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1 Baseline SSVAE Model Cost Function Derivation

2 Our work mostly utilizes the cost function originally developed by Kang, et al based on the work 

3 by Kingma, et al. The regression loss component  from Equation 3 in the main text is a 𝑅𝑆𝑆𝑉𝐴𝐸(𝑥,𝑦)

4 straightforward regression square loss function and will not be discussed in more detail. 

5 The VAE cost function for the labelled entries (Equation 1) originates from Equation 1 in Kang 

6 paper and Equation 6 in Kingma paper. It is described that the variational lower bound  of the ‒ 𝐿(𝑥,𝑦)

7 log-probability of a labelled instance  is:(𝑥,𝑦)

8

ln 𝑝(𝑥,𝑦) ≥ 𝐸𝑞𝜙(𝑧|𝑥,𝑦)[ln 𝑝𝜃(𝑥|𝑦,𝑧) + ln 𝑝(𝑦) + ln 𝑝(𝑧) ‒ ln 𝑞𝜙(𝑧|𝑥,𝑦)]

= 𝐸𝑞𝜙(𝑧|𝑥,𝑦)[ln 𝑝𝜃(𝑥|𝑦,𝑧)] + ln 𝑝(𝑦) ‒ 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥,𝑦)||𝑝(𝑧))

=‒ 𝐿(𝑥,𝑦)

𝐿(𝑥,𝑦) =‒ 𝐸𝑞𝜙(𝑧|𝑥,𝑦)[ln 𝑝𝜃(𝑥|𝑦,𝑧)] ‒ ln 𝑝(𝑦) + 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥,𝑦)||𝑝(𝑧))

9 The first term is simply the cross-entropy loss. When summed over all the  fully labelled samples in 𝑛𝐿

10 the minibatch and the  dimension corresponding to our molecule SMILES one-hot vector 𝑛𝑥

11 representation (see Kang paper for detail), the first term is converted to (1):

12
‒

𝑛𝐿

∑
𝑖 = 1

𝑛𝑥

∑
𝑗 = 1

(𝑥𝑖,𝑗ln 𝑥𝐷,𝑖,𝑗 + (1 ‒ 𝑥𝑖,𝑗)ln (1 ‒ 𝑥𝐷,𝑖,𝑗))

13 For the second term, we first remember that  is a multivariate normal distribution with mean 𝑝(𝑦)

14 matrix  ( ) and covariance matrix  ( ) constructed from all the available training labels in 𝐸 𝑛𝑦 × 1 𝐶 𝑛𝑦 × 𝑛𝑦

15 the dataset, where  is the dimension of . The multivariate probability distribution function is:𝑛𝑦 𝑦

16
𝑝(𝑦) =

1

(2𝜋)
𝑛𝑦𝑑𝑒𝑡(𝐶)

𝑒
‒

1
2

(𝑦 ‒ 𝐸)𝑇𝐶 ‒ 1(𝑦 ‒ 𝐸)

17 When the term  is expanded for all molecule labels  in the minibatch, we have (2):( ‒ ln 𝑝(𝑦)) 𝑦𝐿

18

𝑛𝐿

∑
𝑖 = 1

1
2(𝑛𝑦ln 2𝜋 + ln (𝑑𝑒𝑡(𝐶)) +

𝑛𝑦

∑
𝑗 = 1

(𝑦𝐿,𝑖,𝑗 ‒ 𝐸𝑗)
𝑛𝑦

∑
𝑘 = 1

(𝑦𝐿,𝑖,𝑘 ‒ 𝐸𝑘)𝐶 ‒ 1
𝑘,𝑗 )

19



1 For the third term, we recall that the definition of Kullback-Leibler divergence loss is:

2
𝐷𝐾𝐿(𝑃||𝑄) = ∑

𝑥 ∈ 𝜒

𝑃(𝑥)ln (𝑃(𝑥)
𝑄(𝑥))

3 We also remember that the prior distribution  and approximated posterior distribution 𝑝(𝑧) = 𝑁(𝑧|0,𝐼)

4  are used in the Kang paper. Before we proceed with the 𝑞𝜙(𝑧|𝑥,𝑦) = 𝑁(𝑧|𝜇𝜙(𝑥,𝑦),𝑑𝑖𝑎𝑔(𝜎2
𝜙(𝑥,𝑦)))

5 derivation, recall the Gaussian function integral formulas ,  and 

∞

∫
‒ ∞

𝑒 ‒ 𝛼𝑥2
𝑑𝑥 = 𝜋 𝛼

∞

∫
‒ ∞

𝑥𝑒 ‒ 𝛼𝑥2
𝑑𝑥 = 0

6 . Also recall that ,  and , and 

∞

∫
‒ ∞

𝑥2𝑒 ‒ 𝛼𝑥2
𝑑𝑥 =

1
2 𝜋 𝛼3

∞

∫
‒ ∞

𝑒 ‒ 𝛼(𝑥 ‒ 𝛽)2
𝑑𝑥 = 𝜋 𝛼

∞

∫
‒ ∞

(𝑥 ‒ 𝛽)𝑒 ‒ 𝛼(𝑥 ‒ 𝛽)2
𝑑𝑥 = 0

7  hold for the constants  and . For the sake of clarity, in the following 

∞

∫
‒ ∞

(𝑥 ‒ 𝛽)2𝑒 ‒ 𝛼(𝑥 ‒ 𝛽)2
𝑑𝑥 =

1
2 𝜋 𝛼3

𝛼 𝛽

8 derivation we will drop , , and the subscript  from the functions and just use , with  being its 𝑥 𝑦 𝜙 𝑧 𝑛𝑧

9 dimension. Furthermore, note that the prior and approximated posterior distributions are 

10 independent between different  dimensions, so we can process them individually.  and  are the 𝑧 𝑖 𝑗

11 labelled molecule and the  dimension indexes, and we will drop this subscript in the integral for 𝑧

12 clarity:

13

𝑞(𝑧𝑖,𝑗) =
1

𝜎𝑖,𝑗 2𝜋
𝑒

‒
(𝑧𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗

𝑝(𝑧𝑗) =
1
2𝜋

𝑒
‒

𝑧𝑗
2

2



1 The readers can 

𝐷𝐾𝐿(𝑞(𝑧𝑖,𝑗)||𝑝(𝑧𝑗)) =
∞

∫
‒ ∞

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑧 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 ln ( 1

𝜎𝑖,𝑗
𝑒

𝑧2

2
 ‒  

(𝑧 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )𝑑𝑧

=
1

𝜎𝑖,𝑗 2𝜋

∞

∫
‒ ∞

𝑒

‒
(𝑧 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 ( ‒ ln 𝜎𝑖,𝑗 +

(𝑧 ‒ 𝜇𝑖,𝑗)2

2
+ (𝑧 ‒ 𝜇𝑖,𝑗)𝜇𝑖,𝑗 +

𝜇𝑖,𝑗
2

2
‒

(𝑧 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗

)𝑑𝑧

=‒ ln 𝜎𝑖,𝑗 +
𝜎 2

𝑖,𝑗

2
+ 0 +

𝜇𝑖,𝑗
2

2
‒

1
2

2 convince themselves that repeating the exercise above using the joint distribution  will 𝐷𝐾𝐿(𝑞(𝑧𝑖)||𝑝(𝑧))

3 simply generate the summation of the term over  (the  dimensions of ). After we consider the 𝑗 𝑛𝑧 𝑧

4 summation over  and  and put back the  notation on  and  for clarity, we get the following term 𝑖 𝑗 𝑧 𝜇 𝜎

5 (3), completing Equation 1 of the main text:

6
‒

𝑛𝐿

∑
𝑖 = 1

𝑛𝑧

∑
𝑗 = 1

1
2(1 + ln 𝜎(𝑧𝑖,𝑗)2 ‒ 𝜇(𝑧𝑖,𝑗)2 ‒ 𝜎(𝑧𝑖,𝑗)2)

7 The VAE cost function for the unlabelled molecule entries (Equation 2) originates from Equation 

8 2 in Kang paper and Equation 7 in Kingma paper. It is described that the variational lower bound 

