the number of energy and gradient calculations.

The number of n-body structures grows substantially with the size of the supersystem.21,22 We
implemented a distance-based screening cutoff for all structures used to train mbGDML models to
minimize predictions of structures with negligible n-body interactions. The “size” of a structure is
computed by summing the distance between each monomer’s center of mass to the center of mass
of the whole structure. Any structure with a size larger than some predetermined cutoff is excluded
from the training set and ignored during mbML predictions.

Table S3: The number of structures included in the n-body data sets.

Solvent 1-body 2-body 3-body
H2O 14 027 11 124 5 000

MeCN 12 638 9 283 5 000
MeOH 13 006 10 169 5 000

S5 Training

S5.1 GDML
All GDML models were trained with the mbGDML Python package with physical symmetries
(i.e., sGDML). We hereby drop the “s” from this point forward. GDML models for 1-, 2-, and
3-body interactions were trained using an iterative training procedure described in ref. 23. An
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initial model was trained on 200 data points by randomly sampling structures while attempting
to preserve the data set energy distribution based on a histogram with bins determined by the
Freedman-Diaconis rule.24 A clustering algorithm was then used to distribute all structures into
50 groups based on geometric and energetic similarities. Force predictions of each group using
the initial model were used to identify 100 representative structures with significant root-mean-
squared error (RMSE) to include in the following training set. This procedure was repeated until
a model trained on 1000 data points was obtained. Following this training procedure resulted in
models that have more consistent performance (e.g., lower mean and maximum errors) across the
data set.

Training GDML models primarily involves optimizing the kernel length scale, σ , by choosing
the model with the lowest validation loss. The sGDML code uses force RMSE as the loss function.
In some cases—especially during early models—only considering forces resulted in large energy
errors. For example, Fig. S5 shows how optimizing sigma, σ , by just considering forces would
result in rapidly rising energy errors. This is often not the case; the optimal hyperparameters usu-

Figure S5: Force and energy validation RMSEs with respect to σ for the acetonitrile 3-body model
with 300 training points. The optimal σ determined by Eqn 2 is marked by a vertical dashed line.

ally minimize energy and force RMSE. To safely automate the learning procedure, we employed a
weighted energy and force loss function was used to optimize GDML hyperparameters:

l =
ρ

Q

∥∥E − Ê
∥∥2

+
1

natomsQ

natoms

∑
i=0

∥∥∥Fi − F̂i

∥∥∥2
; (2)

where ρ is a trade-off between energy and force errors, Q is the number of validation structures
(2000 in our case), ∥ . . .∥ is the L2 norm, and ̂ is the model property prediction. Here, we used a ρ

of 0.01, which places minimal importance on energy accuracy. The optimal σ for all final models
happened to also have the lowest force RMSE.
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Kernel length scale, σ , was optimized by a coarse grid search and then refined with Bayesian
optimization.25 Our σ values were not restricted to integers as in the sGDML code. Fig. S6 shows
an example loss optimization curve of the water 2-body GDML model.

Figure S6: Example Bayesian optimization of the water 2-body GDML model when training on
1000 data points.

S5.1.1 Training statistics

Figures S7 and S8 show the energy and force RMSEs for the test set during training. Note that
these data are not strict test sets. Models technically see these data when we select the worst-
performing structures during the iterative training procedure. However, these test structures are
not seen during hyperparameter optimization.
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Figure S7: Model energy RMSEs (kcal mol−1) of test sets during each training stage for (A) water,
(B) acetonitrile, and (C) methanol.
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Figure S8: Model force RMSEs in kcal (mol Å)−1 of test sets during each training stage for (A)
water, (B) acetonitrile, and (C) methanol.

S5.2 SchNet and GAP
Both SchNet and GAP were trained on the same training set as GDML. A simple grid search was
performed for optimal hyperparameters, which are listed below. Note that these SchNet and GAP
models do not represent their highest performance. An iteratively trained approach should result
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Table S4: Hyperparameters used for n-body SchNet models with 5 interaction blocks.

Solvent n-body Cutoff Gaussians
H2O 1 3 30

2 10 25
3 10 25

MeCN 1 5 50
2 10 25
3 10 25

MeOH 1 5 50
2 10 25
3 10 25

Table S5: Hyperparameters used for n-body GAP models with energy and force sigma being 0.001
and 0.01. The number of sparse points was set to 4000, but the actual number was typically smaller.

