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THE MACROCONF DATASET 
SI TEXT S1: OVERVIEW OF THE MACROCONF DATASET 
The MacroConf dataset contains 68 compounds shown in Figure S1. 
 

 
Figure S1.  Overview of the MacroConf dataset showing the chemical structures of the 68 cyclic peptides 
and macrocycles that make up the dataset. 
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SI TEXT S2: SPECIFICATION OF THE MACROCONF DATASET 
Every compound has the following properties, recorded in a .json file: 
[ID].json 
ID: unique compound identifier (int) 
Compound name: name a compound is known as, (string, optional) 
Compound name in original publication: Name of the compound in the original 
publication (string, optional) 
Publication: DOI of the publication the NMR experiment was published with (string) 
Is natural cyclic peptide: Is the CP exclusively made up of natural L amino acids 
only? (1: only natural L amino acids, 0: not only natural L amino acids) (0,1) 
Is unnatural cyclic peptide: Is the CP exclusively made up of L/D amino acids only? 
(1: only natural L/D amino acids, 0: not only natural L/D amino acids -> compound 
is a macrocycle) (0,1) 
Sequence: Sequence of the compound, as reported in the publication (string) 
Sequence-1: 1 letter amino acid sequence (string) 
Backbone size: No. of amino acids forming the CP (valid only if compound is an 
amino acid like CP) (int) 
Bonds: Specifier of ring bonds. [INSERT CODE HERE!] 
Multi: Denotes whether there are distinct sets of experimental NOEs for different 
conformers (e.g., cis/trans) [INSERT DETAILS HERE!] 
Type of NOE available: Description of the type of NOEs available (e.g., upper 
bounds only) (string, optional) 
Solvent: Solvent that was used for the NMR experiment (string) 
Type of NOE experiment: Type of reported NOE experiment (e.g., ROESY, NOESY, …) 
(string) 
NMR experiment details: Experimental parameters (mixing times, etc.) (string) 
NOE computation details: Details of how the NOE values were derived (string) 
Other NMR experiments conducted: Any other NMR experiments reported for the 
compound (string) 
SMILES: SMILES string of the compound (SMILES)  
NOE quality: Quality assessment. 1:low quality (experiment was conducted only at 1 
mixing time), 5: high quality (experiment was conducted with multiple mixing times) 
(1,5) 
No. of NOEs: No of NOEs available for the compound. Some NOEs might have been 
removed in the compilation process, e.g., because there were errors or 
inconsistencies (string) 
NOEs removed for quality reasons: Reasons why some published NOEs were removed 
(string) 
raw_NOE columns: Contains information on what the column in the raw NOE file 
contains 
raw_NOE conversion factor: Conversion factor to convert the literature NOE values 
to Angstrom 

 
In addition, every compound has a raw NOE file. This is a .csv file containing the NOEs with 
the atom identifiers reported in the paper. However, this file does not include NOE values 
that were removed for quality reasons (see above). 
 
raw_NOEs/[ID].csv: 
columns 1, 2: atom identifiers, as reported in the publication. 
Columns 3, 4, …: NOE values, as reported in the paper. The type of column 
(distance, upper bound, lower bound, are described in the raw_NOE columns property. 
A conversion factor to Angstroms is in raw_NOE conversion factor) 

 
Further, every compound has a reference topology, given as .pdb, .mol2 and amber 
.prmtop file. 
  
Topologies/[ID].xxx 
 
In addition, every compound has a processed NOE .json file, which contains the 
converted NOEs that match the topology. 
 
Processed_NOEs/[ID].json 
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MOLECULAR DYNAMICS SIMULATIONS 
SI TEXT S3: MACROCONF WORKFLOW: SETUP OF MD SIMULATIONS 
Each MD simulation is labelled with a hash that uniquely identifies the simulation based on 
the input parameters specified in the tabular input file.  
 

 
Figure S2: Top: example tabular input for the MacroConf workflow MD module. For convenience, multiple 
different parameters can be set in the same row. Bottom: as part of the workflow, a hash for every 
distinct parameter set / simulation run is computed. 

