
Supporting Information

Automated patent extraction powers generative

modeling in focused chemical spaces

Akshay Subramanian1,*, Kevin Greenman2,*, Alexis Gervaix3,

Tzuhsiung Yang4, Rafael Gómez-Bombarelli1
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S1 Patent Format Inconsistency

As described in Section 2.2, the USPTO makes available machine-readable patents from 2001 to the present.

However, these files are not consistent in their format and directory structure. As a result of these inconsisten-

cies, our original extraction pipeline omitted years 2001-2004 because these years used SGML 2.4 or XML 2.5,

whereas years 2005-present used XML 4.0-4.7, as described at https://bulkdata.uspto.gov/. Addition-

ally, patents from late 2008 to early 2010 were omitted by our original pipeline because of a different directory

structure than other patent releases. The initial training dataset for our generative models omitted some or all

patents from the aforementioned years. Since our goal is to incorporate structural priors from a general region

of domain-relevant chemical space rather than to extract a comprehensive set of domain-relevant molecules,

this omission does not invalidate the approach. As we demonstrate, our approach is helpful for focusing

chemical space even while omitting all patent years prior to 2001 (since they are not machine readable). For
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the same reason, our approach still works while omitting a subset of years after 2001. However, for the sake

of completion and to maximize training dataset coverage of relevant structures, we have resolved these issues

in the latest version of our PatentChem code (https://github.com/learningmatter-mit/PatentChem).

Going forward, users who do their own keyword queries with our code will be unaffected by the problems

we initially encountered with certain years.

S2 Processing of patent-extracted data before model

training

The goal of our pipeline is to generate structures with limited domain knowledge beyond keywords, so we kept

processing/filtering to a minimum except for constraints that allowed for better computational tractability

and basic filters on molecular mass. For example, we applied a 1000 g/mol maximum molecular mass cutoff

on the OPD dataset primarily because JT-VAE has a sequential decoding process that enumerates combina-

tions of fragment pairs, which scales with the size of fragments and is thus very slow for large molecules. This

has the added benefit of eliminating polymers and large candidates (non-ideal for deposition techniques such

as chemical vapor deposition). Similarly on the TKI dataset, we imposed maximum and minimum cutoffs

of 700 g/mol and 250 g/mol respectively to eliminate candidates that are not ”drug-like”. We apply the

minimum molecular mass constraint in the TKI case since our property optimization objective was similarity

to held-out FDA approved drugs whose molecular masses typically fall above 250g/mol.

Our minimal filtering means there are some structures in our training datasets that are not domain-

relevant (such as reagents or intermediates). However, the “false positives” (molecules that the model

generates because it thinks they are relevant, when in reality they are not relevant) that come from this can

be easily filtered out by the property labeling step. Just as a user can choose their own property-labeling

method appropriate for their design task when using our code, they could also insert additional domain-

knowledge-based preprocessing of the training dataset. Our current work demonstrates that the approach

can still be useful even without this preprocessing, but additional filtering may improve results in some

domains. We have provided some options for possible filters in our PatentChem code, such as minimum and

maximum molecular weight and charged/neutral molecules.
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S3 REINVENT+SELFIES

S3.1 TKI

Figure S1 shows the similarity to query structure as a function of training iterations, for each of the 27 held-

out FDA-approved TKI molecules. In most cases, we observed an increasing trend in the reward. There

were however some instances (ex. Nilotinib and Cabozantinib) where training was unstable and did not

converge. Reinforcement Learning algorithms are often highly sensitive to hyperparameters, so it is possible

that these cases might require further tuning.

S3.2 OPD

Unlike the TKI dataset case where we had access to the oracle reward, training on the OPD dataset required a

proxy neural network reward estimator. Figure S3 shows the test performance of the proxy reward predictor

on DFT-calculated optical gaps. We observed that while the reward had an increasing trend during training

of the agent (Figure S2(a)), the sampled molecules (Figure S2(b)) did not match the training data well

structurally. We hypothesised that this behavior arose from agent identifying and targeting high-uncertainty

regions of the property predictor. To investigate this, we also attempted running agent training with a new

reward that penalized high uncertainty as estimated by ensemble variance on the property predictor. To

achieve this, the reward was modified to include a multiplicative masking term that evaluated whether the

ensemble uncertainty was smaller than the 99th percentile of training data uncertainties. Hence molecules

for which the property predictor was more uncertain than 99% of the training data would have a reward of

zero. We were however unable to achieve model convergence with this modified reward function, i.e., rewards

did not display an increasing trend. This was because a majority of molecules generated during training

were high-uncertainty points and resulted in a reward of zero. This resulted in the agent having access to

very sparse information since poor candidates were sampled at a much higher fraction than good ones. It

is also possible that the ensemble uncertainty was not an accurate estimator of model confidence at points

that are highly Out of Distribution (OOD), as was observed by Scalia et al. in their work. [1]
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Figure S1: Tanimoto similarity score computed between generated candidates and
FDA approved TKI molecules, as a function of training iteration
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Figure S2: Results of REINVENT+SELFIES on OPD dataset. a) Reward score as
a function of training iterations. b) Molecules sampled during later stages of training.

5



2 4 6 8 10
Predicted EGAP / eV

2
4
6
8

10

DF
T 

E G
AP

 / 
eV

RMSE: 0.38 eV

20

40

60

80

Co
un

t
Figure S3: Comparison between DFT-calculated optical gaps and chemprop-
predicted optical gaps, as calculated on the test set. RMSE on test set was
0.38 eV.

