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Neural networks trained on synthetically generated crystals
can extract structural information from ICSD powder X-ray

diffractograms

Henrik Schopmans, Patrick Reiser, and Pascal Friederich*

S1 Generating synthetic crystals
Here we describe the algorithm to generate synthetic crystals in more detail. To generate a single
crystal, the following steps are executed:

1. Sampling of a space group from the space group distribution of the ICSD.

2. The number of unique elements in the crystal is drawn from a discrete distribution extracted
from the crystals in the ICSD belonging to the specified space group.

3. The unique elements are drawn, also from a discrete probability distribution from the crystals
in the ICSD belonging to the specified space group.

4. For each of the unique elements, the number of repetitions in the asymmetric unit is chosen,
and for each repetition, a Wyckoff position is selected. Again, both the probability of the
number of repetitions and the Wyckoff occupation probabilities are extracted from the ICSD
for the specified space group. We do not place more than one atom onto a Wyckoff position
that does not have a degree of freedom.

5. For each atom placed on a Wyckoff position, uniformly distributed random fractional coor-
dinates are drawn.

6. Lattice parameters (normalized to unity volume) of the crystal system that the specified space
group belongs to are drawn from a kernel density estimate of the ICSD. The bandwidth is
chosen based on Scott’s rule (see the SciPy1 implementation of the kernel density estimate).

7. We generated a kernel density estimate of the volume conditioned1 on∑
i 4/3π

(
ri;cov+ri;VdW

2

)3
= Vatomic, where the sum covers all atoms in the conventional unit

cell, ri;cov is the atomic covalent radius, and ri;VdW is the atomic van der Waals radius. The
kernel density estimate was generated from all crystals of the ICSD belonging to the specified
space group. Then, Vatomic is calculated for the chosen atoms in the conventional unit cell
and the volume is drawn based on the kernel density estimate conditioned on Vatomic. The
lattice parameters (chosen in the previous step) are further scaled by the cube root of the
chosen volume.

8. Space group symmetry operations are applied using Python library PyXtal3.

When generating a crystal of a specific space group without placing an atom on the general
Wyckoff position, it is not always the case that the crystal belongs to that space group. To prevent
wrong space group assignments, we use the Pymatgen4 interface to Spglib5 to check the space group
of each crystal after its generation. If the space group deviates, we generate a new crystal with the
same number of unique elements as before, in order to not distort the distribution of number of
unique elements extracted from the ICSD. If the generation fails 20 times in total, we start from
the beginning with a new number of unique elements.

1For this conditional kernel density estimate, we used the implementation of statsmodels2 with the normal
reference rule of thumb to estimate the bandwidth.
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S2 Machine learning

S2.1 Models
We now want to describe the machine learning models that we used for the classification of space
groups in more detail. Powder diffractograms include similar features (peaks) at different locations
and the position of a feature in the diffractogram has a spatial meaning. This suggests that the
properties of the convolution operation, namely the parameter sharing (with sparse connectivity)
and equivariance6, might be beneficial when processing powder diffractograms.

As a baseline, we first used the two CNN architectures used by Park et al.7 for the classification
of extinction groups and space groups. Since our training dataset is an infinite stream of diffrac-
tograms and we do not have to worry about overfitting, we further used the deeper architectures
ResNet-10, ResNet-50, and ResNet-1018. All architectures are now described in detail.

Architectures by Park et al.

Park et al.7 introduced three models, one for the classification of the crystal system, one for
extinction groups, and one for space groups. We used only the last two models and call them
“parkCNN medium” and “parkCNN big”, respectively.

“parkCNN big” consists of three convolution layers with average pooling, two hidden fully con-
nected layers with 2300 and 1150 nodes, and a 145-dimensional softmax output. The architecture
is summarized in Figure S1. The “parkCNN medium” model has fewer parameters than “parkCNN
big” since the two hidden fully connected layers have 4040 and 202 nodes.

ResNet architecture

With increasing size of the training dataset and increasing difficulty of the chosen task, the number
of model parameters needs to be increased, too.

