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1. Details of the dataset

The data present in the dataset has been collected from the peer-reviewed literature. Each 
datapoint represents a reaction for the catalytic hydrogenation of an ester and is represented by 
nine parameters -catalyst structure, ester structure, catalyst amount (mol%), ester amount (mmol), 
base structure, base amount (mol%), temperature (oC), pressure (bar), solvent structure, and solvent 
amount. Their details along with corresponding references are given in the dataset file.

1.1 Structures of ruthenium catalysts used in the dataset
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1.2 Structures of esters used in the dataset

F
O

F
F

O
F F

F F

E1

F

F
F

F F

F F

O

O

F F

E2

O

O

E4

O
O

O

O

E5

O
O

O

E6

N
O

O

E7

O O

O

E8

N O

O
E9

O

O

E10

O

O

E11

O

O

E3

O
OH

O

E12

O
O

O

E13

O

O

E14

O

O

E15

O

O
O

E16

O

O

E17

OH

O

O

E18

O

O

E19

O

O

E20

O

O

E21

O

O

E22

COOMe

COOMe
E23

O

O

E24

O

O

E25

O

O

E26

CF3 O CF3

O

E27

O

O

E28

O

O

O

O

O

O O

O

O

O

E29

E30 E31
E32

O

O

E33

O

OF

E34

O

OCF3

E35

O

OCl

E36

O

OBr

E37

O

OI

E38

O

O

E39

F O

O

E40

CF3

O

O

E41

Cl
O

O

E42

Br O

O

E43
F

O

O

E44
CF3

O

O

E45
Cl

O

O

E46
Br

O

O

E47
MeO

O

O

E48
Me

O

O

O

O

O

O

F
F

O

O

F
F

F
F

F

E49 E50

E51

O

O

E52

O

O

E53
O

O

E55
O

O

E54

O

O

O

O

E56

O

O

E57
O

O

E58
N

O

O

E59

O

O

E60

O

O

E61

O
O

O

O
E62

O
O

O

O
E63

O
O

O

O
E64

OMe

O

OMe

O

NHBoc

OMe

ONH2

E65

E66

E67

OMe

OOH

E68

OMe

O

NHBoc

E69

N
boc OMe

E70

NH
OMe

E71

O

O

OMe

O

OBn
OMe

O

NH2

E72 E73

OMe

O

OH

E74

O

O

E75

O

O

E76

O

O

E77

C
F2

F2
C OMe

O

E78

O

O O
E79

O

O

E80

O

O

E81

O

OMe

H2N
E82

N

O

E83

O

O
NH

E84

O

O
E85

O

F
F

F F
F

F F

O

OCF3

E86

O

OMeO

E87

O

O

E88

O

O

E89

MeO

O

O

O

E90

O

O

E91

O
O

O

O

n-C5H11

E92

O

O

E93

O

O

E94

MeO

E95

O

O
F

E96
E97

E98 E99

E100
E101 E102

OMe

O

E103 E104
E105

OMe

O

E106

O

O

E107 E108
E109

E110

O

OMe

E111

O

O

E112

O O

E113

O

O

E114

O

O

OH

O

O

O

O

O

O

O

O

O

O

OO
O O

O

O

OMe

O

O

OMeMeO

O O

O
OEt

O

2. Generation of chemical descriptors

2.1 DFT calculations

All geometries were fully optimized using the M06-L functional,1 the def2-TZVP basis set2 and W06 
density fitting to improve the computational efficiency,3 as well as the Grimme’s empirical dispersion 
correction with zero damping.4 Frequency calculations at the same level of theory confirmed 
stationary points and transition states. They were used to compute thermodynamic properties at 
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298.15K, if not stated otherwise. Then, single point energies of the optimized structures were 
computed using the ωB97M-V5 range-separated hybrid exchange-correlation functional  corrected 
with  the VV10 non-local correlation,6,7 together with the def2-TZVPP triple-ζ basis set2 and  the 
RIJCOSX resolution-of-the-identity using the auxiliary basis sets def2/J3 and def2-TZVPP/C8 to speed 
up computational time. The choice of the ωB97M-V functional was rationalized given its excellent 
results in a recent benchmark study on transition metal reactions.9 Gibbs Free Energies, unless 
otherwise stated, were computed by adding the Free Energy correction terms from the frequency 
calculations to the single point energies at the ωB97M-V/def2-TZVPP level of theory in solution (SMD, 
THF) according to:

,𝐺𝜔𝐵𝑃97𝑀 ‒ 𝑉
𝑆𝑀𝐷  =  𝐸𝜔𝐵𝑃97𝑀 ‒ 𝑉

𝑒𝑙/𝑆𝑀𝐷 +  𝑐𝑜𝑟𝑟𝑀06 ‒ 𝐿
𝑓𝑟𝑒𝑞/𝑇

where  is the thermal correction to the Gibbs Free Energy from the frequency calculation at 𝑐𝑜𝑟𝑟𝑀06 ‒ 𝐿
𝑓𝑟𝑒𝑞/𝑇

temperature T.10 All structures were optimized in solution (THF) using the integral equation formalism 
variant (IEFPCM) of the PCM model in the SMD variation of Truhlar and co-workers,11 unless otherwise 
stated. Optimizations and frequency calculations were done using the Gaussian 16 software suite in 
the B.01 revision (Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, 
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, 
A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. 
Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. 
Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, 
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. 
Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. 
Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. 
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. 
W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., 
Wallingford CT, 2016). Single point energy calculations were performed using the ORCA software 
(4.1.1 release).12 NBO charges were computed with the version 7 of the NBO software.

All structures and energies can be obtained free of charge via the ioChem-BD.org online data 
repository at the following adress: 

https://doi.org/10.19061/iochem-bd-6-118

2.2 DFT-derived chemical descriptors

The optimized structures and energies from DFT-calculations were used to generate DFT-derived 
chemical descriptors, namely:

1) Autocorrelation functions

2) Sterics: Buried volume, Solvent accessible surface area and volume, topographic steric maps 
(%Vfree and free volume of the four quadrants: NE, SE, SW, NW) and sterimol parameters.

3) Electronics: CO frequency, CO IR intensity, HOMO-LUMO gap, dipole moment and NBO 
charge.

Many of these features can be calculated directly from the xyz-files via suitable software packages, 
namely the Morfeus software package (kjelljorner.github.io/morfeus). Morfeus was thus used to 
calculate the autocorrelation functions, the buried volume, SASA area/volumes, as well as sterimol 

https://doi.org/10.19061/iochem-bd-6-118
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parameters. The topographic map parameters were calculated manually from the xyz-files via the 
SambVca 2.1 web application tool.13 

CO frequency, intensities, NBO charges, dipole moments and HOMO-LUMO gaps were obtained 
directly from the DFT calculations. 

All descriptors are found in the corresponding descriptor data file.

2.3 Experimental chemical descriptors

In addition to the DFT-derived chemical descriptors, experimental descriptors were used, when 
available for all catalyst or substrates. Hence only for the ester substrate experimental descriptors 
were used, namely, the IR carbonyl stretch, the 13C-NMR shift of the quaternary carbonyl carbon atom 
and the alpha-alkoxy carbon atom, as well as the 1H-NMR chemical shifts of the alpha-alkoxy protons, 
where available. 

2.4 Solvent and base descriptors

Solvents and bases were described by readily available experimental data: pKa values, dielectric 
constants and Gutman donor numbers. If data was not available, reasonable approximations were 
used instead (marked in yellow in the tables below).

Base pKa(H2O) pKa (DMSO)

NaOMe 15.5 27.9

KOMe 15.5 27.9

KOtBu 17.0 29.4

NaBH4 30.0* 30.0*

NaOEt 15.9 29.8

NaOtBu 17.0 29.4

LiHBEt3 30.0* 30.0*

*approximate values 

Table S1. pKa of bases
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2.5 Generation of Fingerprints (RDKit, Morgan, MCCAS) for esters, bases, and solvents

For the generation of fingerprints, the SMILES representation of esters, bases and solvents was used 
together with the RDKit python library14 (https://rdkit.org/) using the CHEM module.  