S4 JTVAE training

Since DFT calculations were expensive to perform on the entire patent-mined OPD set, we only labeled a

subset of 5568 molecules out of a total of 112436 molecules. To effectively use labeled and unlabeled data

during JTVAE training, we utilized all molecules for encoder and decoder training, but only utilized the

labeled subset while training the property predictor. The training of encoder, decoder and property predictor

were all performed jointly with a multitask loss function. In addition, the property predictor training was
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performed on 5 different properties: HOMO, LUMO, optical gap, Synthetic Complexity Score (SCScore)

[2], and molecular mass. This was done for two purposes: 1)To aid with latent space regularization, and 2)

Multiple tasks could potentially have shared information and thus compound the amount of effective training

data seen by the model.

S5 FDA approved TKI candidates

Table S1 lists the names and SMILES representations of the 27 FDA-approved TKI molecules that were held

out during all TKI experiments carried out in this paper.

Name SMILES
Afatinib CN(C)CC=CC(=O)NC1=C(C=C2C(=C1)C(=NC=N2)NC3=CC(=C(C=C3)F)Cl)OC4CCOC4
Ibrutinib C=CC(=O)N1CCC[C@H](C1)N2C3=NC=NC(=C3C(=N2)C4=CC=C(C=C4)OC5=CC=CC=C5)N
Pazopanib CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N
Axitinib CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)/C=C/C4=CC=CC=N4
Idelalisib CC[C@@H](C1=NC2=C(C(=CC=C2)F)C(=O)N1C3=CC=CC=C3)NC4=NC=NC5=C4NC=N5
Ponatinib CC1=C(C=C(C=C1)C(=O)NC2=CC(=C(C=C2)CN3CCN(CC3)C)C(F)(F)F)C#CC4=CN=C5N4N=CC=C5
Bosutinib CN1CCN(CC1)CCCOC2=C(C=C3C(=C2)N=CC(=C3NC4=CC(=C(C=C4Cl)Cl)OC)C#N)OC
Imatinib CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5

Regorafinib CNC(=O)C1=NC=CC(=C1)OC2=CC(=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F)F
Cabozantinib COC1=CC2=C(C=CN=C2C=C1OC)OC3=CC=C(C=C3)NC(=O)C4(CC4)C(=O)NC5=CC=C(C=C5)F
Lapatinib CS(=O)(=O)CCNCC1=CC=C(O1)C2=CC3=C(C=C2)N=CN=C3NC4=CC(=C(C=C4)OCC5=CC(=CC=C5)F)Cl
Ruxolitinib C1CCC(C1)[C@@H](CC#N)N2C=C(C=N2)C3=C4C=CNC4=NC=N3
Ceritinib CC1=CC(=C(C=C1C2CCNCC2)OC(C)C)NC3=NC=C(C(=N3)NC4=CC=CC=C4S(=O)(=O)C(C)C)Cl
Sorafinib CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F
Crizotinib C[C@H](C1=C(C=CC(=C1Cl)F)Cl)OC2=C(N=CC(=C2)C3=CN(N=C3)C4CCNCC4)N
Sunitinib CCN(CC)CCNC(=O)C1=C(NC(=C1C)/C=C\2/C3=C(C=CC(=C)F)NC2=O)C
Dabrafenib CC(C)(C)C1=NC(=C(S1)C2=NC(=NC=C2)N)C3=C(C(=CC=C3)NS(=O) (=O)C4=C(C=CC=C4F)F)F
Tofacitinib C[C@@H]1CCN(C[C@@H]1N(C)C2=NC=NC3=C2C=CN3)C(=O)CC#N
Dasatinib CC1=C(C(=CC=C1)Cl)NC(=O)C2=CN=C(S2)NC3=CC(=NC(=N3)C)N4CCN(CC4)CCO
Lenvatinib COC1=CC2=NC=CC(=C2C=C1C(=O)N)OC3=CC(=C(C=C3)NC(=O)NC4CC4)Cl
Trametinib CC1=C2C(=C(N(C1=O)C)NC3=C(C=C(C=C3)I)F)C(=O)N(C(=O)N2C4=CC=CC(=C4)NC(=O)C)C5CC5
Erlotinib COCCOC1=C(C=C2C(=C1)C(=NC=N2)NC3=CC=CC(=C3)C#C)OCCOC
Nilotinib CC1=C(C=C(C=C1)C(=O)NC2=CC(=CC(=C2)C(F)(F)F)N3C=C(N=C3)C)NC4=NC=CC(=N4)C5=CN=CC=C5
Vandetinib CN1CCC(CC1)COC2=C(C=C3C(=C2)N=CN=C3NC4=C(C=C(C=C4)Br)F)OC
Gefitinib COC1=C(C=C2C(=C1)N=CN=C2NC3=CC(=C(C=C3)F)Cl)OCCCN4CCOCC4
Palbociclib CC1=C(C(=O)N(C2=NC(=NC=C12)NC3=NC=C(C=C3)N4CCNCC4)C5CCCC5)C(=O)C
Vemurafinib CCCS(=O)(=O)NC1=C(C(=C(C=C1)F)C(=O)C2=CNC3=C2C=C(C=N3)C4=CC=C(C=C4)Cl)F

Table S1: Names and SMILES strings of held-out FDA approved TKI molecules.
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S6 Visualizing structural resemblance to training data
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Figure S4: Sample molecular structures obtained from random sampling of trained
RNN+SELFIES model on a) OPD b) TKI dataset
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Figure S5: Sample molecular structures obtained from random sampling of trained
JTVAE model on a) OPD b) TKI dataset
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