MD topologies are created by the Snakemake rules ‘md_build_leap’ and ‘md_make_topology’. 
The ‘md_build_leap’ rule creates a leap file that is then run by the ‘md_make_topology’ rule to 
produce AMBER topologies. Since tleap does not automatically recognize head-tail cyclic 
bonds, the head-tail cyclic bond was added for head-tail cyclic peptides during this process in 
tleap. After adding the ring-closing bond, the system was then solvated with the appropriate 
solvent to match the NMR solvent in octahedral solvent boxes.  
 
For technical details about the implementation of the MD simulations in the MacroConf 
workflow, we refer the reader to the documentation, which can be found at 
https://github.com/bigginlab/Macroconf/blob/public/docs/MD.md.  

 

SI TEXT S4: CLUSTERING OF MD SIMULATIONS 
 
Many structures found during an MD simulation are qualitatively redundant with only minor 
coordinate changes. We clustered the simulation trajectories to identify representative 
conformations. As in Cipcigan, Smith [1], we used t-SNE (with a perplexity of 50, a learning 
rate of 400, and 2000 timesteps) as the dimensionality reduction method to better separate 
different structures. For this, we used the reduced dihedral angles as input features. We then 
clustered with the density based spatial clustering of applications with noise (DBSCAN) 
algorithm to identify different clusters in the t-SNE representation. The resulting clusters for 
compound 22 in a 2000 ns GaMD simulation in aqueous solvent are shown in Figure S3. 
Figure S4 shows which cluster is occupied over time. Frequent changes between different 
clusters and re-visiting of most clusters indicated convergence. 
 

Compound Method Solvent Simtime repeats
22 cMD, 

GaMD, 
aMD

H2O 2000 1

hash Compound method Solvent Simtime repeat
ea902b72 22 GaMD H2O 2000 1

734cdc50 22 cMD H2O 2000 1

bb375067 22 aMD H2O 2000 1

hash = !({parameters})
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To get a representative structure for each cluster, we averaged the cartesian coordinates of 
all structures belonging to the same cluster. To avoid unphysical representative cluster 
structures, we selected the closest (lowest RMSD) observed structure in the simulation 
trajectory as the representative structure for each cluster. Finally, we compared the obtained 
representative cluster structures to the PCA representation to see if minima coincide with the 
representative cluster structures (see Figure 4A of the main manuscript). 

 
Figure S3 Structural clusters of the MD trajectory in t-SNE representation. The 3 most populated cluster 
are labelled with the % of snapshots associated with the cluster, relative to all snapshots from the MD 
trajectory. 
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Figure S4: Cluster occupancy over time (snapshots). Most clusters are re-visited several times. 

 

SI TEXT S5: CONVERGENCE OF MD SIMULATIONS 
 
To ensure convergence, several metrics that capture structural diversity were tracked over the 
course of the simulation. In Figure S5, we considered RMSD of atomic positions of different 
atom types in reference to the first simulation frame. In Figure S6, we followed the 𝜔-dihedral 
angles, which indicates whether any cis/trans flips happen in the backbone. Structures of 
different RMSDs are revisited several times throughout the 2000 ns GaMD simulation of 
compound 22, which indicates convergence. Similar behaviour is observed for the 𝜔-dihedral 
angles: several cis/trans flips of some dihedral angles are observed multiple times, also 
indicating convergence. 
 
We repeated many MD simulations with increasing simulation times to ensure convergence. 
Viewing multiple simulations in the same dihedral PCA space of a reference simulation 
allowed to compare sampling of different simulations. Observing structures that are present in 
one but not in another identical repeat simulation implies the simulations are not converged. 
Figure S7 shows different GaMD simulations of compound 22 with different total simulation 
times. Increasing the simulation time from 1000 ns to 2000 ns only changed the PES 
landscape minimally, whereas shorter simulations, such as 100 ns, did not converge and 
cover only a fraction of the PES surface of the longer simulations. 
 
The GaMD simulations for compound 22 converged at 1000 ns simulation time. To ensure 
convergence, we ran most simulations for 2000 ns. Other solvents might take different 
simulation times to converge.  As an additional convergence check, we performed 2000 ns 
GaMD simulations with different starting structures. We used the structural clusters identified 
in our analysis of the 2000 ns GaMD run in H2O as starting structures. Figure S8 shows 
comparable dPCA-PES for all replica runs, therefore we consider the simulations converged. 
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Figure S5: RMSD of different atom types to assess convergence. 