9  of the log-probability of an unlabelled instance  is:‒ 𝑈(𝑥,𝑦) (𝑥)

10

ln 𝑝(𝑥) ≥ 𝐸𝑞𝜙(𝑦,𝑧|𝑥)[ln 𝑝𝜃(𝑥|𝑦,𝑧) + ln 𝑝(𝑦) + ln 𝑝(𝑧) ‒ ln 𝑞𝜙(𝑦,𝑧|𝑥)]

= 𝐸𝑞𝜙(𝑦,𝑧|𝑥)[ln 𝑝𝜃(𝑥|𝑦,𝑧) + ln 𝑝(𝑦) ‒ ln 𝑞𝜙(𝑦|𝑥) + ln 𝑝(𝑧) ‒ ln 𝑞𝜙(𝑧|𝑥,𝑦)]

= 𝐸𝑞𝜙(𝑦,𝑧|𝑥)[ln 𝑝𝜃(𝑥|𝑦,𝑧)] ‒ 𝐷𝐾𝐿(𝑞𝜙(𝑦|𝑥)||𝑝(𝑦)) ‒ 𝐸𝑞𝜙(𝑦|𝑥)[𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥,𝑦)||𝑝(𝑧))]
=‒ 𝑈(𝑥)

𝑈(𝑥) =‒ 𝐸𝑞𝜙(𝑦,𝑧|𝑥)[ln 𝑝𝜃(𝑥|𝑦,𝑧)] + 𝐷𝐾𝐿(𝑞𝜙(𝑦|𝑥)||𝑝(𝑦)) + 𝐸𝑞𝜙(𝑦|𝑥)[𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥,𝑦)||𝑝(𝑧))]

11 The derivation for the first and the third term are identical to their counterparts for the fully 

12 labelled molecules. They will correspondingly generate (4):

13
‒

𝑛𝑈

∑
𝑖 = 1

𝑛𝑥

∑
𝑗 = 1

(𝑥𝑖,𝑗ln 𝑥𝐷,𝑖,𝑗 + (1 ‒ 𝑥𝑖,𝑗)ln (1 ‒ 𝑥𝐷,𝑖,𝑗))

14 and (5):



1
‒

𝑛𝑈

∑
𝑖 = 1

𝑛𝑧

∑
𝑗 = 1

1
2(1 + ln 𝜎(𝑧𝑖,𝑗)2 ‒ 𝜇(𝑧𝑖,𝑗)2 ‒ 𝜎(𝑧𝑖,𝑗)2)

2 The second loss function term related to unlabelled  is significantly more complicated. Recall 𝑦

3 that we have the multivariate probability prior distribution function for  based on the fully labelled 𝑦

4 molecules:

5
𝑝(𝑦) =

1

(2𝜋)
𝑛𝑦𝑑𝑒𝑡(𝐶)

𝑒
‒

1
2

(𝑦 ‒ 𝐸)𝑇𝐶 ‒ 1(𝑦 ‒ 𝐸)

6 Also recall that we have taken the assumption of normal posterior distribution for the sampled  𝑦

7 generated by the predictor  below.  and  correspond to unlabelled 𝑞𝜙(𝑦|𝑥) = 𝑁(𝑦|𝜇𝜙(𝑥),𝑑𝑖𝑎𝑔(𝜎2
𝜙(𝑥))) 𝑖 𝑗

8 molecule and  dimension indices, and we have dropped  from  and  for clarity:𝑦 𝑦 𝜇 𝜎

9
𝑞(𝑦𝑖,𝑗) =

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗

10 The complex form for the joint distribution of  means we no longer have the luxury of separating 𝑝(𝑦)

11 the integrals based on the label space dimension the way we have done for .𝑝(𝑧)

12

𝐷𝐾𝐿(𝑞(𝑦𝑖)||𝑝(𝑦)) =
∞

∫
‒ ∞( 𝑛𝑦

∏
𝑗 = 1

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )ln ( 𝑑𝑒𝑡(𝐶)

∏
𝑗

𝜎𝑖,𝑗

𝑒
(1
2

(𝑦 ‒ 𝐸)𝑇𝐶 ‒ 1(𝑦 ‒ 𝐸) ‒ ∑
𝑗

(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗

))𝑑𝑦𝑖

=
∞

∫
‒ ∞( 𝑛𝑦

∏
𝑗 = 1

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )(ln

𝑑𝑒𝑡(𝐶)

∏
𝑗

𝜎𝑖,𝑗

+
1
2

(𝑦 ‒ 𝐸)𝑇𝐶 ‒ 1(𝑦 ‒ 𝐸) ‒

𝑛𝑦

∑
𝑗 = 1

(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )𝑑𝑦𝑖

13 Note that this integration is performed over the  dimensions of . We separate the terms for clarity.𝑛𝑦 𝑦𝑖

14 The first term in the parenthesis is simply a constant, and integrating over it generates (6):

15

∞

∫
‒ ∞( 𝑛𝑦

∏
𝑗 = 1

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )ln

𝑑𝑒𝑡(𝐶)

∏
𝑗

𝜎𝑖,𝑗

𝑑𝑦𝑖 =
1
2

ln (𝑑𝑒𝑡(𝐶)) ‒
1
2

𝑛𝑦

∑
𝑗 = 1

ln 𝜎 2
𝑖,𝑗



1 The third term in the parenthesis consists of  terms. For each of them (let’s say ), the following 𝑛𝑦 𝑗 = 𝑘

2 situation applies:

3

‒
∞

∫
‒ ∞( 𝑛𝑦

∏
𝑗 = 1

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗

𝑑𝑦𝑖

=‒
∞

∫
‒ ∞(∏𝑗 ≠ 𝑘

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )𝑑𝑦𝑖,𝑗 ≠ 𝑘

∞

∫
‒ ∞( 1

𝜎𝑖,𝑘 2𝜋

(𝑦𝑖,𝑘 ‒ 𝜇𝑖,𝑘)2

2𝜎 2
𝑖,𝑘

𝑒

‒
(𝑦𝑖,𝑘 ‒ 𝜇𝑖,𝑘)2

2𝜎 2
𝑖,𝑘 )𝑑𝑦𝑖,𝑘 =‒ (1

𝑛𝑦 ‒ 1)1
2

4 After summation over , we simply get , which is the summation term (7).𝑗
‒

𝑛𝑦

2

5 Finally, for the third term in the parenthesis, we recognize that it is simply a double summation over 

6  terms.  𝑛2
𝑦

7

(𝑦 ‒ 𝐸)𝑇𝐶 ‒ 1(𝑦 ‒ 𝐸)

=

𝑛𝑦

∑
𝑗 = 1

𝑛𝑦

∑
𝑘 = 1

𝐶 ‒ 1
𝑘,𝑗 (𝑦𝑖,𝑗 ‒ 𝐸𝑗)(𝑦𝑖,𝑘 ‒ 𝐸𝑘) =

𝑛𝑦

∑
𝑗 = 1

𝑛𝑦

∑
𝑘 = 1

𝐶 ‒ 1
𝑘,𝑗 ((𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)(𝑦𝑖,𝑘 ‒ 𝜇𝑖,𝑘) + (𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)(𝜇𝑖,𝑘 ‒ 𝐸𝑘) + (𝜇𝑖,𝑗 ‒ 𝐸𝑗)(𝑦𝑖,𝑘 ‒ 𝜇𝑖,𝑘) + (𝜇𝑖,𝑗 ‒ 𝐸𝑗)(𝜇𝑖,𝑘 ‒ 𝐸𝑘))

8 Based on the Gaussian function integral formula, remember that the terms  and (𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)(𝜇𝑖,𝑘 ‒ 𝐸𝑘)

9  will contribute 0 to the integral, so we will drop them. (𝜇𝑖,𝑗 ‒ 𝐸𝑗)(𝑦𝑖,𝑘 ‒ 𝜇𝑖,𝑘)