In principle, a deeper model with additional layers should always be able to express the same
solution of a shallower model by simply “learning” an identity map in addition to the shallower
model. In practice, however, a degradation problem for CNNs with increasing depth has been
observed and very deep models can perform worse than their shallow counterpart8. Therefore,
the ResNet architecture developed by He et al.8 at Microsoft in 2015 introduced additional skip
connections, where information is able to simply flow past the convolution layer and is added to its
output. This makes it possible for needed information of the input or earlier layers to flow further
into the model without degradation.

Figure S2a visualizes the residual block used for the shallower versions of the ResNet architec-
ture (up to 34 layers). Figure S2b visualizes the bottleneck block used for the deeper variants (50
and more layers). This type of building block is called a bottleneck block since it first reduces the
number of channels using a 1x1 convolution operation with N filters. Then, the main convolution
with a 3x3 kernel is performed, followed by a third 1x1 convolution that upscales to 4N channels.
This down- and upscaling of the number of channels is performed to increase the performance
of the model. All convolution operations of both types of building blocks are followed by batch
normalization implicitly.

In the simplest case, the skip connection of the residual and bottleneck block is simply an
identity mapping and added to the output of the block. However, if the number of input channels
and dimensions of a block are different from those in the output, a projection in the form of a
1x1 convolution with the necessary number of filters and stride (usually 2) is used instead of the
identity.

Table S1 summarizes the ResNet-10, ResNet-50, and ResNet-101 models. Each architecture is
to be read from top to bottom. The square brackets indicate a residual or bottleneck block with
their two or three convolution operations and respective number of filters. The number after the
square brackets “×N ” indicates how often the building block is to be repeated in the respective
block group.

If the output dimension changes from one block group to the next, the first building block of the
next block group downsamples the dimensions by using a stride of 2 for the first 3x3 convolution
in the case of a residual block and for the middle 3x3 convolution in the case of a bottleneck block.
All other convolution operations of the building blocks are performed with stride 1.
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Convolution Layer
80 filters, size 100, stride 5

Average pooling
Size 3, stride 2

Convolution Layer
80 filters, size 50, stride 5

Average pooling
Size 3, stride 3

Convolution Layer
80 filters, size 25, stride 2

Average pooling
Size 3, stride 3

Fully Connected Layer
2300 nodes

Flatten

Fully Connected Layer
1150 nodes

Fully Connected Layer
145 nodes

Figure S1: The CNN architecture for space group classification (“parkCNN big”) as introduced by
Park et al.7. Each convolution or fully connected layer is implicitly followed by a ReLU activation,
the output uses a softmax activation. We used only 145 target space groups instead of 230, since
the remaining space groups did not have enough entries present in the ICSD to extract enough
statistics for the synthetic generation of crystals. Furthermore, Park et al. used an input length of
10001 instead of our input length of 8501. A dropout rate of 30% is used after the activations of the
convolution blocks. Dropout with a rate of 50% is used after the activations of the fully connected
layers. However, dropout is only used if the model is directly trained on ICSD diffractograms, not
when using the synthetic data.

We used the ResNet implementation as found in the TensorFlow model garden9. Since our
data is one-dimensional, we used an adapted 1D version. We replaced all 2D convolutions and
pooling operations with their 1D equivalent (N ×N → N). Furthermore, we used a kernel size of
9 in place of the 3x3 kernels and stride 4 instead of stride 2 in the bottleneck blocks and projection
skip connections (N ×N → N2). This squaring was performed to obtain a better distribution of
the number of weights throughout the architecture (similar to the original 2D case). We further
added an additional fully connected layer with 256 nodes after the flatten layer in the end of the
ResNet models, followed by the output layer.