Solvent n-body n l cutoff delta zeta
H2O 1 6 6 6 0.4 4

2 12 6 9 0.4 4
3 8 6 4 0.2 3

MeCN 1 12 8 4 0.2 4
2 12 6 10 0.2 4
3 6 6 6 0.2 4

MeOH 1 12 8 4 0.2 4
2 16 6 12 0.1 3
3 6 6 4 0.2 4

in superior models; however, attempts for the worst-performing models did not provide substantial
improvement. For example, Fig. S9 shows the force MSE of an iteratively trained methanol 2-body
GAP model. Overall, this iterative training procedure did not improve this case’s force MSE.

Sometimes the loss function would increase (e.g., from 400 to 500 in Fig. S9), which seems
counterproductive. Each iteration adds 100 structures from the worst-performing groups to the next
training set. Often these structures come from a small portion of the data set. Thus, adding these
structures will slightly increase the error of the more common points. Reducing the maximum
force errors is the objective after each iteration.
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Figure S9: Force MSE in kcal (mol Å)−1 for an iteratively trained GAP starting from 200 random
structures on the entire data set (training, validation, and test). The horizontal dotted line is the
model trained from the GDML training set.

S5.3 NequIP

For NequIP,26 the objective was to learn total energies and forces to analyze size transferability.
However, the largest training structures are limited to trimers for a fair comparison between the
many-body ML potentials because 1- and 2-body structures are taken from the 3-body data set.
Each solvent potential was trained on 1000 randomly selected trimers with a validation set of 2000
structures. Models used five interaction blocks, a feature multiplicity of 32, two radial layers with
64 hidden neurons, with the Adam optimizer and a learning rate of 0.01. Models with radial cutoffs
of 4, 6, 8, and 10 Angstroms were trained, and their test errors are shown in Table S6. A cutoff of
8 Angstroms was selected based on a balance of accuracy and speed for larger structures.

Table S6: Energy and force MAEs for each NequIP model in kcal mol−1 and kcal (mol Å)−1,
respectively. Selected model values are shown in bold.

Solvent Property
Cutoff

4 6 8 10

H2O
Energy 0.3764 0.0592 0.0235 0.0236
Force 0.4229 0.0934 0.0599 0.0594

MeCN
Energy 0.6582 0.2774 0.1406 0.1390
Force 0.1241 0.0872 0.0753 0.0746

MeOH
Energy 0.2671 0.1046 0.0588 0.0592
Force 0.1894 0.1242 0.0983 0.0984
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S6 Timings
As mentioned in the manuscript, our objective was to develop a framework for a rapidly trained ML
force field for arbitrarily large systems. We provide training timings for the many-body machine
learning methods in Table S7. We advise the reader to be cautious when interpreting these training

Table S7: Mean time (in seconds) to train a model on 1000 structures for a single set of hyperpa-
rameters (GDML and GAP) or epoch (SchNet and NequIP).

Solvent N monomers GDML GAP SchNet NequIP
H2O 1 9 82 116

2 36 1111 169
3 138 903 155 50

MeCN 1 33 2671 132
2 303 9549 161
3 722 4165 161 71

MeOH 1 31 2818 101
2 301 18016 182
3 667 2701 158 84

timings as they do not reflect best-case scenarios and could potentially be improved.
For example, direct timing comparisons between kernel methods (GDML and GAP) and neural

networks (SchNet and NequIP) are nontrivial. GDML and GAP models are trained by selecting
hyperparameters, computing parameters, then validating the model on a subset of structures. This
is repeated until an optimal set of hyperparameters is found—around 20 iterations are used for
GDML. GDML timings are almost entirely dependent on the number of atoms. GAP timings,
however, mainly depend on the number of radial and angular basis functions and radial cutoff.

Timings for the neural network methods (SchNet and NequIP) are the average epoch time on
a GPU. SchNet and NequIP required around 300 and 6500 epochs for highly accurate models,
respectively. Neural network architecture and radial cutoffs are the primary influences on training
time.