10 When , we have the integral term (8):𝑗 = 𝑘

11

∞

∫
‒ ∞( 𝑛𝑦

∏
𝑗 = 1

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )(1

2
𝐶 ‒ 1

𝑗,𝑗 ((𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2 + (𝜇𝑖,𝑗 ‒ 𝐸𝑗)2))𝑑𝑦𝑖 =
1
2

𝐶 ‒ 1
𝑗,𝑗 𝜎 2

𝑖,𝑗 +
1
2

𝐶 ‒ 1
𝑗,𝑗 (𝜇𝑖,𝑗 ‒ 𝐸𝑗)2

12 When , the first term will additionally generate zero contribution to the integral, and we simply 𝑗 ≠ 𝑘

13 have the integral term (9):

14

∞

∫
‒ ∞( 𝑛𝑦

∏
𝑗 = 1

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )(1

2
𝐶 ‒ 1

𝑘,𝑗 ((𝜇𝑖,𝑗 ‒ 𝐸𝑗)(𝜇𝑖,𝑘 ‒ 𝐸𝑘)))𝑑𝑦𝑖 =
1
2

𝐶 ‒ 1
𝑘,𝑗 (𝜇𝑖,𝑗 ‒ 𝐸𝑗)(𝜇𝑖,𝑘 ‒ 𝐸𝑘)



1 Now that we have all the individual components within the double summation integrated, we can 

2 perform double summation of (8) and (9) to get the integral term (10):

3

∞

∫
‒ ∞( 𝑛𝑦

∏
𝑗 = 1

1
𝜎𝑖,𝑗 2𝜋

𝑒

‒
(𝑦𝑖,𝑗 ‒ 𝜇𝑖,𝑗)2

2𝜎 2
𝑖,𝑗 )(1

2
(𝑦 ‒ 𝐸)𝑇𝐶 ‒ 1(𝑦 ‒ 𝐸))𝑑𝑦𝑖 =

1
2

𝑛𝑦

∑
𝑗 = 1

𝐶 ‒ 1
𝑗,𝑗 𝜎 2

𝑖,𝑗 +
1
2

𝑛𝑦

∑
𝑗 = 1

(𝜇𝑖,𝑗 ‒ 𝐸𝑗)
𝑛𝑦

∑
𝑘 = 1

(𝜇𝑖,𝑘 ‒ 𝐸𝑘)𝐶 ‒ 1
𝑘,𝑗

4 Now that we have all the integral component terms (6), (7), (10) for , after summation over all the 𝑦

5 unlabelled molecules  and putting back the  into  and  for completeness, we have the 𝑛𝑈 𝑦𝑃,𝑖,𝑗 𝜇 𝜎

6 following term (11):

7

𝑛𝑈

∑
𝑖 = 1

1
2(

𝑛𝑦

∑
𝑗 = 1

𝐶 ‒ 1
𝑗,𝑗 𝜎(𝑦𝑃,𝑖,𝑗)2 +

𝑛𝑦

∑
𝑗 = 1

(𝜇(𝑦𝑃,𝑖,𝑗) ‒ 𝐸𝑗)
𝑛𝑦

∑
𝑘 = 1

(𝜇(𝑦𝑃,𝑖,𝑘) ‒ 𝐸𝑘)𝐶 ‒ 1
𝑘,𝑗 ‒ 𝑛𝑦 + ln (𝑑𝑒𝑡(𝐶)) ‒

𝑛𝑦

∑
𝑗 = 1

ln 𝜎(𝑦𝑃,𝑖,𝑗)2)
8 This Kullback-Leibler divergence loss term for  completes our re-derivation of the original baseline 𝑦

9 SSVAE model cost function as implemented by Kang, et al, with (4), (11), and (5) forming the total VAE 

10 loss for the unlabelled molecules in Equation 2 of the main text.

11

12

13

14



1 Impact of ConGen Missing Label Imputation

2

3 We use the same training dataset which we have used in the main text Table 2, containing two 

4 databases: 1) ZINC database with 310k molecules containing , , and , and 2) Materials 𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷

5 Project electrolyte molecule database containing , , and . We trained two different RNN-𝑀𝑜𝑙.𝑊𝑡 𝐼𝐸 𝐸𝐴

6 based ConGen models, one utilizing the mean and covariance table (  and ) imputation (the one used 𝐸 𝐶

7 in the main text), and a second model where such imputation throughout the training is not 

8 performed. Afterward, we perform three different queries: (1)  = 250 ,  = 2.5,  = 5.0 𝑀𝑜𝑙.𝑊𝑡 𝐷𝑎 𝐿𝑜𝑔𝑃 𝐼𝐸

9 , (2)  = 2.5,  = 5.0 , and (3)  = 250 ,  = 2.5,  = 4.0 . For each query task, 𝑒𝑉 𝐿𝑜𝑔𝑃 𝐼𝐸 𝑒𝑉 𝑀𝑜𝑙.𝑊𝑡 𝐷𝑎 𝐿𝑜𝑔𝑃 𝐸𝐴 𝑒𝑉

10 we obtain 1000 molecules (3-5% of generated molecules are invalid) and validate the generated 

11 molecules’  and  using RDKit.  and  are not validated due to the computational costs, 𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝐼𝐸 𝐸𝐴

12 but these conditions are used for the conditional generation tasks in this section because the impact 

13 of imputation only manifests when there are insufficient valid samples for  calculation (such as 𝐶

14 -  pairs). From Supplementary Table 1 below, we can see that imputation has relatively no 𝐿𝑜𝑔𝑃 𝐼𝐸

15 impact on task (1), positive impact on task (2), and negative impact on task (3). It is expected that 

16 imputation helps on task (2), as there is almost no entry overlap to calculate the correlation matrix 

17 entry between  and  (the only two query constraints), making the  matrix with imputation 𝐿𝑜𝑔𝑃 𝐼𝐸 𝐶

18 statistically more meaningful. However, we are also able to find a situation where imputation is 

19 harmful, such as task (3) where the query condition  = 4.0  is near the extreme end of the property 𝐸𝐴 𝑒𝑉

20 label distribution. Future study should be conducted to determine the circumstances where 

21 imputation usage will be beneficial more systematically.

Query RNN Model Type  ( )𝑀𝑜𝑙.𝑊𝑡 𝐷𝑎 𝐿𝑜𝑔𝑃
Imputation 250 ± 4 2.54 ± 0.31

(1)  = 250,  = 2.5,  = 5.0𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝐼𝐸
No imputation 250 ± 4 2.53 ± 0.31

Imputation 314 ± 90 2.54 ± 0.40
(2)  = 2.5,  = 5.0𝐿𝑜𝑔𝑃 𝐼𝐸

No imputation 318 ± 94 2.44 ± 0.43
Imputation 251 ± 8 2.97 ± 0.53

(3)  = 250,  = 2.5,  = 4.0𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝐸𝐴
No imputation 249 ± 8 2.78 ± 0.50

22 Supplementary Table 1 | Impact of missing label imputation on different RNN ConGen multi-constraint 
23 generation queries. Best model for each task query is bolded. For task (1), the two models are equivalent.



1 Impact of ConGen BERT  Variations and Training from Scratch𝛽

2 We use the same training dataset which we have used in the main text Table 2, to train BERT-

3 type ConGen model (transferred ChemBERTa parameters used just like in the main text, with just the 

4 last layer being unfrozen). In the main text, we use  = 10000 for both RNN and BERT-based ConGen, 𝛽

5 the same setting used to train the original RNN-based SSVAE model but fail to see clear model 

6 improvement when BERT-based ConGen is used. Correspondingly, we no longer use BERT-based 

7 ConGen in the subsequent sections as it is computationally more expensive than RNN-based ConGen. 

8 In this supplementary section, we attempt different  settings (1000, 3000, 10000, 30000, and 𝛽

9 100000) to see if we can get transfer learning BERT-based ConGen to clearly perform better than RNN-

10 based ConGen. We also train a BERT-based ConGen from scratch with the original  = 10000 to see its 𝛽

11 impact on performance. From Supplementary Table 2 below, we can see that  = 10000 seems to 𝛽

12 have the best ConGen BERT performance, while training the ConGen BERT from scratch instead of 

13 utilizing transfer learning produces a model with poor regression and conditional generation 

14 capabilities.