3. Results from the ML studies

3.1 Models and Methodologies

3.1.1. Linear models are a class of simple predictive models where the underlying relationship 
between inputs and outputs is assumed to be linear. In our experiments for predicting yield, we 
deploy linear regression and linear kernels for Gaussian Processes (which we describe in the 
following). We also employ linear models in predicting specific properties of catalysts in a given 
chemical reaction. We now proceed to describe our NN and GP models and the respective 
methodologies in making inference using them. 

3.1.2. Neural Networks are universal function approximators, meaning, simple NN architectures can 
approximate a reasonably well-behaved function to an arbitrary degree of accuracy. Although NNs 
are good at making end-to-end predictions, and have thus found a plethora of applications, they are 
prone to overfitting. The size of our dataset of hydrogenation reactions is rather small in comparison 

Solvent Dielectric constant Gutman DN

MeOH 32.7 19.0

EtOH 24.5 19.2

iPrOH 17.9 19.8

THF 7.58 20.0

Dioxane 2.25 14.3

Toluene 2.38 0.1

DCM 8.93 1.0

MeTHF 6.97 12.0

E4 6.60 15.0

E14 6.02 17.1

E3 3.86 16.0*

E22 1.97 35.9

* approximate values 

Table S2. Dielectric constant and Gutman Donor 
Number of various solvents.

https://rdkit.org/
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to the large number of parameters of a typical neural network. Therefore, particular care must be 
taken in employing NNs to predict yield and catalyst properties. 

To start, we considered a class of simple multilayer perceptron (MLP) models. We specify them by 
the number of hidden layers, number of nodes in each layer, and activation functions in each layer. 
The training of the network effectively amounts to solving an optimization problem in a high-
dimensional space of the networks parameters and is therefore a function of the optimization 
procedure. To further mitigate overfitting, we used dropout, which is a mechanism to randomly 
switch off hidden nodes with some probability p (dropout probability) during the network’s training. 
This has been shown to yield more generalizable models. An infinite number of such models and 
optimization mechanisms are possible. Collectively, these are referred to as hyperparameters of the 
neural network. 

For model selection, that is, to select ideal hyperparameters for our predictive models, we perform a 
k-fold cross validation with respect to the data we use for training (that is, the training set). This 
works by splitting our training set into k-folds and training on (k-1)-folds and validating on the 
remaining fold (the validation set). Model selection proceeds by computing errors on the k possible 
validation sets. These cross-validation errors are a proxy for how well the model generalizes on 
unseen data (that is, the test set). Following model selection which returns the optimal 
hyperparameters associated with the architecture and training, we then train on the entire training 
set to fix the parameters (weights and biases) of the network, and report test errors. 

3.1.3. Gaussian Processes are a class of non-parametric models in machine learning. A GP is a 
collection of random variables such that every finite subset of these has a joint Gaussian distribution. 
GPs are fully specified by their mean and covariance functions. The mean function is the expectation 
of the function (f) we are modelling. The covariance function is the covariance between pairs of 
random variables, that is the covariance of the underlying function values at two different inputs. 
The covariance function specifies the class of functions in play and is specified by a kernel k. It 
specifies the prior on noisy observations. The mean and covariance functions of a GP are therefore 
of the form:

,        𝑚(𝑥) = 𝐸(𝑓(𝑥)),      𝑐𝑜𝑣(𝑓(𝑥),𝑓(𝑦)) = 𝑘(𝑥,𝑦) + 𝜎2
𝑛𝐼

where  controls the noise in the observations. In this work, we consider several kernels, namely, 𝑛

(a) the radial basis function (or RBF; also referred to as the squared exponential, or the 
exponentiated quadratic), (b) the Matérn kernel, (c) the Rational Quadratic kernel, and (d) a linear 
kernel. The linear kernel is special in this list, in the sense that it is non-stationary as its values 
depend on the actual input values as opposed to their difference. Below we write down the RBF 
kernel for one dimensional inputs x and y:

,
𝑘𝑅𝐵𝐹(𝑥,𝑦) = 𝜎2𝑒𝑥𝑝( ‒

1
2

|𝑥 ‒ 𝑦|2)
where  is an overall scale. The above kernel generalizes to multiple input dimensions 
(corresponding, for example, to the different chemical descriptors) as

,
𝑘𝑅𝐵𝐹(𝑥,𝑦) = 𝜎2𝑒𝑥𝑝( ‒

1
2

(𝑥 ‒ 𝑦)𝑇Λ ‒ 1(𝑥 ‒ 𝑦))
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where the diagonal matrix  contains the square of the length scales ( ) corresponding to the 𝑖

different input features. Different kernels can be combined, and the collective set of parameters 
associated with the combination is the set of hyperparameters for a GP model. For model selection, 
that is, to learn such hyperparameters from the data, one can either use the marginal likelihood or 
use cross-validation methods. We employ the marginal likelihood which is the probability of the data 
given the model. At the optimal value of the hyperparameters of the covariance function, the 
marginal likelihood achieves a trade-off between model complexity and the model fit. 

Inference using a GP model is probabilistic, namely, the prediction itself is specified by a mean and 
variance of a Gaussian distribution. This contrasts with the neural network models we described 
above, where the predictions are point-predictions as opposed to Gaussian distributions. We further 
note that a GP does not scale well with dataset size, as it involves inverting matrices that are the size 
of the dataset. This is to our advantage here since our dataset is of a relatively small size. We now 
proceed to detail our experiments. 

3.1.4 We also compared the outcomes of GP and NN with other models such as Decision Tree, 
Random Forest and K-Nearest Neighbour.

The baseline models (Decision Tree, Random Forest and K-nearest neighbors) were run on the whole 
dataset containing all features ( Sterics, Autocorrelation, Electronics of esters and catalyst i.e. 
dataset DMAT_8_8). The training and testing was done on 100 random splits of training (70%) and 
testing (30%). The results are compared with GP and NN models which have been run on the 
similarly on DMAT_8_8 dataset with 100 random splits of training (70%) and testing(30%).

3.2 Experiments

In the experiments that follow we always use a train-test split of 70-30. A significant part of the 
dataset we have compiled comprises of cases where the experimental yield is relatively high. Low 
yield chemical reactions, although contain valuable information, may not be reported in the 
literature due a range of factors. This limits the predictive capabilities of machine learning as 
discussed in the main manuscript. To mitigate this, we conduct separate experiments on the full 
dataset of reactions as well as on those with reported yields greater than 0.2, and 0.5. In this sense, 
we propose different ML models when considering different regimes of yield. 

The chemical descriptors for the catalyst and the ester molecules are highlighted in Figure 2 (main 
manuscript). For this work, we choose to work with autocorrelations (A), steric (S), and electronic (E) 
properties. To find importance of these various categories of descriptors, we also use their 
combinations. We also conduct experiments where we do not use any descriptors of either catalysts 
or esters, and instead encode them as unit vectors of size given by the number of esters or catalysts 
respectively in the dataset. We call such representations one-hot encoded. 

To simplify a reading of what follows, we introduce the following notation to label all our 
experiments

𝐸𝑦𝑖𝑒𝑙𝑑_𝑐𝑢𝑡 ‒ 𝑜𝑓𝑓 [𝑐𝑎𝑡_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠, 𝑒𝑠𝑡𝑒𝑟_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠,𝑚𝑒𝑡ℎ𝑜𝑑]

In this notation, we can denote a GP experiment on data involving yields > 0.5 (equivalently 50%), 
using catalytic descriptors and descriptors for esters. The design matrices in the dataset have 
nomenclature ‘DMAT_catalyst descriptor index_ ester descriptor index’. The indices for both catalyst 
and esters vary from 1 to 8. The indices have the following meaning:
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Index Corresponding Descriptors
1 One hot encoding
2 Autocorrelation
3 Sterics
4 Electronics
5 Autocorrelation and Sterics
6 Autocorrelation and Electronics
7 Sterics and Electronics
8 All descriptors

Table S3 : Descriptor indices in design matrices

For example, a design matrix – DMAT_2_5 – would have Autocorrelation (index = 2) descriptors for 
catalyst, Autocorrelation and Electronics descriptors (index = 5) for esters.  