Prediction timings were computed by running a 1 ps NVE MD simulation on a randomly
generated hexamer. Each simulation was initialized with the same atomic positions and velocities.
Different methods were used to drive the MD simulation, including MP2. Table S8 shows the
cumulative time to run the simulation.
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Table S8: Time (in seconds) and speedup factor to run a 1 ps NVE MD simulation driven by
various methods. Relative energy RMSEs with respect to starting structure are provided in kcal
mol−1. Both speedup and energy RMSEs are with respect to MP2/def2-TZVP values.

Solvent Method Time Speedup Energy RMSE
H2O MP2/def2-TZVP 31 884

RI-MP2/def2-TZVP 18 455 1.7 1.0
MP2/def2-SVP 11 993 2.7 1.6

mbGDML 271 117.7 1.5
mbGAP 598 53.3 2.0

mbSchNet 178 179.1 2.3
GFN2-xTB 18 1 732.9 2.0

MeCN MP2/def2-TZVP 1 409 317
RI-MP2/def2-TZVP 253 679 5.6 0.1

MP2/def2-SVP 113 358 12.4 5.1
mbGDML 405 3 476.0 2.6
mbGAP 1 689 834.4 2.6

mbSchNet 146 9 655.4 2.8
GFN2-xTB 61 23 169.5 3.9

MeOH MP2/def2-TZVP 430 192
RI-MP2/def2-TZVP 109 937 3.9 0.1

MP2/def2-SVP 70 927 6.1 3.0
mbGDML 624 689.2 2.5
mbGAP 3 161 136.1 3.7

mbSchNet 207 2 073.9 3.7
GFN2-xTB 43 10 029.8 5.1

S7 Isomer rankings
Comparable small isomer rankings for mbGAP and mbSchNet are shown below. Gray dashed
lines are the reference MP2/def2-TZVP calculations. Light-colored lines with squares are MBE
predictions calculated with MP2/def2-TZVP with no distance-based cutoffs for 2- and 3-body
predictions.

S7.1 Relative errors of mbGAP and mbSchNet
These figures are directly comparable to Fig. 1 in the main text, where the data are relative to
the method’s lowest energy structure. Predictions of structures with four or more fragments in the
present MBE framework will have some neglected higher-order contributions. These contributions
will affect absolute energy predictions but are nontrivial to compute without knowing the complete
supersystem calculation (i.e., MP2 data). In practice, one would compute the relative isomer en-
ergies with respect to the lowest energy from that method. Thus, we opt to present the isomer
rankings using this scheme. Furthermore, ML force fields (e.g., mbGDML) are trained on forces
and reconstruct energy up to a constant defined for a given training set. Since our training data
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sets do not contain four and higher-order clusters, one can expect a constant shift in the energy
predicted by mbGDML and reference calculations. This is a more fair representation of ML force
fields’ efficiency than the absolute energy differences, which unavoidably include a systematic
error.
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Figure S10: Relative energies (with respect to the method’s lowest energy) of isomers containing
four, five, and six monomers of (A-C) water, (D-F) acetonitrile, and (G-I) methanol. Dark-colored
lines with circles are mbGAP predictions.
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Figure S11: Relative energies (with respect to the method’s lowest energy) of isomers containing
four, five, and six monomers of (A-C) water, (D-F) acetonitrile, and (G-I) methanol. Dark-colored
lines with circles are mbSchNet predictions.
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S7.2 Absolute errors of mbGDML, mbGAP, and mbSchNet
The following figures plot relative energies relative to the lowest MP2/def2-TZVP energy. This al-
ternative representation shows where the absolute energy prediction errors originate. For example,
Fig. S12I show that MBE errors in the methanol 6mers are primarily from truncated higher-order
contributions in the lowest energy structure.