Model 𝛽  (Da)𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷  (eV)𝐸𝐴  (eV)𝐼𝐸
Predictor MAE

RNN 10000 2.70 0.05 0.009 0.20 0.16
1000 7.09 0.16 0.020 0.25 0.24
3000 6.24 0.15 0.017 0.22 0.19

10000 6.07 0.15 0.017 0.22 0.19
10000 – 

fresh start 82.6 0.95 0.129 0.85 1.17

30000 6.33 0.16 0.017 0.23 0.20

BERT

100000 6.17 0.15 0.017 0.22 0.19
Conditional Generation

RNN 10000 248 ± 4 2.55 ± 0.23 0.672 ± 0.082 2.06 ± 0.55 6.53 ± 0.62
1000 229 ± 36 2.55 ± 0.61 0.716 ± 0.071 2.26 ± 0.93 6.35 ± 0.45
3000 209 ± 34 2.75 ± 0.64 0.751 ± 0.029 1.36 ± 0.50 6.48 ± 0.24

10000 252 ± 3 2.45 ± 0.36 0.756 ± 0.127 1.80 ± 0.64 6.36 ± 0.41
10000 – 

fresh start 249 ± 6 2.45 ± 0.64 0.659 ± 0.125 1.20 ± 1.15 6.64 ± 0.47

30000 253 ± 9 3.01 ± 0.26 0.790 ± 0.075 1.62 ± 0.75 6.42 ± 0.36

BERT

100000 252 ± 5 2.44 ± 0.46 0.668 ± 0.131 2.39 ± 0.98 6.54 ± 0.74
15 Supplementary Table 2 | Impact of  variation on BERT-based ConGen performance. We use the same 𝛽
16 conditional molecule generation with multiple constraints we use in Table 2 of the main text:  = 250 Da, 𝑀𝑜𝑙.𝑊𝑡
17  = 2.5, and  = 5.e eV.𝐿𝑜𝑔𝑃 𝐼𝐸
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1 ConGen Advantage on Multi-Condition Generative Design

2 It is instructive to contemplate whether enabling multi-condition generative model such as 

3 ConGen is useful or not, compared to single-condition generative models. We use the RNN-based 

4 ConGen model we have trained and utilized in the main text Table 2, with the intent of generating 

5 molecules which have the following simultaneous properties:  = 250,  = 2.5, and  = 𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷

6 0.55. In the multi-constraint approach, we query the model 90,000 times with these simultaneous 

7 constraints. Out of these 90,000 molecules, 4,257 are within the training dataset and we generate a 

8 total of 14,628 unique molecules outside of the training dataset. In the single-constraint approach, we 

9 query the model 30,000 times for each of the single constraint. Out of these 90,000 molecules, 3,928 

10 are within the training dataset and we generate a total of 68,925 unique molecules outside of the 

11 training dataset. Note that multi-constraint ConGen here generates less unique molecules compared 

12 to single-constraint version, but the generated molecule properties are more accurate as we will show 

13 below. Because it is impossible for the model to generate molecule with the same exact properties as 

14 our reference values, we need to decide on an acceptance tolerance criterion. If our tolerance 

15 criterion is 20% relative error, we obtain 5,518 and 4,170 acceptable molecules from the multi-

16 constraint and single-constraint approach respectively, corresponding to 38.7% and 6.1% acceptance 

17 rate for the two approaches. If our tolerance criterion is 10% relative error (stricter), we only obtain 

18 1,354 and 568 acceptable molecules from the multi-constraint and single-constraint approach 

19 respectively, corresponding to 9.5% and 0.8% acceptance rate for the two approaches. It is 

20 straightforward to see the user’s tolerance on the generated molecule properties determine which 

21 approach should be used. If the user has very large tolerance (in extreme case, any molecule property 

22 error is accepted), then the single-constraint approach should be used because the model generates 

23 more diverse and unique molecules. However, if the user has strict requirements on the generated 

24 molecule properties, a multi-constraint approach will generate acceptable molecules with significantly 

25 higher acceptance rate. We demonstrate this result in Supplementary Figure 1 below. It is important 

26 to note that the 10% and 20% relative error acceptance criterion we use here is simply for convenience 



1 purposes. In general, the user should specify the acceptance criterion which makes more sense for 

2 each molecule property in the user application.

3

4 Supplementary Figure 1 | Acceptance rate of multi-constraint ConGen vs single-constraint ConGen. The same 
5 generative model is used for both approaches, but the multi-constraint version is queried 90000 times using the 
6 3 simultaneous constraints while the single-constraint version is queried 30000 times for each of the 3 single 
7 constraints. The single-constraint approach can generate more diverse and unique molecules because it is less 
8 restricted, but the acceptance rate of the generated molecule properties is much lower than the multi-constraint 
9 generative model approach. Both acceptance under the 20% tolerance and the stricter 10% tolerance criterions 
10 are shown.

11



1 ConGen Advantage Compared to SSVAE on Incomplete-Labelled Dataset

2 In the main text, we have mentioned that the primary advantage of ConGen is that it can work 

3 with molecule databases with incomplete labels, which is not suitable for a baseline SSVAE model. 

4 Suppose we would like to utilize the SSVAE model for multi-condition generative modelling tasks using 

5 training molecule databases with incomplete labels regardless, for comparison purposes. We can 

6 perform this task with two different approaches on the SSVAE model before comparing its 

7 performance to a ConGen model trained on the same datasets: 

8 1. Use all molecules with full labels as fully labelled training dataset and designate any 

9 molecules with incomplete labels as fully unlabelled training dataset.

10 2. Train individual SSVAE models with only single-property label each, ensuring that each 

11 SSVAE model can utilize all the training property labels.

12 In the first approach, we allow the SSVAE model to perform multi-constraint molecule 

13 generation, in exchange for a significant loss of property training data label information. It is 

14 impossible to test this approach on the main text’s training datasets because of the extremely low 

15 availability of fully labelled molecules in our dataset. We have instead utilized the full ZINC database 

16 from the main text (containing 310,000 unique molecules) with fully labelled , , and  𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷

17 properties (obtained using RDKit). 300,000 of these molecules are designated as the training dataset, 

18 while the remaining 10,000 molecules are designated as the test dataset. For each property label 

19 column in the training dataset, we randomly de-label 70% of the properties. Consequently, only ~2.7% 

20 of the molecules in our training dataset are fully labelled (8,117 fully labelled + 291,883 fully unlabelled 

21 molecules). This reflects the severe consequence of randomness we typically encounter from available 

22 experimental databases when multiple properties are needed. We train the SSVAE model of Kang, et 

23 al on this dataset, and perform a query to generate 10,000 molecules in multi-constraint mode (

24  = 250,  = 2.5, and  = 0.55). Note that the original SSVAE model as published by Kang, 𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷

25 et al only supports single-constraint molecule generation mode, and we have slightly modified the 



1 SSVAE model’s molecule generation function to enable multi-constraint generation mode the exact 

2 same way it is being done in ConGen. We also train the ConGen model on the same partially de-

3 labelled training dataset (ConGen can utilize all ~70% remaining partial labels) and perform a query to 

4 generate 10,000 molecules with same multi-property constraints as specified above. Out of the 10,000 

5 SSVAE molecules, 488 molecules are within the training dataset and we obtain 1,347 unique molecules 

6 outside of the training dataset. On the other hand, ConGen generates 239 molecules which are within 

7 the training dataset and 5,988 unique molecules outside of the training dataset. If our tolerance 

8 criterion is 20% relative error, we obtain 11 and 1,545 acceptable molecules from the SSVAE and 

9 ConGen approaches respectively, corresponding to 0.8% and 25.8% acceptance rate for the two 

10 approaches. If our tolerance criterion is 10% relative error (stricter), we only obtain 2 and 295 

11 acceptable molecules from the SSVAE and ConGen approaches respectively, corresponding to 0.1% 

12 and 4.9% acceptance rate for the two approaches. See Supplementary Figure 2 below for more details.