Since there are three categories of descriptors for both catalysts and esters, there are a total of 
(23x2)=64 combinations of feature categories for each yield cut-off. Although we conduct 
experiments on all these combinations, for the sake of brevity, we will only highlight our results for 
select combinations. These will include cases where we use the same descriptor combinations for 
both esters and catalysts. 

All experiments involving neural networks were done on Mathematica 12. The GP and linear 
regression models were built using GPy.15 All computations were carried out on a standard laptop 
computer with a 2.3 GHz 8-Core Intel Core i9 processor. 

3.2.1. Predicting yield

To model the experimental yield of our class of reactions, we employ a linear model, a multi-layer 
perceptron model, and a Gaussian Process. We begin by presenting our neural network results. For 
each experimental configuration of the type:

𝐸𝑦𝑖𝑒𝑙𝑑_𝑐𝑢𝑡 ‒ 𝑜𝑓𝑓 [𝑐𝑎𝑡_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠, 𝑒𝑠𝑡𝑒𝑟_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠,𝑁𝑁]

We perform a 5-fold cross-validation on the training set over the hyperparameters of activation 
function, number of hidden layers, number of nodes in each layer, and dropout amounts (p). These 
are tabulated in Table S4. Training is done using the ADAM optimizer. We find the best architectures 
for each yield cut-off  and combination of chemical descriptors. We list the best 𝛾 ∈ {0,0.2,0.5}

architectures found in Table S5, while noting that in each case there were other architectures with 
similar cross-validation errors. We also note that several other combinations of descriptors are 
possible (as discussed above) and we have left them out for clarity. 

Hyperparameter Values

Activations (act)
ReLU, tanh, logistic 

sigmoid (log-sig)

# Hidden layers (NH) 2, 3, 4

# Nodes in each hidden 
layer (nH)

10, 20, 50, 200



S11

Table S4. Neural network hyperparameters for cross-validation.

Table S5. Optimal neural network architectures found using 5-fold cross-validation for yield cut-off 
. The first column lists the chemical descriptors used for both catalysts and esters. 𝛾 ∈ {0,0.2,0.5}

Dropout amounts (p) 0, 0.1, 0.2, 0.5

Optimal Hyperparameters: 
(act, NH, nH, p)Descriptors

𝛾 = 0 𝛾 = 0.2 𝛾 = 0.5

None
log-sig, 

3, 200, 0
 tanh, 2, 
200, 0.1

tanh, 2, 
50, 0.2

Autocorrelation
log-sig, 

4, 200, 0

   tanh, 
4, 50, 

0.2

log-sig, 
2, 200, 

0.2

Steric
   ReLU, 

4, 20, 0.5

 ReLU, 
2, 20, 

0.1

log-sig, 
3, 200, 0

Electronic
   ReLU, 
3, 50, 0

log-sig, 
3, 200, 

0.1

  ReLU, 
2, 50, 

0.2

Autocorrelation, 
Steric

 ReLU, 4, 
200, 0.5

 ReLU, 
2, 10, 

0.1

  ReLU, 
2, 20, 

0.5

Autocorrelation, 
Electronic

log-sig, 
2, 200, 0

log-sig, 
2, 50, 0

   tanh, 
3, 200, 

0.5

Steric, Electronic
 ReLU, 4, 
200, 0.5

   tanh, 
4, 50, 0

   tanh, 
4, 200, 

0.5

Autocorrelations
, Steric, 

Electronic

 ReLU, 3, 
200, 0.2

 ReLU, 
4, 50, 

0.1

log-sig, 
3, 10, 

0.2
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For the case of GPs, we use marginal likelihood to select hyperparameters of the kernels we use. In 
our experiments, we employ the RBF, Matérn, Rational Quadratic, and linear kernels. We employ 
automatic relevance determination (ARD) distance measures. The Gaussian noise variance and 
variance of the kernel (Mat52 variance, RatQuad variance, Linear Variance) of optimized GP models 
give a general indication of learning process. Gaussian noise variance parameter attributes noise in 
the data set which is expected in the dataset presented hereby. The kernel variance indicates how 
much the covariance matrix generated by the kernel rule contributes to the learning. The Gaussian 
noise variance and kernel variance are presented in Table S6. We present the RMSE test errors in 
Table S7 with different kernels. 

The architectures for NNs and kernels for GPs were chosen to be the ones with the best cross-
validation errors, and marginal likelihoods respectively. 

Optimal Hyperparameters (Kernel variance [KV], Gaussian variance 
[GV])

𝛾 = 0.0 𝛾 = 0.2 𝛾 = 0.5
Descriptors Kernels

KV GV KV GV KV GV

Mat52 0.93 0.06 0.88 0.18 0.73 0.23

Rat Q 1.02 0.04 1.2 0.11 0.96 0.19
One hot 
encoding

Linear ~0 1 ~0 0.99 ~0 0.99

Mat 0.91 0.09 0.61 0.44 0.44 0.54

Rat Q 5.12 0.15 0.70 0.47 0.54 0.53Autocorrelation

Linear 2.8 e^-8 0.92 3.2e^-9 0.99 ~0 0.87

Mat 0.96 0.14 0.78 0.39 0.74 0.39

Rat Q 1.09 0.09 0.91 0.37 1.05 0.31Steric

Linear ~0 0.99 1.4e^-14 1.0 ~0 1.0

Mat 0.24 0.68 0.22 0.75 0.39 0.58

Rat Q 1.25 0.16 0.57 0.47 1.97 0.31Electronic

Linear ~0 1.00 7.9e^-22 0.99 2.7e^-5 0.88

Mat 0.91 0.10 0.54 0.46 0.42 0.55

Rat Q 1.67 0.12 0.51 0.50 0.51 0.53
Autocorrelation, 

Steric
Linear 2.39e^-8 0.93 ~0 0.99 4.19e^-9 0.96

Mat 0.89 0.11 0.55 0.47 0.44 0.54
Autocorrelation, 

Electronic
Rat Q 4.9 0.18 0.60 0.42 0.57 0.50
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Table S6. Gaussian noise variance and Kernel variance of optimized GP models with different kernels.

Test RMSE errors(%)

𝛾 = 0 𝛾 = 0.2 𝛾 = 0.5
Descriptors

Mat52 Linear RatQuad Mat52 Linear RatQuad Mat52 Linear RatQuad

One Hot 
Encoding

23.9 28.8 26.1 18.9 20.9 20.1 12.7 12.6 12.5

Autocorrel
ation

28.4 29.9 25.9 20.8 20.8 20.1 12.9 12.7 12.5

Steric 26.8 28.8 23.7 20.7 20.8 19.3 12.5 12.6 12.8

Electronic 27.4 28.8 24.9 20.6 20.8 19.5 12.7 12.9 12.9

Autocorrel
ation, 
Steric

26.3 28.8 26.8 20.9 20.8 20.7 13.0 12.7 12.5

Autocorrel
ation, 

Electronic

28.4 29.9 25.2 20.8 20.8 20.8 12.9 12.6 12.6

Steric, 
Electronic

26.4 29.9 27.5 20.8 20.8 19.4 13 12.6 12.6

Autocorrel
ations, 
Steric, 

Electronic

26.5 29.9 25.8 20.8 20.8 20.7 13 12.7 12.8

Table S7. Test RMSE errors for GP models for a variety of kernels. For each kernel we list above, we 
also add a white noise kernel. We use cut-off yield . The first column lists the chemical 𝛾 ∈ {0,0.2,0.5}
descriptors used for both catalysts and esters.