We were not able to achieve good results when using the original ResNet architecture with
batch normalization (similar observations were made by Schuetzke et al.10). The test accuracy
calculated after each epoch was highly unstable and had high fluctuations, probably in part due to
the moving averages of the batch normalization not converging properly. This is possibly caused
by using an infinite stream of batches of diffractograms, instead of using a training dataset of
fixed size. We fixed this problem by using group normalization11 with 32 groups instead of batch
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Figure S2: a) ResNet residual block, the main building block of the shallower variants of the ResNet
architecture. b) ResNet bottleneck block, the main building block of the deeper variants of the
ResNet architecture. All convolution operations are implicitly followed by a batch normalization
layer. In both cases, a skip connection allows information to directly flow past the convolution
operations. (Illustration based on8)

Table S1: Composition of the ResNet-10, ResNet-50, and ResNet-101 architectures8. The architec-
tures are to be read from top to bottom. Square brackets indicate a residual or bottleneck building
block with the respective number of filters for each convolution.

output size layer name ResNet-10 ResNet-50 ResNet-101
112x112 initial conv. 7× 7 conv., 64 channels, stride 2

56x56 initial pool 3× 3 max pool, stride 2

56x56 block group 1
[

3× 3, 64
3× 3, 64

]
×1

 1× 1, 64
3× 3, 64
1× 1, 256

 ×3

 1× 1, 64
3× 3, 64
1× 1, 256

 ×3

28x28 block group 2
[

3× 3, 128
3× 3, 128

]
×1

 1× 1, 128
3× 3, 128
1× 1, 512

 ×4

 1× 1, 128
3× 3, 128
1× 1, 512

 ×4

14x14 block group 3
[

3× 3, 256
3× 3, 256

]
×1

 1× 1, 256
3× 3, 256
1× 1, 1024

 ×6

 1× 1, 256
3× 3, 256
1× 1, 1024

 ×23

7x7 block group 4
[

3× 3, 512
3× 3, 512

]
×1

 1× 1, 512
3× 3, 512
1× 1, 2048

 ×3

 1× 1, 512
3× 3, 512
1× 1, 2048

 ×3

normalization.

S2.2 Setup
We used a distributed architecture on multiple nodes using the Python framework Ray12. The
configuration utilized throughout this study is visualized in Figure 2b of our paper. Training took
place on a Ray head node with one or two2 RTX 2080 Ti GPUs. Training on two GPUs was
performed using the MirroredStrategy of TensorFlow13. 28 out of the 32 cores of the head node
were used for the generation of diffractograms. Next to the head node, we used two additional
compute nodes with 128 cores each to generate diffractograms. Communication between the nodes
took place using a Ray queue object to access the simulated diffractograms.

Depending on the model size and corresponding training speed, this setup allows training with
up to millions of unique diffractograms per hour. For the larger ResNet variants ResNet-50 and
ResNet-101, we efficiently used the GPUs. For the “parkCNN” and ResNet-10 models, training is

2The “parkCNN” models used a single GPU, while the ResNet models were trained on two GPUs.
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fast and the data generation becomes the bottleneck.
To train all models, we used Keras14 with TensorFlow 2.313. Optimization was performed

using Adam15 with β1 = 0.9 and β2 = 0.999 (Keras default parameters). We also tried to use
stochastic gradient descent (SGD) with momentum and a stepwise learning rate scheduler, but this
did not yield good results. Depending on the initial conditions, most of the training runs using
SGD were either unstable or reached low accuracies. For all experiments, a cross-entropy loss was
utilized.

We used a batch size of 870 for the “parkCNN” models and a batch size of 145 for the three
ResNet models. Furthermore, the “parkCNN” models were trained for 1000 epochs with a learning
rate of 0.001, while the ResNet models were trained for 2000 epochs with a learning rate of 0.0001.
The ResNet models used a step decay of the initial learning rate, halving the learning rate after
every 500 epochs.

When training on diffractograms simulated from synthetic crystals, we used 150 generated
batches per epoch when a batch size of 870 was used (“parkCNN medium” and “parkCNN big”)
and 900 batches per epoch when a batch size of 145 was used (ResNet). This means that each
epoch always contained 130 500 diffractograms3.

For the experiments performed directly on diffractograms simulated from ICSD crystals, we
used the statistics dataset directly to pre-generate the training dataset. We excluded the same 85
space groups that were not used by the synthetic training due to missing statistics. We used two
different crystallite sizes for each crystal in the statistics dataset, yielding 148 466 · 2 = 296 932
diffractograms in the training dataset.