13

14 Supplementary Figure 2 | Acceptance rate of multi-constraint ConGen vs multi-constraint SSVAE. The same 
15 training dataset (ZINC database with , , and  labels) is used for both approaches, and a query 𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷
16 for generating 10,000 molecules with multi-property constraints (  = 250 Da,  = 2.5, and  = 𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷
17 0.55) is performed using both models. However, the multi-constraint SSVAE cannot utilize labels from molecules 
18 which are only partially labelled. Because of the lack of fully labelled molecules, the multi-constraint SSVAE 
19 model suffers on both its ability to generate diverse molecules under multi-property constraints, and on its 
20 ability to generate molecules with the correct desired multi-property constraints. Both acceptance under the 
21 20% tolerance and the stricter 10% tolerance criterions are shown.



1 In the second approach, we restrict the individual SSVAE model training to be done on only one 

2 property each. In this example, we can utilize the training dataset we have previously used in the main 

3 text Table 2 and perform direct comparison with the molecules generated by the ConGen approach. 

4 We train three individual SSVAE models for each of the three property constraints (Mol.Wt = 250 Da, 

5 LogP = 2.5, and IE = 5 eV), and then generate 10 molecules for each SSVAE model’s validation using 

6 the corresponding single-property constraint. Note that the original SSVAE model as published by 

7 Kang, et al will generate programming errors when trained on single properties (the code as published 

8 was trained on multiple properties and can only be used for single-property generation tasks), and 

9 some minor code reprogramming is needed to enable the model to work on single-property training 

10 and molecule generation tasks. The result is show in Supplementary Table 3, where we show that the 

11 individual SSVAE models separately trained on  and  have good control over the individual 𝑀𝑜𝑙.𝑊𝑡 𝐼𝐸

12 property of the molecule it generates, but surprisingly the model separately trained on the single 

13  property has bad performance on  molecule generation task (  = 2.35 ± 1.12). While 𝐿𝑜𝑔𝑃 𝐿𝑜𝑔𝑃 𝐿𝑜𝑔𝑃

14 the individual SSVAE models have good performance on the single property constraint it was trained 

15 on, they are not constrained on the other two properties they are not trained on. Consequently, these 

16 molecules generated by these single-constraint SSVAE’s are not suitable for satisfying the requirement 

17 of multi-constraint generation queries, compared to the ConGen model. 

RNN-based Model  ( )𝑀𝑜𝑙.𝑊𝑡 𝐷𝑎 𝐿𝑜𝑔𝑃 𝑄𝐸𝐷  ( )𝐸𝐴 𝑒𝑉  ( )𝐼𝐸 𝑒𝑉

ConGen 248 ± 4 2.55 ± 0.23 0.672 ± 0.082 2.06 ± 0.55 6.53 ± 0.62
SSVAE (MolWt = 250 Da) 251 ± 7 2.68 ± 0.82 0.780 ± 0.091 1.76 ± 0.62 6.14 ± 1.39

SSVAE (LogP = 2.5) 300 ± 82 2.35 ± 1.12 0.745 ± 0.149 2.04 ± 0.79 5.94 ± 0.82
SSVAE (IE = 5.0 eV) 322 ± 57 2.81 ± 1.07 0.716 ± 0.154 2.54 ± 0.78 6.27 ± 0.50
SSVAE (combined) 291 ± 65 2.61 ± 1.03 0.747 ± 0.137 2.11 ± 0.78 6.12 ± 0.95

18 Supplementary Table 3 | ConGen comparison with baseline SSVAE models trained using single properties on 
19 multi-constraint decoder conditional generation task. We use the same conditional molecule generation with 
20 multiple constraints we use in Table 2 of the main text:  = 250 Da,  = 2.5, and  = 5.e eV. The 𝑀𝑜𝑙.𝑊𝑡 𝐿𝑜𝑔𝑃 𝐼𝐸
21 ConGen model is trained on these 3 property types simultaneously, while the SSVAE models are trained on 
22 individual property types. Note that while the generated molecules’  magnitudes do not perfectly match the 𝐼𝐸
23  constraint (likely due to the difference in quantum chemistry workflow between ours and the online 𝐼𝐸
24 database), ConGen and SSVAE ( ) models both demonstrate tight  control for the generated molecules.𝐼𝐸 𝐼𝐸

25



1 Complete List of Molecules Generated in Main Text Query 1 (Figure 4b)

2 Supplementary Table 4 | Candidate Li-ion battery LHCE diluent molecules generated with multi-constraint 
3 ConGen model (Query 1).

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 250, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 250, 4.0, 1.0]

Cc1ccc(OCC(F)(F)C(F)(F)Cl)cc1 CN(C)C(=O)Nc1cc(F)cc(C(F)(F)F)c1
Nc1c(F)cc(OC(F)(F)F)cc1CCl CC(C)(C)OC(c1cc(F)cc(F)c1)C(F)F
CC(C)C(=O)Nc1ccc(F)c(C(F)(F)F)c1 CCOC(=N)c1c(F)cccc1CC(F)(F)F
CN(C)C(=O)Nc1c(F)c(F)cc(F)c1CF Nc1cc(C(F)(F)F)ccc1OCCC(F)C
OCc1nc(C(F)(F)F)nc2c(F)cccc12 Fc1cc(OC(F)(F)F)cc(C2CCNC2)c1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 250, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 250, 4.0, 2.0]

CN(C)C(=O)OC1(C(F)(F)F)CCC(F)C1 Oc1cc(OC(F)(F)F)cc(F)c1CCl
CCOC(=O)c1cc(C(F)(F)F)nc(F)c1C OC(OCC(F)(F)C(F)F)c1ccsc1
CC(=O)NCC(O)c1c(F)c(F)cc(F)c1F COC(=O)CC(CC(F)(F)F)c1ccccc1
OCc1c(OC(F)(F)F)ccc(F)c1C1CC1 Cc1cc(OCC(F)(F)C(F)(F)CO)ccn1
COc1ccc(OCC(F)(F)C(F)F)c(C)c1 COC(=O)Cc1c(F)cnc(C(F)F)c1CF
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 250, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 250, 6.0, 1.0]

Oc1nc(F)cc(CC(F)(F)C(F)(F)F)n1 CC(OC(F)(F)F)c1ccccc1C(F)(F)F
FC(C(F)(F)F)C(F)(F)COC1CCCC1 Cc1ncc(OC(F)(F)F)nc1C(F)(F)F
FC(F)(F)C(F)(F)COc1ccccc1F OC(CCC(F)(F)C(F)(F)C(F)F)C1CC1
OC(CCC(F)(C(F)(F)F)C(F)F)C1CC1 Fc1ccc(OCC(F)(F)F)cc1C(F)F
Cn1nc(C(F)(F)F)c(C(F)(F)F)c1CO NC(c1ccoc1)C(C(F)(F)F)C(F)(F)F
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 250, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 250, 6.0, 2.0]

COC(=O)CCCC(F)(F)C(F)(F)C(F)F OC(O)(CCCC(F)(F)F)CC(F)(F)F
OC(O)c1cc(C(F)(F)F)c(F)c(F)c1F CC(=O)NCC(O)(C(F)(F)F)C(F)(F)F
Oc1cc(C(F)(F)F)cc(C(F)(F)F)c1O CCOc1ccc(C(F)(F)F)c(C(F)(F)F)c1
COC(=O)CCC(F)(C(F)(F)F)C(F)(F)F OC(OCC(F)(F)F)c1cccc(F)c1F
-- invalid-- Oc1c(OC(F)(F)F)cccc1C(F)(F)F
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 300, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 300, 4.0, 1.0]