Linear 2.64e^-8 0.93 ~0 0.99 8.61e^-9 0.95

Mat 0.89 0.10 0.49 0.51 0.44 0.54

Rat Q 88.4 0.08 0.60 0.58 1.38 0.37Steric, Electronic

Linear 5.7e^-7 0.97 ~0 1.0 2.1e^-5 0.86

Mat 0.89 0.10 0.55 0.46 0.44 0.54

Rat Q 3.04 0.14 0.59 0.44 0.49 0.47
Autocorrelations

, Steric, 
Electronic

Linear 2.2e^-8 0.94 ~0 1.00 5.837e^-9 0.96
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Figure S1. Plot of population density (%) against yield range in the dataset.

Figure S2. Prediction of yields for the catalytic hydrogenation of esters using GP architecture for the 
complete dataset.

To check the stability and generalizability, the model was used for 100 different test-train random 
splits. The variation of test and train data (Figure S3) shows that the model is able to generalize, and 
the issue of overtraining is not as severe as expected from a small dataset.
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Figure S3. Plot of RMSE for training and test set for 100 random runs.

Figure S4. Length-scales of different features using Matern52 kernel for prediction of yields for the 
catalytic hydrogenation of esters using GP architecture for yields>50%.

Comparison of errors in the prediction of yields using various models

Yield > 0. 0

Model Train RMSE (%) Test RMSE (%) Train R2 Test R2
Gaussian Processes 15.35 ± 2.12 25.46 ± 1.66 0.83± 0.14 0.19±0.10
Decision Trees 26.28 ± 3.46 31.49 ± 2.62 -0.07± 0.54 -1.49±1.27
Random Forest 10.73 ± 0.23 23.02 ± 0.50 0.82± 0.01 -1.25± 0.79
K Nearest 
Neighbours

24.44 ± 0.39 30.02 ± 3.5 -2.42± 0.53 -3.42±0.80

Mean Model 29.22 ± 0.70 29.58 ± 1.61 0.00 ± 0.00 -0.01 ± 0.018

Yield > 50%

Model Train RMSE (%) Test RMSE (%) Train R2 Test R2
Gaussian Processes 8.55 ± 1.05 11.76 ± 0.84 0.57± 0.08 0.09±0.09
Decision Trees 11.55 ± 0.31 12.02 ± 0.81 -8.55± 2.24 -9/75±4.45
Random Forest 4.18± 0.01 13.60 ± 0.01 0.75± 0.02 -2.26± 0.80
K Nearest 
Neighbours

11.50 ± 0.39 12.04 ± 0.95 -10.47± 2.26 -12.34±3.78

Mean Model 12.11 ± 0.35 12.38 ± 0.79 0.00 ± 0.00 -0.02 ± 0.022

Table S8: Comparison of errors in the prediction of yields using various models for yields >0 and 
>50%.

3.3 Optimisation of models using various descriptors

3.3.1 Results from using combination of descriptors: In this study, models (using GPy) were optimised 
using various combination of descriptors of catalysts and esters (autocorrelation, sterics, electronics, 
and one-hot encoding). The use of Matern52 kernel showed that a combination of autocorrelation 
and steric descriptors for esters, and autocorrelation descriptors of catalysts result in the most 
accurate predictive models for yield prediction (Figure 4 of the main paper).  However, when a 
Rational Quadratic kernel is employed, the best results vary marginally from the Matern52 case and 
are obtained when using autocorrelation parameters of esters and catalysts (Figure S4). These results 
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suggest that the predictions on the importance of descriptors are dependent on the choice of kernels 
we use.

Figure S5. Test and Training RMSE errors with different sets of descriptors. (Autocorr.: 
Autocorrelation, Ster.: Sterics, Elec: Electronics, Est.: Esters, Cat.: Catalyst). 

3.3.2 Use of SMILES as descriptors for catalysts and esters

Datapoints containing entries 167-197 from the dataset file (see the uploaded dataset file with the 
ESI) was used for the ML studies using GP with Weisfeiler-Lehman graph kernel. The Figure S5 shows 
results when SMILES were used as descriptors for catalysts and esters. Poor predictions were obtained 
when other descriptors were used.

Figure S6. Prediction of yields for the catalytic hydrogenation of esters using GP architecture with 
Weisfeiler-Lehman graph kernel.
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3.3.3 Comparison of error in the prediction of yields using various fingerprints of esters (using GPy 
with Mat52 kernels):

Yield > 0. 0

Entry Featurization Train RMSE 
(%)

Test RMSE 
(%)

1 DFT (all descriptors used as described in Table S3) 15.35 ± 2.12 25.46 ± 1.66
2 RDKit (esters+bases represented by RDKit, remaining as 

entry 1)
11.77 ± 2.97 26.64 ± 1.74

3 Morgan (esters represented by Morgan, remaining as entry 
1)

13.64 ± 3.63 26.62± 1.65 

4 MCCAS (esters represented by MCCAS, remaining as 
entry 1)

13.06 ± 3.87 26.70 ± 1.39 

5 RDKit (esters+bases+solvents represented by RDKit, 
remaining as entry 1)

12.32 ± 3.25 27.12 ± 1.50

Yield > 0. 5

Entry Featurization Train RMSE (%) Test RMSE 
(%)

1 DFT (all descriptors used as described in Table S3) 8.55 ± 1.05 11.76 ± 0.84
2 RDKit (esters+bases represented by RDKit, remaining 

as entry 1)
9.03 ± 1.75 12.12 ± 1.83

3 Morgan (esters represented by Morgan, remaining as 
entry 1)

9.09 ± 1.52 12.12 ± 0.75

4 MCCAS (esters represented by MCCAS, remaining as 
entry 1)

8.95 ± 1.06 11.82 ± 0.83

5 RDKit (esters+bases+solvents represented by RDKit, 
remaining as entry 1)

8.75 ± 1.62 11.95 ± 0.79

Table S9. Comparison of error in the prediction of yields using various fingerprints of esters

3.3.4 Leaving one feature out experiment

In this experiment (using GPy with Mat52 kernels) one feature was left, and the results 
(training/testing) was observed. This experiment was performed to evaluate the importance of 
absence/presence of individual features.
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Figure S7. Plot of training and test errors when a particular feature was left out (see Table S10 for 
feature #).

3.3.5 Importance of individual features

The length scale of trained Gaussian Processes model has been used to determine the relative 
importance of the features. The ARD (Automatic Relevance Determination) feature of GPy library 
allows assigning different length-scales to different features. The length scale of various features is 
given as follows (higher the length scale, lower the feature importance):

Fi
gure S8. Plot of length scale vs feature number (see Table S10 for feature #).