 

 
Figure S6: Omega dihedral angles of the cyclic peptide to assess convergence. 

 
Figure S7 dPCA PES of 2000, 1000, 100 ns GaMD simulations in H2O. The middle and right plots are 
within the PCA space of the left plot. 
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Figure S8: Extended convergence check, showing the reference simulation (top left), and replica 
simulations starting at every cluster that was identified in the reference simulation. The respective starting 
structures of the replica (clusters in the reference) are denoted with a black x. All replica simulations are 
in the same dihedral PCA space as the reference simulation for comparison. The axes show the first and 
second principal components. 

To investigate the required sampling times in a more rigorous way, we introduce a metric 
termed convergence time. We define the convergence time of a simulation as the time at 
which 95% of the final d-PCA surface is reproduced. To compute the convergence time, we 
divide the final d-PCA surface into a (10 x 10) grid and track the fraction of occupied grid cells 
every 100 ns relative to the total simulation (see Figure S10). An exemplary convergence plot 
for compound 22 is shown in Figure S9. The convergence time for this simulation is ~ 500 ns.  
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Figure S9: Convergence analysis of a 2000 ns GaMD simulation of compound 22. 
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Figure S10: Shown is the dPCA grid (10x10) that was used for the convergence analysis. Values of 0 
indicate that a grid cell was not visited, values of 1 indicate that the simulation visited a grid cell. 

 
We determined the convergence time for all GaMD simulations to investigate if the total 
simulation time of 2000 ns could have been reduced. Figure S11 shows a histogram of the 
convergence time for all compounds simulated. We observe a wide-spread in convergence 
times. The mean convergence time is 830 ± 530 ns. This indicates that the simulation time of 
2000 ns could have been reduced for some compounds. However, other compounds required 
almost the full simulation times to reach convergence in their respective d-PCA space. 
Compounds 27 (penta-peptide), 30 (penta-peptide), 49 (hexa-peptide), 58 (hepta-peptide), 61 
(nona-peptide) required the longest convergence times.  
 



 12 

 
Figure S11: Shown is a histogram of the convergence time of all GaMD simulations performed.  

SI TEXT S6: COMPUTING NOE DISTANCE CONSTRAINTS 
Figure S12 shows the reweighted NOE distances - energy profiles. The 1d reweighting was 
performed separately for each NOE pair. Due to the reweighting and 𝑟!" averaging, simulated 
NOE distances are not symmetrically distributed around the computed average. Mirroring 
Kamenik, Lessel [2] we computed population weighted RMSDs from the mean NOE distance 
separately for values above and below the mean. These two values give an indication of the 
variance of the mean of the simulated NOE distances. These values are not indicative of the 
full fluctuations observed in the MD simulations, which can be inferred from Figure S12. 
 



 13 

 
Figure S12: Potential of mean force (PMF) plotted against distances (in Angstroms). PMF are derived via 
reweighing of corresponding NOE distances. 

 

SI TEXT S7: OUTLIERS 24, 49 
Shown below are two compounds (24, 49) for which cMD only sampled the trans isomers. 
GaMD, however, was able to sample both cis and trans structures.  
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Figure S13: Dihedral PCA plots of compound 24. A: GaMD simulations sample both cis and trans 
isomers. B: cMD only samples the trans isomers. 

 

Figure S14: Dihedral PCA plots of compound 49. A: GaMD simulations sample both cis and trans 
isomers. B: cMD only samples the trans isomers.  
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METHOD COMPARISON 
SI TEXT S8: SIGNIFICANCE TESTS FOR METHOD COMPARISONS 
 
To test for statistically significant performance differences between simulation methods, we 
used the paired Student’s t-test and Wilcoxon signed-rank tests to consider differences in 
mean and mean signed rank, respectively. P-Values of these tests are shown in the following 
Figures. For all statistical tests, NaN values (i.e., when no conformers existed) were omitted. 
 