Cc1noc(-c2ccc(C(F)(F)F)cc2Cl)c1C(F)F Fc1cnc(OC(F)(F)F)c(I)c1
Cc1cc(OC(F)(F)F)cc(F)c1I O=C(Nc1ncc(C(F)(F)F)cc1Cl)c1ccccc1
COc1cnc(C(F)(F)F)c(F)c1CBr Cn1cc(-c2noc(-c3cc(F)c(F)c(F)c3F)n2)s1
Nc1c(F)cc(Oc2ccc(C(F)(F)F)cc2)c(Cl)c1 NC(=O)c1c(F)cccc1Nc1cc(C(F)(F)F)ccn1
COc1cnc(-c2ccc(C(F)(F)F)c(F)c2)c(Cl)c1 OC(Cc1ccc(C(F)(F)F)c(F)c1)c1cccs1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 300, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 300, 4.0, 2.0]

OC(Cc1cc(F)c(Br)cc1F)C(F)(F)O NC(=O)COc1ccccc1-c1c(F)c(F)cc(F)c1F
COC(=O)CCc1ccc(Cl)cc1C(F)(F)C(F)F OC(O)(c1cc(F)c(F)c(F)c1)c1ccc(F)cc1Cl
CCOC(=O)Nc1c(C(F)(F)F)cc(F)nc1CCl NCc1cnc(OC(F)(F)F)nc1Oc1c(F)cccc1
N[C@@H](Cc1cc(F)c(F)c(F)c1F)c1ccc(O)cc1O COc1ccc(CNc2cc(F)c(F)c(F)c2F)cc1O
CCC(=O)NCC(=O)Nc1cc(C(F)(F)F)cc(F)c1C FC(F)(F)Oc1cccc(Oc2cc(F)cc(Cl)c2)c1



['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 300, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 300, 6.0, 1.0]

COC(c1cc(C(F)(F)F)nc(C(F)(F)F)c1)C1CC1 COc1c(C(F)(F)F)ncc(C(F)(F)F)c1CCl
Nc1ccc(C(=O)NCC(F)(F)C(F)(F)C(F)F)cc1 OC(c1ccc(F)cc1)c1c(F)c(F)c(F)c(F)c1F
NCc1cc(OC(F)(F)F)c(Cl)cc1C(F)(F)F Nc1cc(C(F)(F)F)cc(OC(F)(F)F)c1CCl
NC(=O)c1cc(C(F)(F)F)cc(C(F)(F)F)c1CCl FC(F)(F)c1cccc(-c2ccc(OC(F)(F)F)cc2)c1
CC(C)C(=O)Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1 Nc1c(F)cccc1Oc1cc(F)c(F)c(C(F)(F)F)c1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, 0.0, 300, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, 0.0, 300, 6.0, 2.0]

OCc1ccc(C(F)(F)F)cc1OCCC(F)(F)CF COc1cc(C(F)(F)F)c(C(F)(F)F)c(CC(N)=O)c1
OB(O)c1c(C(F)(F)F)ccc(Cl)c1C(F)(F)F Cc1cc(OC(F)(F)F)nc(OC(F)(F)F)c1CC#N
COc1ccc(OC(C(F)(F)F)C(F)(F)C(F)F)nc1 Cc1ccc(COCC(F)(F)C(F)(F)C(F)F)cc1O
OCc1c(OC(F)(F)F)ncc(C(F)(F)F)c1C1CC1 O=C(O)Cc1cc(C(F)(F)F)nc(C(F)(F)F)c1CN
CS(=O)(=O)Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1 OC(c1cccc(OC(F)(F)F)c1)c1ccc(F)cc1F
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 250, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 250, 4.0, 1.0]

Oc1ccc(-c2ccc(F)c(F)c2)c(F)c1F Cc1nc(-c2cccc(C(F)(F)F)c2F)c(C)o1
COC(c1c(F)c(F)nc(F)c1F)C1CCC1 CC(NC(=O)C(F)(F)C(F)F)c1ccccc1
NCc1cn(CC(F)(F)F)nc1CC(=O)F CC(CO)Nc1ccccc1C(F)(F)C(F)F
NCc1cc(OC(F)(F)F)cc(Cl)c1F CC(C)Oc1nc(C(F)(F)F)c(F)cc1CN
Cn1cnc(OC(F)(F)F)c1-c1ccc(F)cc1 OCC1Cc2cc(C(F)(F)F)cc(F)c2S1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 250, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 250, 4.0, 2.0]

COc1cc(C(F)(F)F)nc(OC)c1CCF OCC(O)Cc1ncc(C(F)(F)F)cc1CF
CC(O)c1c(OC(F)(F)F)cc(F)cc1CN O=C(O)CC(CC(F)(F)C(F)F)c1ccc[nH]1
OCCC(=O)Nc1ccc(F)c(C(F)(F)F)c1 CCC(NCC(F)(F)C(F)F)C(=O)OCC
CC(N)(C(=O)O)c1nc(C(F)(F)F)ccc1F COc1ccc2c(F)c(F)c(F)c(F)c2c1O
O=C(O)c1ccn(CCC(F)(F)C(F)F)c1F NCc1cc(OC(F)(F)F)c(O)c(CF)c1C
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 250, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 250, 6.0, 1.0]

OCc1nc(C(F)(F)F)c(C(F)(F)F)s1 N[C@@H](CO)c1c(F)c(F)c(F)c(F)c1CF
OCCc1c(F)c(F)c(C(F)(F)F)c(F)c1 CCc1ccc(OC(F)(F)F)c(C(F)(F)F)c1
C[C@@H](O)c1c(F)c(F)c(C(F)(F)F)c(F)c1 Nc1cnc(OC(F)(F)F)c(C(F)(F)F)c1
OC(c1cc(F)cc(F)c1)C(F)(F)C(F)F OC[C@@H](c1cc(F)c(F)c(F)c1)C(F)(F)F
CCc1c(OC(F)(F)F)n[nH]c1C(F)(F)F COc1ncc(C(F)(F)F)c(C(F)(F)F)n1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 250, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 250, 6.0, 2.0]

C=C(O)CC(=O)C(C(F)(F)F)C(F)(F)CF C[Si](C)(O)OC(F)(F)C(F)(F)C(F)(F)F
OC(F)(F)C(F)(F)Oc1ccc(F)c(F)c1 COCC(O)CN(C(F)(F)F)C(F)(F)F
OC[C@@H](O)CCC(F)(F)C(F)(F)C(F)(F)F CCOC(C)C(O)(C(F)(F)F)C(F)(F)CF
OCCOCCC(F)(F)C(F)(F)C(F)(F)F O=C(O)CCCC(F)(F)C(F)CC(F)(F)F
OCc1c(O)c(F)c(F)c(F)c1C(F)(F)F --invalid--

1



['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 300, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 300, 4.0, 1.0]

O=C(Cn1nc(C(F)(F)F)cc1Cl)c1ccccc1F Cc1ccc(CC(=O)Nc2cc(F)cc(F)c2)c(F)c1F
CC1CCN(C(=O)Nc2cc(F)cc(C(F)(F)F)c2)CC1 Cc1cc(C(F)(F)F)nc(Oc2cc(F)cc(Cl)c2)n1
OC(c1cc(F)cc(F)c1)c1ccc(C(F)(F)Cl)cc1 CCCc1ncc(C(F)(F)F)c(Oc2ccc(F)cc2)n1
OC(c1cc(F)cc(F)c1)c1cnc(C(F)(F)Cl)cc1 CC(OCC(F)(F)C(F)F)c1ccc(Cl)cc1Cl
CCc1nc(-c2ccc(OC(F)(F)F)cc2)nc(C)c1F N#Cc1ccc(OCC(F)(F)C(F)F)cc1Br
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 300, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 300, 4.0, 2.0]

Cc1cc(OC(F)(F)C(F)(F)C(=O)NC2CC2)cs1 NC(=O)COc1ccc(C(F)(F)F)c(F)c1Br
COC(=O)c1ncc(C(F)(F)F)c(F)c1Br COC(=O)c1ccc(C(F)(F)F)c(-c2ccc(F)cc2)c1
COC(=O)Cc1nc(C(F)(F)F)c(F)cc1CCl FC(F)(F)Oc1ccc(OCc2ccncc2)c(F)c1C
CCOC(=O)Cc1cc(C(F)(F)F)cc(F)c1CCl CCOc1cc(OC(F)(F)F)c(F)cc1Br
FC(F)(F)Oc1cc(OC(F)F)cc(Br)n1 N[C@@H](CC(=O)O)c1c(C(F)(F)F)cc(F)cc1CCl
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 300, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 300, 6.0, 1.0]