Testing 
error

Training 
error

Feature number left out
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Feature # :

# Feature name Lengthscale

0 Catalyst_f-chi-0-all 5.28

1 Catalyst_f-chi-1-all 5.16

2 Catalyst_f-chi-2-all 4.21

3 Catalyst_f-chi-3-all 3.76

4 Catalyst_f-chi-4-all 4.32

5 Catalyst_f-Z-0-all 5.36

6 Catalyst_f-Z-1-all 4.78

7 Catalyst_f-Z-2-all 3.54

8 Catalyst_f-Z-3-all 2.91

9 Catalyst_f-Z-4-all 3.22

10 Catalyst_f-I-0-all 5.36

11 Catalyst_f-I-1-all 5.15

12 Catalyst_f-I-2-all 4.10

13 Catalyst_f-I-3-all 3.49

14 Catalyst_f-I-4-all 4.44

15 Catalyst_f-T-0-all 4.74

16 Catalyst_f-T-1-all 4.75

17 Catalyst_f-T-2-all 3.94

18 Catalyst_f-T-3-all 3.92

19 Catalyst_f-T-4-all 3.92

20 Catalyst_f-S-0-all 5.47

21 Catalyst_f-S-1-all 5.18

22 Catalyst_f-S-2-all 3.83

23 Catalyst_f-S-3-all 3.32

24 Catalyst_f-S-4-all 3.37

25 Catalyst_buried volume 5.96
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26 Catalyst_SW 4.84

27 Catalyst_NW 0.88

28 Catalyst_NE 5.50

29 Catalyst_SE 5.19

30 Catalyst_%Vfree 5.85

31 Catalyst_SASA area 10.22

32 Catalyst_SASA volume 10.73

33 Catalyst_ "HOMO-LUMO gap (kcal/mol)" 5.30

34 Catalyst_ "dipole (debye)" 2.54

35 Catalyst_ "NBO charge" 2.03

36 Ester_f-chi-0-all 1.33

37 Ester_f-chi-1-all 1.53

38 Ester_f-chi-2-all 1.58

39 Ester_f-chi-3-all 1.42

40 Ester_f-chi-4-all 1.29

41 Ester_f-Z-0-all 5.63

42 Ester_f-Z-1-all 3.82

43 Ester_f-Z-2-all 3.89

44 Ester_f-Z-3-all 3.54

45 Ester_f-Z-4-all 5.40

46 Ester_f-I-0-all 1.49

47 Ester_f-I-1-all 1.49

48 Ester_f-I-2-all 1.56

49 Ester_f-I-3-all 1.56

50 Ester_f-I-4-all 1.66

51 Ester_f-T-0-all 1.53

52 Ester_f-T-1-all 1.54

53 Ester_f-T-2-all 1.59

54 Ester_f-T-3-all 1.64
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55 Ester_f-T-4-all 1.49

56 Ester_f-S-0-all 2.28

57 Ester_f-S-1-all 1.68

58 Ester_f-S-2-all 1.78

59 Ester_f-S-3-all 1.79

60 Ester_f-S-4-all 1.70

61 Ester_SASA area 1.93

62 Ester_SASA volume 2.01

63 Ester_L 1.94

64 Ester_B1 4.76

65 Ester_B5 2.03

66 Ester_1H (OCH) 4.99

67 Ester_13C (OCH) 2.14

68 Ester_13C (carbonyl) 2.80

69 Ester_IR (carbonyl stretch) 6.11

70 Ester_"freq CO (cm-1)" 1.90

71 Ester_ "Int IR CO" 3.00

72 Ester_ "HOMO-LUMO gap (kcal/mol)" 3.60

73 Ester_ "dipole (debye)" 12.79

74 Ester_mmol of Esters 1.42

75 Ester_catalyst mole 10.50

76 Base_pKa(H2O) 0.45

77 Base_pKa(DMSO) 0.00

78 base mol% 0.44

79 temp (oC) 0.03

80 pressure (bar) 0.12

81 time (h) 11.61

82 Solvent_Dielectric constant 18.67

83 Solvent_Gutman DN 0.69
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84 solvent amount (mL) 1.38

Table S10. Feature numbers their description and length scales.

Features with decreasing importance:

mmol of ester
"Catalyst  ""dipole (debye)"".1"
time (h)
Solvent Amount
Base pKa(H2O)
"Catalyst  ""NBO charge"""
Catalyst f-T-4-all
Catalyst f-S-4-all
Catalyst f-Z-4-all
Catalyst SE
Catalyst f-Z-3-all
Catalyst f-S-0-all
Catalyst f-S-3-all
Catalyst f-S-2-all
Catalyst f-S-1-all
Catalyst f-I-0-all
Catalyst f-chi-0-all
Catalyst f-I-1-all
Catalyst f-chi-1-all
Catalyst f-T-3-all
Catalyst f-I-3-all
Catalyst f-chi-4-all
Catalyst f-I-2-all
Catalyst f-T-0-all
Catalyst f-chi-3-all
Catalyst f-Z-2-all
Solven Dielectric constant
Catalyst f-Z-1-all
Catalyst f-T-1-all
Catalyst f-I-4-all
Catalyst f-Z-0-all
Catalyst f-T-2-all
Catalyst f-chi-2-all
"Ester  ""HOMO-LUMO gap (kcal/mol)"""
Ester 13C (carbonyl)
temp (oC)
Solvent Gutman DN
Ester f-T-2-all
Ester f-chi-3-all
Ester B5
Ester f-S-3-all
Ester f-I-3-all
Ester f-chi-4-all
Ester SASA area.1
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Ester f-S-2-all
Ester f-T-3-all
Ester SASA volume.1
Ester f-T-1-all
Ester f-I-4-all
Ester f-S-0-all
Ester f-S-1-all
Ester f-I-2-all
Ester f-chi-0-all
Ester f-chi-2-all
Ester f-T-0-all
Catalyst SASA volume
Ester f-T-4-all
Ester f-S-4-all
Ester f-chi-1-all
Ester f-I-1-all
Ester f-I-0-all
Ester L
Catalyst SW
Catalyst SASA area
Ester f-Z-2-all
Ester 1H (OCH)
Catalyst NW
Ester f-Z-1-all
Catalyst buried volume
Ester f-Z-3-all
Ester f-Z-0-all
"Ester ""freq CO (cm-1)"""
Ester f-Z-4-all
Catalyst NE
Ester B1
Ester IR (carbonyl stretch)
Ester 13C (OCH)
"Ester  ""Int IR CO"""
Catalyst %Vfree
 Base pKa(DMSO)
"Catalyst  ""HOMO-LUMO gap (kcal/mol)"".1"
"Ester  ""dipole (debye)"""
pressure (bar)
base mol%
catalyst mol%

3.3.6 Studies by the addition of Artificial Random Descriptors

Random features were added to the dataset. Total 170 random features were added one by one and 
results on testing/training errors were observed.
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Figure S9. Plot of Test/train errors relative to the number of random features added.

3.3.7 Leave features of one parameter out of experiment

In this case, all the features of certain parameter (catalyst, ester, base, solvent, and experimental 
conditions) were left out individually while keeping other features, and the model was optimised 
using GPy with Mat52 kernels. As mentioned below the results are very similar to the case when all 
descriptors were used (Training RMSE: 7.5%, Testing RMSE: 12.1%, Yield > 0.5, Figure 3, main 
manuscript).

Yield > 0.0

Left out features/data Train RMSE (%) Test RMSE (%)

Catalyst features (left out) 18.34±1.5 25.43±1.76

Esters features (left out) 11.64±1.10 24.75±2.00

Solvents features (left out) 8.23±2.94 24.57±1.74

Bases features (left out) 10.20±2.47 25.52±2.14

Experimental features (left out) 17.41±1.59 26.44±2.30
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Yield > 0.5

Left out features/data Train RMSE (%) Test RMSE (%)

Catalyst features 8.30±0.82 11.86±0.94

Esters features 8.16±0.71 11.55±0.97

Solvents features 6.93±1.17 11.82±0.97

Bases features 6.63±1.41 11.87±1.11

Experimental features 9.42±0.93 12.15±0.87

Table S11. Training and testing RMSE for experiments when one set of features were left out.

3.3.8
Use features of one parameter experiment

In this case, all the features of only one parameter (catalyst, ester, base, solvent, and experimental 
conditions) was used while other parameters were left out. The model was optimised using GPy with 
Mat52 kernels. As mentioned below the results are very similar to the case when all descriptors 
were used (Training RMSE: 7.5%, Testing RMSE: 12.1%, Yield > 0.5 Figure 3, main manuscript).

Yield > 0.0

Select features/data Train RMSE (%) Test RMSE (%)

Catalyst features (only catalyst features were 
used) 23.43±0.84 27.55±1.61

Esters features 27.26±0.65 28.17±1.5

Solvents features 29.25±0.68 29.46±1.58

Bases features 28.91±0.84 29.65±1.8

Experimental features 21.72±1.47 25.71±1.54
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Yield > 0.5

Select features/data Train RMSE (%) Test RMSE (%)

Catalyst features 10.97±0.46 11.95±0.78

Esters features 11.44±0.50 12.31±0.81

Solvents features 12.22±0.36 12.07±0.82

Bases features 11.9±0.46 12.09±0.80

Experimental features 9.01±0.56 11.50±0.76

Table S12. Training and testing RMSE for experiments when only one set of features were used.