As described in the main manuscript, we applied the method of Holm to control the family-
wise error rate, which results in scaled p-values. The method of Holm was applied separately 
for each metric considered (% of NOE distance restraints satisfied and RMSD) but combined 
for the two statistical tests applied. In total, we compared 8 different methods, which led us to 
perform 56 statistical tests per metric. In the below figures, we show the p-values of statistical 
tests performed as 2d heatmaps. The upper triangular part of each heatmap shows the via 
the method of Holm corrected p-values, the lower triangular part shows the uncorrected p-
values. 
 

 
Figure S15: Significance tests for comparison of Gaussian accelerated MD vs conventional MD (Figure 8 
in the main manuscript). The upper triangular part shows the corrected p-values (method of Holm), the 
lower triangular part shows the uncorrected p-values. 
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Figure S16: Significance tests for comparison of best cheminformatics structures vs MD ensembles 
(Figure 9 in the main manuscript). The upper triangular part shows the corrected p-values (method of 
Holm), the lower triangular part shows the uncorrected p-values. 
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Figure S17: Significance tests for comparison of best cheminformatics structures vs most populated 
cluster from MD (Figure 10 in the main manuscript). The upper triangular part shows the corrected p-
values (method of Holm), the lower triangular part shows the uncorrected p-values. 
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Figure S18: Significance tests for comparison of bundles of cheminformatics structures (Omega 
Macrocycle) vs MD ensembles (Figure 11A in the main manuscript). The upper triangular part shows the 
corrected p-values (method of Holm), the lower triangular part shows the uncorrected p-values. 
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Figure S19: Significance tests for comparison of bundles of cheminformatics structures (RDKit ETKDG) 
vs MD ensembles (Figure 11B in the main manuscript). The upper triangular part shows the corrected p-
values (method of Holm), the lower triangular part shows the uncorrected p-values. 
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Table S1: Percentage of NOE distance restraints satisfied values [%] for different MD 
and cheminformatics methods.  

 
 mean std min 50% max 
ensemble GaMD 74.41 18.73 20.83 75.76 100.00 
cluster GaMD 66.76 22.50 20.83 68.49 94.19 
ensemble cMD 67.10 20.77 31.25 65.52 100.00 
cluster cMD 63.75 23.51 20.83 59.09 95.83 
Omega best 78.26 15.35 47.83 80.00 100.00 
Omega LICUV 10 78.41 17.48 39.13 80.85 100.00 
Omega low_energy 10 70.64 19.09 29.17 72.50 100.00 
Omega random 1 59.14 19.05 28.33 62.00 85.42 
Omega random 10 70.89 18.82 33.04 75.81 100.00 
Omega NAMFIS 10 79.76 16.33 42.86 86.96 100.00 
RDKit best 77.22 16.96 43.48 80.00 100.00 
RDKit LICUV 10 74.97 20.12 21.74 80.65 100.00 
RDKit low_energy 10 66.15 22.52 20.83 74.24 100.00 
RDKit random 1 58.86 19.96 25.65 59.30 92.00 
RDKit random 10 68.65 20.36 16.52 72.94 100.00 
RDKit NAMFIS 10 75.76 20.60 26.09 83.33 100.00 

 
 
Table S2: RMSD values [Å] for different MD and cheminformatics methods. 
 
 mean std min 50% max 
ensemble GaMD 0.62 0.35 0.19 0.46 1.34 
cluster GaMD 0.73 0.27 0.23 0.74 1.26 
ensemble cMD 0.75 0.29 0.26 0.70 1.29 
cluster cMD 0.84 0.26 0.42 0.76 1.46 
Omega best 0.54 0.30 0.21 0.38 1.17 
Omega LICUV 10 0.51 0.28 0.22 0.37 1.27 
Omega low_energy 10 0.60 0.32 0.20 0.44 1.37 
Omega random 1 0.97 0.44 0.42 0.81 1.94 
Omega random 10 0.62 0.34 0.20 0.49 1.37 
Omega NAMFIS 10 0.48 0.30 0.16 0.33 1.23 
RDKit best 0.53 0.29 0.24 0.39 1.14 
RDKit LICUV 10 0.55 0.33 0.23 0.36 1.37 
RDKit low_energy 10 0.68 0.41 0.22 0.49 1.64 
RDKit random 1 1.01 0.47 0.52 0.75 2.16 
RDKit random 10 0.64 0.38 0.25 0.45 1.40 
RDKit NAMFIS 10 0.54 0.37 0.16 0.33 1.44 
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SI TEXT S9: CHEMINFORMATICS CONFORMER GENERATORS: BUNDLE SIZE 
EFFECTS & DISTRIBUTIONS OF NOE METRICS 