�

	




�

�

Δ

���

��
���

��
−
1 �

� �

���
������

�

	




�

�

� �

�

	




�

�

� �

�

	




�

�

�

�

�

Δ

���

��
���

��
−
1 �

	 �

���
������

�

	







�

	




�

�

������������
�




�

�

�

	�

Δ

���

��
���

��
−
1 �

�

�

���
������

������������
�




�

�

�

	�

	


	� 

������������
�




�

�

�

	�

	


	�

	� �

Figure S12: Relative energies (with respect to MP2 lowest energy) of isomers containing four, five,
and six monomers of (A-C) water, (D-F) acetonitrile, and (G-I) methanol. Dark-colored lines with
circles are mbGDML predictions.
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Figure S13: Relative energies (with respect to MP2 lowest energy) of isomers containing four, five,
and six monomers of (A-C) water, (D-F) acetonitrile, and (G-I) methanol. Dark-colored lines with
circles are mbGAP predictions.
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Figure S14: Relative energies (with respect to MP2 lowest energy) of isomers containing four, five,
and six monomers of (A-C) water, (D-F) acetonitrile, and (G-I) methanol. Dark-colored lines with
circles are mbSchNet predictions.

S18



S7.3 Performance statistics

Table S9: MBE and mbML energy (kcal mol−1) and force [kcal (mol Å)−1] MAEs of isomers
containing four to six monomers with respect to supersystem MP2/def2-TZVP calculations. Best
values are shown in bold.

Solvent Method
4mers 5mers 6mers

Energy Force Energy Force Energy Force
H2O MBE 0.4482 0.2575 0.6635 0.3221 1.3333 0.5429

mbGDML 0.7928 0.5298 1.0876 0.6274 1.7650 0.8681
mbGAP 0.7879 0.6913 1.2695 0.8399 2.8829 1.2220

mbSchNet 0.7534 0.6009 0.9187 0.6055 1.8043 0.7738

MeCN MBE 0.0500 0.0094 0.0850 0.0161 0.1484 0.0234
mbGDML 0.2603 0.1044 0.3173 0.1611 0.2888 0.1782
mbGAP 0.1806 0.1841 0.2008 0.2183 0.3431 0.2573

mbSchNet 0.4200 0.1411 0.3215 0.1583 0.3916 0.1808

MeOH MBE 0.2531 0.0968 0.6010 0.1777 0.7333 0.1908
mbGDML 1.2598 0.7791 1.8054 0.9346 2.0891 0.8724
mbGAP 2.2924 1.1790 3.2052 1.4519 3.3708 1.4479

mbSchNet 2.5887 1.0183 3.3021 1.2581 3.7513 1.2244

S7.4 Effect of larger basis set
The model chemistry used for the many-body data uses smaller basis sets than recommended for
benchmark predictions using MBEs. As previously mentioned, our level of theory was selected
for its balance of cost and accuracy. Table S10 demonstrates the expected accuracy improvement
from using a much larger basis set: aug-cc-pVTZ. We certainly see improvement; however, this

Table S10: Energy MAE (kcal mol−1) of MBE with respect to MP2 calculations of various sized
water isomers with the def2-TZVP and aug-cc-pVTZ basis sets.

Monomers def2-TZVP aug-cc-pVTZ
4 0.448 0.398
5 0.664 0.518
6 1.333 1.259

was not needed to demonstrate the effectiveness of mbGDML.
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S8 (MeCN)16 prediction analysis

S8.1 GDML and SchNet feature space
GDML is based on a kernel ridge estimator with the Matérn 5/2 kernel, k5/2(xi,x j),

k5/2(xi,x j) =

(
1+

√
5

σ
d(xi,x j) +

5
3σ

d(xi,x j)
2

)
exp

(
−
√

5
σ

d(xi,x j)

)
. (3)

In GDML literature, σ is the kernel length-scale hyperparameter, and d(xi,x j) is the Euclidean
distance between xi (the structure to predict) and x j (a single training point). Note that these
covariances are never explicitly computed during training and predictions; in practice, GDML
uses the Hessian of the Matérn 5/2 kernel, Hess(k5/2). We use k5/2 as our GDML feature space
because of its straightforward interpretation for UMAP embedding. SchNet’s feature space was
the readout before the final dense atom-wise layer and pooling.

S8.2 Geometry descriptor
When visualizing the ML potential feature space, we found structures with high prediction errors
clustered next to training data that were visually different. This could indicate that the ML potential
interprets these structures are similar when they are not. A complete atomic position description
is unnecessary since only general configurational differences are desired. Whatever descriptor is
chosen should map to R for straightforward implementation in color maps.