3.4 Experiments using balanced dataset

We acknowledge that our dataset has a large number of data points in high yield region in compared 
to low yield region. We therefore hypothesized that using a more balanced dataset containing 
datapoints from both high and low yield region (e.g. 30-70% or 40-80%) could lead to a higher 
accuracy.  In case of using a dataset of the yield region 40-80%, the results (Training RMSE: 7.43±3.76 
%, Testing RMSE: 12.31±1.06%) were similar to our optimised result (Training RMSE: 7.5%, Testing 
RMSE: 12.1%, Yield > 0.5). In other cases, the accuracy was worse than this as mentioned in Table S13.

Yield Cutoffs Training RMSE (%) Testing RMSE (%)

30-70 3.47±3.97 12.64±1.38

30-80 5.08±3.70 15.22±1.24

30-90 7.38±2.54 17.01±1.49

40-70 3.22±3.35 10.02±1.17

40-80 7.43±3.76 12.31±1.06

40-90 7.74±3.19 14.97±1.32

Table S13. Training and Testing errors in the selected region of the dataset.

We also created a more balanced dataset where 50% of the data was randomly picked from the 
yield ≤60% and 50% from the yield ≥50%. However, this led to poorer accuracy in the prediction of 
yield (16.59±6.63(Train), 31.16±3.11(Test)).
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3.5 Predicting Catalyst and catalyst properties

In the above we showed how simple ML models can determine the outcome of hydrogenation 
reactions of ester molecules. In keeping with our broader goal of determining new effective catalysts 
for hydrogenation reactions, we now proceed to lay out our strategy for solving the inverse problem. 
To simplify the problem and demonstrate a proof of concept for an ML approach towards catalyst 
prediction, we turned this into a multi-channel classification problem asking our model to predict a 
particular catalyst given the reaction conditions and yields from the dataset. Catalysts in this study are 
represented as unit vectors using one-hot encoding. Architecture details: {activation function->Tanh, 
training fraction->0.9, number of layers->5, number of nodes->100, yield fraction used->0.5}. 
Gratifyingly, our model using the NN architecture predicted the corresponding catalysts (one-hot-
encoding) with an accuracy of 81% (Figure 5, main manuscript).

Figure S10A. Confusion matrix for the prediction of catalysts (corresponding to the histogram in Figure 
5 of the main manuscript). Left vertical and top horizontal are the catalyst numbers; bottom horizontal 
and right vertical are sum of columns and rows, respectively.

Additionally, we have predicted various properties of Ruthenium based catalysts using our dataset as 
a testbed. We formulate the machine learning approach as follows. Using the data set we have 
acquired, we use the reaction conditions, all chemical descriptors of esters, solvents, and bases as 
inputs to our ML architectures, to predict steric and electronic descriptors of the catalysts. 

We employ a simple MLP architecture and linear regression to predict the various catalyst descriptors. 
In total we have 8 steric descriptors, and three electronic descriptors. Since neural networks are good 
at making end-to-end predictions, we attempt to predict all these features simultaneously. We 
conduct two different sets of experiments. In the first set of experiments [Expt. A], we divide our 
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dataset into a train-test split of 80-20 and build an MLP model that aims to predict all such catalyst 
descriptors simultaneously. We compare our outcomes against linear models (realized through linear 
regression) for each of these features. In the second set of experiments [Expt. B], we divide the dataset 
into two disjoint parts such that each catalyst features in exactly one of the sets. This is in line with 
our goal of predicting new catalysts or their properties.  

We state at the outset that our initial efforts in this direction have not yielded good results. This is 
largely in part due to the small amount of data available to us. Secondly, our efforts in this direction 
would likely benefit from incorporating domain expertise as priors to our ML models, which we have 
thus far not incorporated. We also note that a GP model for such predictions would likely shed more 
light, and we intend to return to this in a future publication.

Table S14. Test errors for our models of catalytic property prediction. Experiments A and B are 
described in Section 3.2.2.

Figure S10. Prediction of HOMO-LUMO gap (unit: kcal/mol) of Ru-catalysts by a (left) linear model 
and a (right) multi-layer perceptron model. This experimental set up corresponds to Expt. B detailed 
in Section 3.2.2 for cut-off yield . The dashed line in the middle is the line x=y. The other 𝛾 = 0.5

dashed lines reflect a 10% margin. 

Buried Volume (Å3) SASA area (Å2) SASA volume  (Å3)
HOMO-LUMO gap 

(kcal/mol)

𝛾 = 0 𝛾 = 0.2 𝛾 = 0.5 𝛾 = 0 𝛾 = 0.2 𝛾 = 0.5 𝛾 = 0 𝛾 = 0.2 𝛾 = 0.5 𝛾 = 0 𝛾 = 0.2 𝛾 = 0.5

Linear 3.5 2.7 2.9 9.7 13.0 10.8 11.9 14.5 11.8 4.3 4.1 3.6Expt. 
A

NN 4.4 4.4 4.7 11.4 13.5 13.1 13.8 16.2 16.2 5.3 6.4 5.5

Linear 3.3 6.5 4.7 16.0 13.1 18.2 24.6 12.1 39.1 4.8 4.2 4.4
Expt. 

B
NN 6.4 3.9 4.8 16.5 11.4 26.0 19.6 12.7 34.1 5.3 5.0 8.4
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Figure S11. Prediction of buried volume of Ru-catalysts by a (left) linear model and a (right) multi-
layer perceptron model. This experimental set up corresponds to Expt. B detailed in Section 3.2.2 (SI) 
for cut-off yield . The dashed line in the middle is the line x=y. The other dashed lines reflect a 𝛾 = 0.5

10% margin.

3.6 Out of Sample Studies
To mimic the use of the model in real conditions, the out-of-sample test set was constituted of the 
reaction containing a catalyst or an ester that is not in the training set (as it has been done for the 
prediction of catalyst properties Expt B, section 3.5). We carried out this study on the complete 
dataset and the RMSE as described below is similar to those without carrying out the out-of-sample 
analysis (Table S15). This suggests that our model would have similar accuracy on an unknown data 
point.

Left out 
Catalyst/Ester RMSE_train(%) RMSE_test(%) RMSE_val(%) R2_train R2_test R2_val 