 
When comparing different bundling methods in [3], a bundle size of 10 was chosen. However, 
different bundle sizes can also impact the performance. Figure S20 shows the effect of 
different bundle sizes and methods for compound 22 and Omega Macrocycle. For a bundle 
size of 1, LICUV and NAMFIS coincide, since they both select the conformer, which best 
agrees with the experimental NOE values.  As can be seen from the distribution of the % of 
NOE distance restraints satisfied metric for all produced conformers in Figure S21, the best 
conformer selected in Figure S20 makes up the very tail of the distribution, which is centred 
around 0.45 % of NOE distance restraint satisfied values. 
 

 
Figure S20: Compound 22, Omega Macrocycle. Comparison of different bundling methods and bundle 
sizes.  

 
Figure S21: Compound 22, Omega Macrocycle. NOE metrics were computed for each produced conformer 
separately. Shown are the resulting distributions over the different NOE metrics.  
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SI TEXT S10: EFFECT OF DIFFERENT RE-WEIGHTING METHODS OF GAMD 
 
To produce physical averages from biased GaMD trajectories, reweighting is required. For the 
main analysis, GaMD simulations were reweighted via Maclaurin series reweighting. However, 
Boltzmann reweighting is also a viable reweighting method, although it tends to be noisier. In 
Figure S22, we compare the two reweighting methods for all compounds simulated. Maclaurin 
reweighting of the NOEs leads to better agreement with the experimentally observed NOEs, 
compared to Boltzmann reweighting. As can be seen from Fig. S22. these differences are 
statistically significant. 
 

 
Figure S22: Comparison of GaMD ensembles, obtained via Maclaurin series reweighting (blue), and via 
Boltzmann reweighting (ensemble GaMDbol, orange). Maclaurin series reweighting leads to better 
agreement with the experimentally observed NOEs. 
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Figure S23: Significance tests for Maclaurin and Boltzmann reweighting (Figure S22 above).  

 

SI TEXT S11: EFFECT OF A STEPWISE RMSD METRIC 
 
The two main metrics we use to assess how well the conformer generators agree with the 
experimental NOE data are % of NOE distance restraints satisfied and RMSD. The former 
metric takes experimentally reported bounds into account, however not in a quantitative way. 
The latter metric measures more quantitatively how far the simulated NOEs deviate from the 
reference values, but it does not consider the experimental bounds. To combine the two 
approaches, we adopt a stepwise RMSD definition: 
 
RMSD = {0 if within bounds, > 0 if outside bounds. 
 
This metric should provide a more quantitative measure of NOE violations. We observe that 
the stepwise RMSD metric is similar to the % of NOE distance restraints satisfied metric: The 
cMD ensembles perform better than the GaMD ensembles in this metric, as for % of NOE 
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distance restraints satisfied. Alike to the % of NOE distance restraints satisfied metric; this 
difference is not statistically significant (see Fig. 9 and S17; and S24, S25 below). 
As for comparing cheminformatics conformer generators to the MD methods (Fig. 10, S16), 
the stepwise RMSD again performs equivalently to the % of NOE distance restraints satisfied 
metric (Fig. S26, S27). 
 

 
 
Figure S24: Comparison of the stepwise RMSD metric to the % of NOE distance restraints satisfied metric. 
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Figure S25: Significance tests for comparison of the stepwise RMSD metric to the % of NOE distance 
restraints satisfied metric. The upper triangular part shows the corrected p-values (method of Holm), the 
lower triangular part shows the uncorrected p-values. Both metrics perform similar, the stepwise RMSD 
metric shows significant differences between the GaMD ensembles and Omega/RDKit, which are not 
significant with the % of NOE distance restraints satisfied metric. 
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Figure S26: Comparison of the stepwise RMSD metric to the RMSD metric. 
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Figure S27: Significance tests for comparison of the stepwise RMSD metric to the RMSD metric. The upper 
triangular part shows the corrected p-values (method of Holm), the lower triangular part shows the 
uncorrected p-values. Both metrics perform similar, the stepwise RMSD metric shows significant 
differences between the GaMD ensembles and Omega/RDKit, which are not significant with the RMSD 
metric. 