We use an ad hoc, simple geometry descriptor of N acetonitrile molecules, gN , as

gN =
N−1

∑
i=1

N

∑
j=i+1

θi j

di j
. (4)

The indices i and j represent one of the N molecules, and di j is the distance between their center
of mass. We define a fictitious vector from the methyl carbon to the nitrogen to compute the angle
between the two molecules, θi j. This angle is computed in the standard way with two vectors vi
and v j,

cosθi j =
vi · v j

∥vi∥∥v j∥
. (5)

Thus, the geometry descriptor for our acetonitrile trimer would be

g3 =
θ12

d12
+

θ13

d13
+

θ23

d23
. (6)

Conceptually, this is the cumulative ratio of rotation to translation of the first molecule moving into
each position and back. For a dimer, however, this would only be one translation and rotation,

g2 =
θ12

d12
. (7)

When using this geometry descriptor as the coloring scheme, we get the following UMAP embed-
ding.
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S8.3 Trimer embeddings
Below are the UMAP embeddings of the GDML and SchNet feature space for acetonitrile 3-body
structures. GDML performs well with a sum of squared error of 0.291 (kcal mol−1)2, whereas
SchNet is 2.263 (kcal mol−1)2.

Fig. S15 shows the SchNet feature space, a 2D embedding of trained and 3-body structures
from (MeCN)16 using UMAP.27 A rather large cluster of points exists around (10, 2) with a decent
overlap of test and train data. These structures all look similar to SchNet in feature space, according
to UMAP. However, several test structures are isolated from training data, which should result in
higher errors. Indeed, when we examine the testing data for energy error, the isolated structures
generally have higher errors (Fig. S15A).

For example, some test structures embedded near training structures (4, 7) have high errors.
This is surprising as SchNet should have learned similar structures. Further analysis reveals that
while SchNet determines these structures to be similar in feature space, they are geometrically
different. A simple, ad hoc geometry descriptor shows that all high-error structures are dissimilar
to anything in the training set. SchNet has some difficulty with these structures, which results in a
significant 16.1 kcal mol−1 error.
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Figure S15: UMAP embeddings of acetonitrile, 3-body SchNet feature space of the training
set (circles), and (MeCN)16 structure (triangles). Points near each other are similar in high-
dimensional feature space. (A) SchNet absolute prediction error of 3-body structures from
(MeCN)16. The maximum error is 0.289 kcal mol−1, but the color scale is normalized to errors
from all models. (B) Geometry descriptor of each structure. Similar values (i.e., colors) indicate
similar geometries.
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S8.4 Dimer embeddings
Below are the UMAP embeddings of the GDML and SchNet feature space for acetonitrile 2-body
structures. GDML and SchNet perform well with squared errors of 0.04 (kcal mol−1)2 and 0.08
(kcal mol−1)2, respectively.
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Figure S16: UMAP embeddings of acetonitrile, 2-body GDML feature space of the training
set (circles), and (MeCN)16 structure (triangles). Points near each other are similar in high-
dimensional feature space. (A) GDML absolute prediction error of 3-body structures from
(MeCN)16. The maximum error is 0.038 kcal mol−1, but the color scale is normalized to errors
from all models. (B) Geometry descriptor of each structure. Similar values (i.e., colors) indicate
similar geometries.
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Figure S17: UMAP embeddings of acetonitrile, 2-body SchNet feature space of the training
set (circles), and (MeCN)16 structure (triangles). Points near each other are similar in high-
dimensional feature space. (A) SchNet absolute prediction error of 3-body structures from
(MeCN)16. The maximum error is 0.063 kcal mol−1, but the color scale is normalized to errors
from all models. (B) Geometry descriptor of each structure. Similar values (i.e., colors) indicate
similar geometries.

S9 Molecular dynamics simulations
Periodic MD simulations at constant volume and temperature (NVT) were performed in the atomic
simulation environment (ASE; v3.22.1)28 by using the minimum-image convention (MIC). After
defining the periodic cell vectors, the MIC is applied to every n-body structure within the many-
body and MIC cutoff before predictions are made.