C1 12.90 26.91 28.52 0.78 0.36 0.11

C2 13.81 25.85 26.80 0.77 0.27 -9.31

C3 11.60 24.91 77.49 0.83 0.34 -1185.18

C4 16.80 21.82 34.17 0.68 0.39 -0.06

C5 16.29 22.20 15.60 0.72 0.32 -1.38

C6 12.26 22.70 13.43 0.84 0.23  

C7 10.73 24.29 23.87 0.88 0.11 -51.01

C8 14.25 24.63 23.16 0.77 0.33 0.01

C9 14.11 24.42 31.30 0.76 0.37 -0.16

C10 13.93 25.60 24.12 0.78 0.24 -13.41

C11 12.49 24.04 32.44 0.83 0.19  

C12 13.73 22.49 42.43 0.78 0.23 -0.20



S30

C13 12.92 24.43 29.61 0.83 0.17 -0.19

C14 15.05 25.05 21.78 0.74 0.25 0.01

C15 13.81 24.97 27.87 0.78 0.25 -20.58

C16 15.22 24.97 15.57 0.73 0.29 -1.99

C17 11.29 23.96 21.72 0.86 0.19 -3.28

C18 12.24 26.66 47.17 0.83 0.10 -0.30

C19 14.99 24.48 29.81 0.75 0.24 0.05

C20 17.46 22.39 33.90 0.65 0.38 -0.03

C21 16.67 26.61 37.26 0.65 0.30  

C22 12.42 22.78 5.32 0.84 0.16  

C23 12.57 22.02 3.82 0.84 0.17  

C24 12.75 23.03 11.32 0.83 0.23  

C25 14.73 25.20 18.48 0.74 0.29 -1.02

C26 14.04 27.03 9.46 0.76 0.23  

C27 9.36 27.32 45.66 0.89 0.24  

C28 13.25 21.48 36.26 0.81 0.32  

C29 13.32 24.02 56.21 0.80 0.24  

C30 10.78 26.34 25.84 0.86 0.24  

C31 12.98 24.37 15.85 0.82 0.17  

C32 17.91 22.48 16.37 0.65 0.33 -0.02

C33 14.73 24.20 16.92 0.75 0.28  

C34 13.63 23.00 41.48 0.79 0.32  

C35 12.51 26.46 14.15 0.80 0.31 -4.56

C36 14.49 25.57 12.79 0.75 0.28 -0.62

C37 14.86 23.35 56.85 0.74 0.37  

C38 16.56 23.16 16.37 0.70 0.27  

C39 14.81 22.26 42.42 0.75 0.36  

C40 15.26 22.93 12.15 0.74 0.30 -589.56

C41 12.58 25.55 25.36 0.81 0.29  
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C42 16.20 22.37 37.47 0.70 0.37 -0.03

C43 14.49 24.48 30.45 0.76 0.22 -56.94

C44 15.67 24.85 34.73 0.71 0.33 -0.13

C45 12.97 25.71 39.63 0.81 0.20  

C46 14.87 25.10 38.98 0.74 0.26 -0.07

C47 14.37 24.43 26.46 0.76 0.32 0.33

C48 13.37 25.78 23.40 0.79 0.23 -2.15

C49 14.57 24.63 24.79 0.76 0.24 0.01

C50 9.54 23.74 0.40 0.90 0.30  

C51 15.30 24.83 17.96 0.72 0.32  

C52 14.38 23.81 36.92 0.77 0.24  

C53 14.33 25.23 61.15 0.74 0.37  

C54 12.90 25.28 31.01 0.81 0.21  

C55 17.04 23.31 72.65 0.65 0.38  

C56 13.57 25.15 38.61 0.78 0.28 0.12

C57 13.12 26.69 26.86 0.79 0.21  

C58 14.31 24.39 38.00 0.75 0.35  

C65 12.98 23.10 51.81 0.80 0.40  

C59 14.61 24.06 47.64 0.76 0.24  

C66 15.66 19.96 46.11 0.75 0.23 -0.03

C67 12.50 24.53 17.11 0.82 0.29  

C68 15.81 23.82 16.54 0.71 0.33 0.00

C69 14.37 25.63 40.13 0.76 0.26  

C70 14.42 23.79 28.70 0.76 0.30 -130.77

C71 15.11 24.23 44.21 0.73 0.34  

C72 13.51 24.25 60.23 0.79 0.26 -35.27

C60 15.38 28.32 21.95 0.69 0.26 0.09

C61 14.45 22.45 27.78 0.77 0.27  

C62 17.99 21.94 27.83 0.64 0.37  
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C63 14.15 25.12 22.40 0.77 0.28 -3.02

C64 14.34 25.70 78.94 0.76 0.26 0.00

C74 13.00 25.40 10.52 0.81 0.28 -2.85

C75 13.56 23.74 21.43 0.79 0.33  

C76 9.82 25.64 27.47 0.89 0.19  

C77 13.59 27.88 57.75 0.77 0.21  

C78 12.74 24.31 40.75 0.82 0.25  

C79 14.99 24.66 9.29 0.75 0.20  

C80 15.84 25.66 11.49 0.70 0.27  

C81 17.18 21.62 8.93 0.68 0.32  

C82 13.76 25.15 37.36 0.77 0.30  

C83 16.61 27.70 47.47 0.65 0.22  

C84 11.69 25.00 24.10 0.84 0.25  

C85 13.82 24.75 1.34 0.77 0.34  

C73 13.82 24.98 18.67 0.79 0.27 -0.16

E1 10.48 24.35 26.66 0.87 0.38 -0.04

E3 14.34 26.60 24.99 0.76 0.22 -0.40

E4 10.33 25.58 25.24 0.83 0.25 -0.07

E5 15.21 23.24 16.78 0.74 0.33 -3.40

E6 13.89 22.88 25.52 0.78 0.32 0.26

E7 13.72 24.53 21.55 0.77 0.35  

E8 13.33 24.65 49.98 0.80 0.21 -0.35

E9 12.34 23.31 40.47 0.83 0.28  

E10 15.92 26.27 22.25 0.69 0.28 -0.16

E12 14.65 23.83 44.21 0.76 0.31 -65.13

E14 15.76 23.89 13.74 0.70 0.39 -1.49

E15 12.84 24.62 17.88 0.81 0.29 -0.25

E16 17.86 26.15 18.62 0.65 0.10 -1559.43

E17 14.73 23.68 17.38 0.75 0.32 -31.66
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E18 14.96 25.18 31.18 0.75 0.22 0.04

E19 12.51 23.56 9.52 0.83 0.27 -0.28

E20 14.55 24.84 12.46 0.76 0.24 -1.46

E21 11.10 25.36 15.99 0.85 0.29 -1022.27

E23 13.72 24.83 11.12 0.78 0.27 -18.80

E24 13.17 24.00 10.03 0.81 0.27  

E25 11.14 28.81 42.14 0.85 0.10 -0.20

E26 13.19 24.67 66.41 0.81 0.17 -1.29

E27 13.98 23.34 61.09 0.77 0.38 -2.07

E28 16.16 24.01 9.66 0.69 0.36  

E29 13.99 26.39 8.46 0.77 0.20  

E30 11.57 21.24 9.57 0.86 0.21  

E31 12.16 26.52 15.27 0.82 0.28  

E32 14.94 24.66 13.14 0.74 0.32  

E33 17.47 25.06 8.40 0.65 0.26 -10.29

E34 11.97 27.61 20.10 0.82 0.27  

E35 15.46 20.92 18.00 0.74 0.40 -6.66

E36 12.83 27.53 9.90 0.80 0.20 0.37

E37 12.98 25.05 14.94 0.80 0.28 -0.06

E38 16.71 22.85 0.31 0.67 0.40  

E39 12.06 22.56 10.09 0.84 0.29 0.08

E40 15.60 26.38 22.84 0.70 0.29 0.10

E41 14.37 24.99 5.77 0.75 0.30 -32.25

E42 12.90 23.77 12.18 0.82 0.25 -8.15

E43 11.28 25.44 46.90 0.83 0.13 -0.22

E44 10.81 27.87 22.57 0.86 0.19 -0.62

E45 14.97 26.90 13.01 0.73 0.26 -2.73

E46 15.20 26.40 11.81 0.70 0.33 -4.04

E47 12.19 22.42 13.66 0.84 0.27 -0.25
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E48 13.70 22.07 20.61 0.79 0.36 0.29