FC(F)C(F)(F)Oc1cc(C(F)(F)F)cnc1CCl Nc1ccc(OCC(F)(F)C(F)(F)C(F)F)cc1C#N
OCc1c(C(F)(F)F)ccc(C(F)(F)F)c1CCl Oc1cc(F)c(-c2ccc(C(F)(F)F)cc2)c(F)c1F
CCc1nc(OC(F)(F)F)c(C(F)(F)F)cc1CC#N CCN(CC(F)(F)C(F)(F)C(F)(F)F)C(=O)NC1CC1
OC(c1nc2ccccc2s1)C(F)(F)C(F)(F)CF Fc1ccc(C(F)(F)F)c(Oc2cccc(F)c2)c1F
Fc1ccc(-c2ccc(OC(F)(F)F)cc2)c(F)c1F Fc1cc(OC(F)(F)F)ccc1-c1ccc(F)c(F)c1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.0, -0.1, 300, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.0, -0.1, 300, 6.0, 2.0]

Cc1c(OC(F)(F)F)cnc(C(F)(F)F)c1CC(N)=O Oc1ccc(COCC(F)(F)C(F)(F)C(F)F)cc1F
O=C(O)C(CC(F)(F)C(F)(F)C(F)F)c1ccccc1 OC(O)(Cc1ccc(C(F)(F)F)cc1)CC(F)(F)CF
OCc1cc(OC(F)(F)F)c(Cl)cc1C(F)(F)F OC(O)(c1cc(C(F)(F)F)cc(C(F)(F)F)c1)C1CC1
C[C@@](N)(C(=O)O)c1nc(C(F)(F)F)c(C(F)(F)F)n1C O=C(NCC(F)(F)C(F)(F)C(F)F)c1ccc(O)cc1
CCOC(=O)c1cc(C(F)(F)F)ccc1C(F)(F)CF FC(F)(F)COCCOc1c(F)cc(C(F)F)cc1N
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 250, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 250, 4.0, 1.0]

Cc1ccc(CNC(=O)C(F)(F)C(F)F)cc1 Cc1c(OC(F)(F)F)cc(F)cc1CCl
Cc1cc(CC(=O)NCC(F)(F)F)ccc1F OC(CC(F)(F)F)c1ccc(F)c(Cl)c1
O=C(c1cccnc1)c1cc(F)c(F)c(F)c1F COc1cc(C(F)(F)F)c(F)cc1CCl
FC(F)(F)c1cccc(Oc2ccccc2)c1F OCc1cnc(C(F)F)c(Cl)c1C(F)(F)F
CCNC(=O)Nc1ccc(F)c(C(F)(F)F)c1 Nc1cc(OCC(F)(F)C(F)F)ccc1C#N
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 250, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 250, 4.0, 2.0]

OCCC(=O)Nc1c(F)cccc1C(F)(F)F OCc1cc(OCCC(F)(F)F)cc(F)c1C
O=C(Cc1ccc(OC(F)(F)F)cc1)C1CC1 OCc1c(C(F)F)ncc(OC(F)F)c1CC
CCOc1c(OC(F)(F)F)cc(F)cc1C#N COc1nc(OC(F)(F)F)c(F)cc1CC#N
CCOC1(C(F)(F)F)Oc2ccc(F)cc2C1 Cc1ccc(C(F)(F)C(F)(F)C(=O)O)cc1C
CC(C)CC(=O)NCC(O)CC(F)(F)C(F)F Cc1nc(C(F)(F)F)c(CC(=O)O)cc1CF

1



['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 250, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 250, 6.0, 1.0]

O=C(NCC(F)(F)C(F)CF)CC(F)(F)F OC(c1cc(F)c(F)c(F)c1)CC(F)(F)F
Cc1cnc(OC(F)(F)F)c(C(F)(F)F)c1 FCOc1cc(C(F)(F)F)ccc1C(F)(F)F
O=C(Nc1cc(F)cc(F)c1F)C(F)(F)F Cc1ncc(C(F)(F)F)c(OC(F)(F)F)n1
NCC(O)CCC(C(F)(F)F)C(F)(F)F OC(c1c(F)c(F)c(F)c(F)c1F)C(F)F
Fc1cc(OCC(F)(F)F)ccc1C(F)F OCCc1c(F)c(F)c(C(F)(F)F)c(F)c1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 250, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 250, 6.0, 2.0]

O=C(O)CCCCC(F)(F)C(F)(F)C(F)F FC(F)(F)C1(C(F)(F)F)OCCCCOC1
CCOC(=O)CC(C(F)(F)F)C(F)(F)CF COC(=O)CCC(C(F)(F)F)C(F)(F)CF
Fc1cccc(OC(F)(F)OC(F)(F)F)c1 Cc1c(O)cc(C(F)(F)F)cc1OC(F)(F)F
Oc1cc(OC(F)(F)F)cc(C(F)(F)F)c1 O=C(OCCCCC(F)(F)F)CC(F)(F)F
CCC(=O)OCC(C(F)(F)F)C(F)(F)CF CC(O)CCC(O)(C(F)(F)F)C(F)(F)F
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 300, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 300, 4.0, 1.0]

O=C(NCC(F)(F)C(F)F)c1ccc(Cl)cc1Cl CN(C)c1cc(C(F)(F)F)nc(Oc2ccc(F)cc2)n1
CCc1ncc(OC(F)(F)F)c(F)c1CBr OC(c1cccc(C(F)(F)F)c1)c1c(F)cccc1Cl
FC(F)(F)c1ccc(Oc2ncccc2Cl)c(F)c1 Cc1cnc(C(F)(F)F)c(Oc2ccc(F)c(Cl)c2)n1
Nc1ncc(F)cc1C(=O)Nc1ccc(C(F)(F)F)cc1 N#Cc1ccc(COc2ccccc2C(F)(F)F)c(F)c1
CCCc1nc(OC(F)(F)F)nc(F)c1Br CNc1ccc(Oc2ccc(C(F)(F)F)nc2)c(F)c1C
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 300, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 300, 4.0, 2.0]

CC(Oc1cccc(C(F)(F)F)c1)C(=O)c1ccccc1 CS(=O)(=O)N1CCN(c2c(F)c(F)cc(F)c2F)C1
COCc1nc(OC(F)(F)F)c(F)cc1Br Oc1cc(OC(F)(F)F)ccc1CBr
O=C(NCC(F)(F)CO)c1c(F)cc(F)cc1CCl CS(=O)(=O)Nc1ccc(SC(F)(F)C(F)F)cc1
FC(F)(F)Oc1cc(F)c(OCc2cccnc2)c(C)c1 O=S(=O)(c1cccc(C(F)(F)F)c1)c1ccc(F)cc1
CS(=O)(=O)Nc1ccc(C(F)(F)C(F)F)c(Cl)c1 CC(Nc1cc(C(F)(F)F)cc(F)c1)C(=O)OC(C)(C)C
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 300, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 300, 6.0, 1.0]

Cc1c(C(F)(F)F)cc(OC(F)(F)F)nc1CCl Oc1c(F)cccc1-c1cc(C(F)(F)F)cc(F)c1F
Nc1cc(OC(F)(F)F)cc(C(F)(F)F)c1CCl OC(c1cccc(C(F)(F)F)c1)c1cccc(F)c1F
FC(F)(F)Oc1ccc(-c2ccc(C(F)(F)F)cc2)cc1 CC(=O)Nc1c(C(F)(F)F)cnc(C(F)(F)F)c1CN
O=Cc1ccc(C(F)(F)F)c(C(F)(F)F)c1CCl OCc1cc(C(F)(F)F)cc(C(F)(F)F)c1CCl
--invalid-- OC(c1ccc(C(F)(F)F)nc1)c1c(F)cc(F)cc1F
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, 0.0, 300, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, 0.0, 300, 6.0, 2.0]