S3 Randomized datasets
In Section 3.3 of the main text, we created randomized variations of the test and statistics datasets
to analyze and understand the gap between training on synthetic crystals and testing on the
ICSD. For each of the two datasets, we used 22 500 randomly picked crystals for the analysis.
This analysis used the space group labels as reported by the library PyXtal (and not the labels as
reported by the ICSD, which can deviate for a small number of structures). Furthermore, PyXtal
does not support partial occupancies. Therefore, we compared the accuracies we obtained on the
randomized datasets with a dataset that has all occupancies set to 1.0 and uses the PyXtal space
group labels. We call this the “reference dataset”. The difference in accuracy between this reference
dataset and the test / statistics dataset is relatively small (≈ 1 percentage point).

S4 Application to experimental diffractograms

S4.1 Dataset
To test the performance on experimental diffractograms, we used the publicly available RRUFF
mineral database16. It contains 5829 mineral samples with multiple types of measured spectra
and, most important for us, powder XRD measurements with Kα radiation for 2952 samples. Of
these 2952 samples, 2875 samples provide the output of a Rietveld refinement, including the space
group label. We further removed by hand some samples that had excessive amounts of noise and
were of bad quality. Many samples further only provide a simulated diffractogram without noise
or background. They were also excluded. This left 942 diffractograms for our analysis.

S4.2 Data generation
To be able to apply our models to experimental diffractograms, we added an additional background
function and noise to the generated diffractograms to make them more similar to experimental
data. We used a Gaussian process to generate random background functions and added additive
and multiplicative Gaussian noise. All diffractograms were generated in the range 2θ ∈ [5, 90] °
with step size 0.01°.

The generation protocol is as follows:
3Note that the division into epochs for training using synthetic crystals is rather arbitrary since each epoch

contains different diffractograms simulated from different crystals. However, the division makes it easy to calculate
the performance on the test dataset after each epoch.

5



1. Sample the background function from a Gaussian process with radial basis function kernel
without any conditioning:

k(xi, xj) = a exp

(
−|xi − xj |

2

2l2

)
(1)

We chose a = 1 and sampled l uniformly in [7, 40] for each diffractogram.

2. Subtract the minimum intensity from the background function obtained from the Gaussian
process.

3. Divide it by the sum of the 8501 (2θ-range) entries.

4. Multiply it by a scaling factor drawn from a truncated normal distribution in the range
[0, 150] with mean 0 and standard deviation 75.

5. Add the pure diffractogram (intensity-range [0, 1.0]).

6. Add Gaussian additive noise with mean 0 and standard deviation uniformly drawn in [0, 0.02].

7. Multiply with multiplicative Gaussian noise with mean 1 and standard deviation uniformly
drawn in [0, 0.16].

To resemble a more realistic peak profile, we used the pseudo-Voigt profile instead of the
Gaussian profile that we used for the classification of pure diffractograms. The pseudo-Voigt
profile uses the full width at half maximum (FWHM) ΓG of the Gaussian G, the FWHM ΓL of
the Lorentzian L, and a mixing parameter η as parameters17:

PV (θ − θ0; ΓL,ΓG) = ηG (θ − θ0; ΓG) + (1− η)L (θ − θ0; ΓL) (2)

with

G(θ − θ0;σ =
ΓG

2
√

2 ln 2
) =

1

σ
√

2π
e−

1
2 ( θ−θ0σ )

2

(3)

and

L(θ − θ0; γ =
1

2
ΓL) =

1

πγ

[
γ2

(θ − θ0)
2

+ γ2

]
. (4)

The FWHM ΓG of the Gaussian is typically parametrized using the Caglioti equation17 as

Γ2
G = U tan2 θ + V tan θ +W . (5)

Following the suggestions for typical Rietveld parameter ranges by Kaduk & Reid18 and com-
paring the resulting peaks with the ones from the RRUFF dataset, we decided to sample the
Caglioti parameters uniformly in the following ranges: [0, 0.01] for U, [0, 0.01] for W, and V was
fixed at V = 0.0. We further used a single mixing parameter η uniformly sampled in [0.0, 1.0] for
the full 2θ-range. For simplicity, we used the same FWHM from the Caglioti equation for both
the Gaussian and Lorentzian of the pseudo-Voigt. We further considered the Kα1