Starting geometries were initialized with packmol (v20.2.2)20 at 300 K mass density. Box
lengths were 16 Å (137 molecules), 18 Å (67 molecules), and 16 Å (61 molecules) for water,
acetonitrile, and methanol, respectively. Geometry optimizations were first done with the BGFS
optimizer in ASE with a maximum force convergence criteria of 4.6 kcal (mol Å)−1 and a maxi-
mum of 200 steps. Velocities were initialized at 100 K using the Maxwell-Boltzmann distribution.
Temperature, set to 298.15 K, during the MD simulation was controlled with the Berendsen ther-
mostat (τT = 0.1 fs) as implemented in ASE. Coordinates were stored at each time step of 1 fs.

S9.1 Radial distribution functions
Radial distribution functions (RDFs), gab(r), of atoms a and b were computed for water, acetoni-
trile, and methanol during the production region of the MD simulation. The start of production
was determined with the timeseries.detect_equilibration function in the pymbar pack-
age.29 This resulted in 5.4, 29.5, and 24.9 ps of sampling for water, acetonitrile, and methanol,
respectively. Due to the large system size, less sampling was performed for the water MD simu-
lation. For example, the (MeOH)61 simulation took approximately 7.4 seconds/step on 12 cores,
whereas (H2O)137 was 28.5 seconds/step on 24 cores.
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Table S11 shows the difference between the mbGDML predicted RDF and references from the
literature.30–33 The number of nearest neighbors, nnearest, was computed by integrating g(r) up to
the first minimum (i.e., first solvation shell). For acetonitrile, CN represents the nitrile carbon. The
H in the methanol RDFs is from the hydroxyl group.

Table S11: Computed radial distribution function properties with deviations from reference data
are provided within parentheses.

Solvent ab rpeak gab nnearest
H2O OO 2.75 (−0.04) 2.50 (0.00) 1.28 (0.06)

OH 3.25 (−0.02) 1.57 (0.10) 0.62 (0.02)
HH 2.35 (−0.08) 1.39 (0.05) 1.00 (0.08)

MeCN NN 3.75 (−0.44) 1.18 (−0.17) 1.95 (1.44)a

CN 3.35 (−0.03) 1.75 (−0.28) 2.35 (−0.04)
CNCN 4.75 (0.23) 1.35 (−0.31) 3.33 (0.19)

MeOH OO 2.85 (0.12) 2.17 (−1.03) 1.43 (−0.14)
OH 1.95 (0.20) 1.76 (−0.99) 1.14 (0.31)
HH 2.45 (0.08) 2.19 (−0.57) 2.15 (−0.20)

a The experimental reference does not exhibit a split peak; thus, the first solvation shell for the
experimental reference is up to 6.29 Å instead of 4.85 Å for the mbGDML simulation.

S24



� � � � � � � �

��(Å)

���

���

���

���

���

���

���

� �
�
��
�

���	�

�����������
�����
�����
�����

Figure S18: gOO(r) RDF curve of water from mbGDML MD simulation. Comparisons are made
against experimental30 and classical34 results.
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Figure S19: gOH(r) RDF curve of water from mbGDML MD simulation. Comparisons are made
against experimental30 and classical34 results.
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Figure S20: gHH(r) RDF curve of water from mbGDML MD simulation. Comparisons are made
against experimental30 and classical34 results.
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Figure S21: gNN(r) RDF curve of acetonitrile from NVT simulations at 298.15 K driven by
mbGDML. Comparisons are made against experimental35 and classical33,36–39 results.
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Figure S22: gCN(r) RDF curve of acetonitrile from NVT simulations at 298.15 K driven by
mbGDML. Comparisons are made against experimental35 and classical33,36–39 results.
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Figure S23: gCNCN(r) RDF curve of acetonitrile from NVT simulations at 298.15 K driven by
mbGDML. Comparisons are made against experimental35 and classical33,36,37,39 results.
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Figure S24: gOO(r) RDF curve of methanol from NVT simulations at 298.15 K driven by
mbGDML. Comparisons are made against experimental31,32 and classical40 results.
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Figure S25: gOH(r) RDF curve of methanol from NVT simulations at 298.15 K driven by
mbGDML. Comparisons are made against experimental31,32 and classical40 results.
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Figure S26: gHH(r) RDF curve of methanol from NVT simulations at 298.15 K driven by
mbGDML. Comparisons are made against experimental31,32 and classical40 results.
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