E49 13.00 28.48 25.66 0.79 0.19 0.18

E50 14.75 24.98 27.43 0.73 0.36  

E51 14.94 24.88 15.21 0.74 0.28  

E52 12.68 24.74 13.50 0.82 0.26 -1.01

E53 14.29 25.14 12.86 0.76 0.31 -40.36

E54 12.75 23.60 18.30 0.81 0.35  

E55 15.45 24.73 7.50 0.72 0.31  

E56 11.93 28.52 8.90 0.81 0.24 -5.46

E57 14.73 24.94 6.18 0.76 0.22  

E58 16.03 23.04 11.56 0.71 0.30 -533.54

E59 14.33 23.81 53.27 0.78 0.18 -0.34

E112 9.46 27.40 13.10 0.89 0.17 0.37

E60 17.31 23.13 18.95 0.66 0.35 0.00

E61 11.51 23.99 14.52 0.86 0.21 -0.44

E62 13.20 26.05 32.70 0.79 0.28 -0.07

E63 12.35 24.38 7.02 0.83 0.23  

E64 17.74 24.94 7.11 0.65 0.22 -0.33

E65 15.62 23.95 5.61 0.71 0.37 -34.46

E66 14.35 25.96 13.93 0.76 0.23 -0.49

E67 13.35 27.26 85.13 0.78 0.24  

E68 12.68 25.16 77.74 0.82 0.16  

E69 14.15 26.55 8.31 0.74 0.32  

E70 17.17 23.13 3.58 0.69 0.20  

E71 15.38 24.17 1.12 0.74 0.26  

E72 13.08 26.65 8.57 0.80 0.21 -10.74

E73 15.50 23.60 58.74 0.72 0.35 0.00

E74 11.17 26.11 45.81 0.86 0.15 -36.30

E85 11.98 24.28 19.73 0.84 0.25  
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E76 13.59 25.21 32.03 0.78 0.28 -0.14

E77 15.14 23.12 23.94 0.74 0.37  

E81 11.72 24.11 12.95 0.84 0.32 -9.49

E82 15.91 25.73 88.82 0.69 0.30  

E83 15.27 25.59 14.39 0.74 0.17 -50.74

E84 11.74 26.30 90.76 0.84 0.23  

E78 10.72 25.62 26.50 0.86 0.29 0.00

E79 13.10 23.01 23.64 0.81 0.28 -0.21

E80 14.22 27.99 1.57 0.73 0.27  

E86 13.84 23.72 0.97 0.78 0.35  

E87 14.05 24.92 2.16 0.76 0.36  

E88 15.50 26.87 7.02 0.70 0.26  

E89 14.35 25.99 5.12 0.75 0.29  

E90 14.23 24.40 12.24 0.77 0.27  

E91 16.04 24.22 4.40 0.69 0.37  

E92 10.57 26.00 5.47 0.87 0.26  

E93 13.24 25.11 50.20 0.77 0.35 -2.31

E94 14.74 23.33 3.44 0.76 0.31  

E95 11.91 25.18 6.95 0.83 0.29  

E106 18.45 24.88 5.87 0.58 0.37 0.64

E111 15.48 24.00 3.17 0.72 0.34 -39.25

E103 15.78 23.37 11.28 0.71 0.38 -9.38

E109 15.75 22.53 7.98 0.74 0.19 0.30

E113 13.43 25.42 9.69 0.79 0.29 -6.67

E114 12.09 27.13 33.55 0.82 0.25  

E100 13.77 26.50 10.92 0.76 0.29  

E101 11.47 26.68 60.43 0.84 0.25  

E102 11.67 24.28 44.78 0.85 0.23  

E104 12.74 23.57 19.70 0.82 0.22  
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E105 16.69 26.06 41.78 0.65 0.32  

E108 15.53 26.89 39.06 0.70 0.25  

E107 13.35 24.32 15.06 0.78 0.37  

E110 15.85 23.10 20.88 0.73 0.20  

E96 8.00 28.20 2.62 0.92 0.22  

E97 12.74 24.07 16.79 0.82 0.28  

E98 12.21 23.94 14.92 0.83 0.24  

E99 14.70 25.42 15.43 0.74 0.30  

Table S15. RMSE and R2 values for the out of sample analysis. Test and Train sets are made after 
leaving out a Catalyst/Ester Val (validation set) consists of datapoints pertaining to the leftout 
catalyst/ester. R2_val score is not provided if the number of datapoints is less than 2.

4. Experimental details for the hydrogenation of esters

4.1 General considerations

Ru-MACHO complex (C1), diphenylethylene (internal standard), CDCl3, and esters (E59, E82, E84 and 

E105) were purchased from Alfa or Sigma Aldrich and used as received without further purification. 

KOtBu was dried before use. THF was dried using a Grubbs type solvent purification system and 

degassed before use. 

GC-MS spectra were collected using an Agilent 8860 GC System fitted with an HP-5ms Ultra Inert 

column (30 m × 250 μm × 0.25 μm) coupled with an Agilent 5977B GC/MSD. Samples were injected at 

an inlet temperature of 250 °C to ensure all volatiles entered the gas phase. GC conditions as follows: 

50 °C isothermal for 4 minutes, ramp 10 °C/min to 250 °C, 250 °C isothermal for 15 minutes. 

NMR spectra were recorded on a Bruker AVIII-HD 500 MHz NMR spectrometer at 298 K unless 

otherwise specified. Residual protio solvent was used as reference for 1H spectra in deuterated solvent 

samples. 

4.2 General procedure for the hydrogenation of esters
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Ru-Macho (C1)

The reaction was performed using standard Schlenk techniques using an argon-vacuum double 

manifold.

To a microwave vial was added: Ru-MACHO (12.1 mg, 20 μmol), KOtBu (4.4 mg, 40 μmol), ester (2 

mmol) and THF (2 mL). The microwave vial septum was pierced with two needles, which remained 

throughout the reaction, and placed in a stainless-steel autoclave equipped with a pressure gauge and 

partially filled with stainless-steel beads (to allow effective heat transfer). The atmosphere within the 

autoclave was replaced with H2 and the vessel pressurised to 40 bar before sealing and heating to 100 

°C for 24 h. After cooling to room temperature, excess H2 is vented and the reaction mixture 

interrogated by GC-MS with the addition of a known quantity of internal standard: 1,1’-

diphenylethylene. 

Entry Ester Conversiona 

/%

Yieldb 

/%

Product Literature 

Yield/%

Predicted 

Yield/%

1   E59 >99 96 2-pyridinemethanol 316 95.4

2 E82 63c 63 4-

aminobenzylalcohol

017 86

3 E84 <1 <1 2-methylpyrrole         017       84

4 E105 >99 99 1,4-hexanediol 3218 96
a Determined by GC-MS. b NMR yield, c.f. internal [1,1’-diphenylethylene]. c Determined by 1H NMR 

due to poor peak shapes in the GC-MS obtained.

Table S16. Observed yield (from experiments carried out here), literature yield and predicted yield 

(from ML model) for the hydrogenation of esters.
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4.3 GC-MS Chromatograms and Mass Spectra of the crude reaction mixture after hydrogenation 

of esters

Figure S12 GC-MS chromatogram obtained of the reaction mixture from the hydrogenation of E59.

Figure S13 MS spectra corresponding to 2-pyridinemethanol obtained from the reaction mixture from 

the hydrogenation of E59.

Figure S14 GC-MS chromatogram obtained of the reaction mixture from the attempted hydrogenation 

of E82.
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Figure S15 MS spectra corresponding to 4-methylaniline obtained from the reaction mixture from the 

attempted hydrogenation of E82.

Figure S16 MS spectra corresponding to 4-aminobenzyl alcohol obtained from the reaction mixture 

from the attempted hydrogenation of E82.

Figure S17 GC-MS chromatogram obtained of the reaction mixture from the attempted hydrogenation 

of E84.
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Figure S18 MS spectra corresponding to 2-methylpyrrole obtained from the reaction mixture from the 

attempted hydrogenation of E84.

4.4 NMR spectra of the crude reaction mixture after hydrogenation of esters

Figure S19 1H NMR (500 MHz, CDCl3) spectrum of hydrogenation product of E59, with internal 

standard: 1,1’-diphenylethylene.
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Figure S20 1H NMR (500 MHz, CDCl3) spectrum of hydrogenation product of E82, with internal 

standard: 1,1’-diphenylethylene.

Figure S21 1H NMR (500 MHz, CDCl3) spectrum of hydrogenation product of E84, with internal 

standard: 1,1’-diphenylethylene.
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Figure S22 1H NMR (500 MHz, CDCl3) spectrum of hydrogenation product of E105, with internal 

standard: 1,1’-diphenylethylene.
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