 

SI TEXT S12: NOE COVERAGE FOR VARYING PEPTIDE SEQUENCE LENGTHS 
 
Performance of MD and cheminformatics conformer generators varies between different 
compounds. To investigate a possible dependence on the sequence length, we show how the 
% of NOE distance restraints satisfied and RMSD metrics differ for subsets of the MacroConf 
datasets in Figure S28. However, we would like to highlight that comparisons between 
different subsets are problematic for several reasons: 1. The MacroConf dataset is 
imbalanced, there are many more compounds with shorter sequence lengths (see Figure 2B), 
2. Different compounds were measured in different experimental conditions and to varying 
quality levels. This makes NOE violations not comparable across different compounds. 3. 
Different NOEs can have varying restraining power, which makes a direct comparison 
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between subsets of compounds problematic. We can however consider relative performance 
differences within subsets for different methods. As can be seen in Figure S28, there are no 
performance variations between methods for different subsets of compounds (sequence 
lengths = 5, 6, > 6). 
 
 

 
Figure S28: Shown are 3 subsets of the simulated compounds with sequence lengths of 5, 6, and 7-12. 
Between different methods, there are no clear performance differences. 

 
 

SI TEXT S13: COMPARISON OF SOLVATION PROPERTIES BY DIFFERENT 
METHODS 

 
We compare solvent accessible and polar surface area (SASA, PSA) of MD with the 
cheminformatics conformer generators. For GaMD, we report the most likely value of SASA 
and PSA after reweighting. For cMD, we report the mean value of SASA and PSA. The 
cheminformatics methods produce conformers that generally agree with the values from 
GaMD and cMD simulations.  
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Figure S29: Shown are histograms of the Solvent Accessible Surface Area (SASA) for the Omega 
Macrocycle conformer generator. The dashed lines show the most likely SASA value for GaMD after 
reweighting, and the mean SASA value for cMD. For most compounds, the values from the MD simulations 
are reproduced by the Omega conformer generator. 
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Figure S30: Shown are histograms of the Solvent Accessible Surface Area (SASA) for the RDKit ETKDGv3 
conformer generator. The dashed lines show the most likely SASA value for GaMD after reweighting, and 
the mean SASA value for cMD. For most compounds, the values from the MD simulations are reproduced 
by the RDKit conformer generator. 
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Figure S31: Shown are histograms of the Polar Surface Area (PSA) for the Omega Macrocycle conformer 
generator. The dashed lines show the most likely PSA value for GaMD after reweighting, and the mean 
SASA value for cMD. For most compounds, the values from the MD simulations are reproduced by the 
Omega conformer generator. 
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Figure S32: Shown are histograms of the Polar Surface Area (PSA) for the RDKit ETKDGv3 conformer 
generator. The dashed lines show the most likely PSA value for GaMD after reweighting, and the mean 
SASA value for cMD. For most compounds, the values from the MD simulations are reproduced by the 
RDKit conformer generator. 

THE MACROCONF WORKFLOW 
SI TEXT S14: EXTERNAL DEPENDENCIES AND INSTALLATION 
 
The MacroConf package requires lots of external dependencies. Wherever possible, 
these are automatically installed via Snakemake through the conda package 
manager. Definitions of the conda environments are provided in the workflow/envs 
folder. The following additional programs are required: 
 

• Conda: https://docs.conda.io/projects/conda/en/stable/user-
guide/install/index.html 
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• Amber: https://ambermd.org/Installation.php 
• OpenEye toolkits and OpenEye Omega: https://www.eyesopen.com/omega, 

https://docs.eyesopen.com/applications/gettingstarted.html 

DATA AVAILABILITY 
The MacroConf dataset is publicly available. All simulation data can be found at: 

https://github.com/D-Cru/Macroconf 
 
CODE AVAILABILITY 
An open-source software implementation of the computational workflow used to 
simulate and analyse the MacroConf dataset is available at https://github.com/D-
Cru/Macroconf. 
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