OCC(Oc1cccc(C(F)(F)F)c1)CC(F)(F)CF C[C@@H](NC(=O)O)c1cc(C(F)(F)F)cc(C(F)(F)F)c1
O=Cc1cc(OCC(F)(F)C(F)(F)C(F)F)ccc1N CCOC(=O)Cc1c(F)cc(C(F)(F)F)cc1C(F)F
OCc1c(OC(F)(F)F)ncc(C(F)(F)F)c1Cl NC(=O)c1c(OC(F)(F)F)cnc(C(F)(F)F)c1CN
NC(COCC(F)(F)F)c1cccc(OC(F)(F)F)c1 O=C(NCC(F)(F)F)N1CCC(O)(C(F)(F)F)CC1
OCc1ccccc1OCCC(F)(F)C(F)(F)C(F)F FC(F)(F)Oc1ccc(OC(F)(F)C(F)Cl)cc1

1



['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 250, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 250, 4.0, 1.0]

CNCC(=O)Nc1cc(F)c(C(F)(F)F)cc1 OC(c1cc(F)cc(C(F)(F)F)c1)C1CCC1
OC(CC(F)(F)F)c1ccc(F)c(Cl)c1 OCCc1cc(C(F)(F)F)c(Cl)cc1F
Fc1ccc(COc2ccccc2F)c(F)c1F OCCc1nc(C(F)(F)F)c(F)cc1Cl
OCc1cc(C(F)(F)F)c(F)cc1CCl Nc1cnc(OCCCC(F)(F)F)c(F)c1F
COc1c(C(F)(F)F)ccc(F)c1CCl Nc1ccc(OCCC(F)(F)C(F)F)c(C)c1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 250, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 250, 4.0, 2.0]

CN(C(=O)O)c1cc(C(F)(F)F)cc(F)c1C CCCC(=O)OCCCCC(F)(F)C(F)(F)F
CS(=O)(=O)CCSCC(F)(F)C(F)F O=Cc1cc(OCC(F)(F)C(F)F)cs1
CCC(=O)NCC(=O)NCC(F)(F)C(F)F OC(COCC(F)(F)F)c1ccc(F)c(C)c1
CNC1CC(C(F)(F)C(F)(F)C(=O)O)CC1 CCCOC(=O)Nc1c(F)c(F)cc(F)c1F
COC(=O)Nc1cccc(C(F)(F)C(F)F)c1 CCOC(=O)Nc1nc(C(F)(F)F)ccc1F
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 250, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 250, 6.0, 1.0]

C[C@H](O)c1cc(C(F)(F)F)cc(C(F)(F)F)c1 Cc1c(OC(F)(F)F)cccc1C(F)(F)F
OCC(F)(F)C(F)(F)c1cc(F)cc(F)c1 Nc1ncc(F)c(OC(F)(F)F)c1C(F)F
C[C@H](N)CC(=O)NC(C(F)(F)F)C(F)(F)F CNCC(=O)NCC(F)(F)C(F)(F)C(F)F
Cc1cc(OC(F)(F)F)nc(C(F)(F)F)c1 Fc1cc(F)c(OCCC(F)(F)F)c(F)c1
--invalid-- FC(F)(F)CCOc1cc(F)c(F)c(F)c1
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 250, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 250, 6.0, 2.0]

OCc1c(F)c(F)c(OC(F)(F)F)c(F)c1 COC(=O)CCC(C(F)(F)F)C(F)(F)CF
C=CCOC(=O)CC(F)(F)C(F)(F)C(F)F CC(CC(F)(F)C(F)(F)C(F)F)CC(=O)O
OCc1cc(C(F)(F)F)cc(C(F)(F)F)c1O CC(C)(CC(F)(F)C(F)(F)C(F)F)C(=O)O
Cc1c(OC(F)(F)F)[nH]c(C(F)(F)F)c1O Cc1ccc(OC(F)(F)F)c(OC(F)(F)F)c1
C=CCOC(=O)C(C(F)(F)F)C(F)(F)CF FCOc1c(C(F)(F)F)[nH]c(C(F)F)c1O
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 300, 4.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 300, 4.0, 1.0]

OC(c1c(F)c(F)c(F)c(F)c1Br)C1CC1 OC(c1cccc(C(F)(F)F)c1)c1ccc(F)cc1Cl
Oc1nc(F)c(C(F)(F)F)cc1I CC1CC(c2ccc(C(F)(F)F)cc2)NC(=O)NC1F
OC(Cc1ccc(F)c(Br)c1)CC(F)(F)F CC(NC(=O)CC(F)(F)C(F)F)c1ccc(Cl)cc1
COc1nc(C(F)(F)F)ccc1CBr COc1cc(Br)cc(CC(F)(F)C(F)F)c1
O=C(Cc1nc(C(F)(F)F)ns1)c1ccc(F)cc1C Cn1nc(C(F)(F)F)cc1C(=O)Nc1ccc(F)cc1C
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 300, 4.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 300, 4.0, 2.0]

CC(=O)Nc1nc(-c2ccc(C(F)(F)F)c(F)c2)c(C)o1 CC(Oc1cccc(C(F)(F)F)c1)c1cccc(F)c1O
Oc1cccc(Oc2c(F)c(F)c(F)c(F)c2Cl)c1C COc1nc(C(F)(F)F)ccc1OCc1ccc(F)cc1
O=S(=O)(Cc1ccc(F)cc1)c1c(F)cc(F)cc1F OC(COCC(F)(F)C(F)F)Cc1ncccc1Cl
OC(O)(c1c(F)cccc1F)c1cc(F)c(Cl)cc1F FC(F)C(F)(F)Oc1ccccc1COc1ccccc1
--invalid-- COC(=O)c1ncc(C(F)(F)F)cc1-c1ccc(F)cc1

1



['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 300, 6.0, 1.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 300, 6.0, 1.0]

OC(C(F)(F)C(F)(F)C(F)(F)F)C(Cl)(Cl)Cl OCC(c1ccc(C(F)(F)F)c(C(F)(F)F)c1)C1CC1
OCC(c1c(F)cc(F)cc1Cl)C(F)(F)C(F)(F)F FC(F)(F)Oc1cc(C(F)(F)F)c(Cl)cc1Cl
FC(F)(F)Oc1ccnc(-c2ccc(C(F)(F)F)cc2)c1 Cc1ccc(OCC(F)(F)C(F)(F)C(F)(F)Cl)cc1
CS(=O)c1cc(C(F)(F)F)cc(C(F)(F)F)c1C#N Fc1cc(OC(F)(F)F)ccc1-c1cc(F)cc(F)c1
OC(F)(C(F)(F)F)C(F)(F)I --invalid-- 
['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.5, 7.5, -0.1, 300, 6.0, 2.0]

['EA', 'IE', 'LogVis', 'MolWt', 'n_F', 'n_O'] : 
[0.0, 7.5, -0.1, 300, 6.0, 2.0]

FC(F)(F)c1cc2c(cc1C(F)(F)F)OCCCCO2 OC(Cc1ccc(OC(F)(F)F)cc1)CC(F)(F)CF
CCCC(=O)OCCCCC(F)(F)C(F)(F)C(F)(F)F OCc1ccc(COCC(F)(F)C(F)(F)C(F)F)cc1
COC(=O)Cc1cc(C(F)(F)F)cc(C(F)(F)F)c1C Oc1cc(OC(F)(F)F)ccc1SCC(F)(F)F
O=C(Cc1cc(C(F)(F)F)cc(C(F)(F)F)c1)C(N)=O NC(=O)Cc1cc(C(F)(F)F)nc(OC(F)(F)F)c1C
CCc1cc(C(F)(F)F)cc(C(F)(F)F)c1CC(=O)O OC(c1c(F)c(F)c(F)c(F)c1F)c1ccc(F)cc1O
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