/ Kα2
splitting

of the Kα line since for some diffractograms in the RRUFF dataset, this splitting is visible.
We further implemented the option to add impurity phases to the training (and simulated ICSD

test) data. The minerals of the RRUFF database are not all made up of one phase, but most of
them contain small amounts of one or more impurity phases. To model this, for each training
diffractogram, we used a superposition of the main phase to be classified and an impurity phase of
a random space group (a is uniformly sampled in [0, 0.05]):

I(θ) = (1− a)Ipure + aIimpurity (6)

S4.3 Experiments
For our experiments on experimental data, we used the same split based on structure types as we
used for pure diffractograms. We performed two experiments using the ResNet-50 architecture,
one with impurity phases and one without. For both, a learning rate of 0.0001, a batch size of 145,
and 1000 epochs where used.
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Figure S3: Top-k accuracy as a function of k tested on RRUFF dataset for ResNet-50 model trained
with added noise and background. The experiment corresponding to the blue curve additionally
contained one added impurity phase for each diffractogram in the training data.

S5 Additional figures and tables

5 10 15 20
k

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

ICSD
Synthetic (training)

Figure S4: Top-k accuracy as a function of k tested on ICSD test dataset and the synthetic training
data for ResNet-101 model trained on synthetic data.

Figure S5: 1− acc. for test accuracy (ICSD), training accuracy (synthetic crystals), and test top-5
accuracy (ICSD) as a function of epochs for ResNet-101 model trained on synthetic data. To better
show the scaling behavior, both axes use logarithmic scaling.
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Figure S6: Test accuracy (ICSD), training accuracy (synthetic crystals), and test top-5 accuracy
(ICSD) as a function of epochs. We show all three metrics for the models ResNet-101, ResNet-50,
and ResNet-10.

Table S2: This is an extension of Table 1 of the main text. We additionally provide the total
number of unique diffractograms seen during training and the training time for each computational
experiment. To obtain the total number of unique diffractograms, we also counted diffractograms
that are based on the same crystal structure but have a different crystallite size. To get the number
of unique crystals, the provided number for all experiments directly trained on ICSD data and for
the experiment using synthetic data with the “parkCNN big” model needs to be divided by two,
since each crystal is used to generate two diffractograms with different crystallite sizes in those
experiments (see Section 2.5 of the main text). Training times are based on the hardware setup
described in Section S2.2.

Split Training
dataset

Testing
dataset Model Total number of

unique diffractograms
Training
time

Random ICSD ICSD parkCNN medium 296 932 ≈ 1 day

Structure ICSD ICSD parkCNN big 296 932 ≈ 1 day
type parkCNN medium 296 932 ≈ 1 day

synthetic ICSD

parkCNN big 130 500 000 ≈ 1 day
Structure ResNet-10 261 000 000 ≈ 3.5 days
type1 ResNet-50 261 000 000 ≈ 11 days

ResNet-101 261 000 000 ≈ 17.5 days

1Here, the split type refers to the statistics and the test dataset, rather than the training and the test dataset.
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Figure S7: Using the ResNet-101 model trained on the synthetic crystals, this figure shows the
recall ( TP

TP+FN ) and no. samples for all 145 space groups included in our experiments. Space group
numbers are sorted by the no. samples. In blue, one can find the recall tested on the ICSD test
dataset, in orange tested on diffractograms from the synthetic training distribution. The blue and
orange lines show the trend of the recall.

0 20 40 60 80 100 120 140

spg index (sorted by no. samples)

0.2

0.4

0.6

0.8

1.0

re
ca

ll

0

2000

4000

6000

8000

10000

12000

n
o

.
sa

m
p

le
s

ICSD

no. samples

Figure S8: Using the “parkCNN big” model trained on the ICSD crystals directly, this figure shows
the recall ( TP

TP+FN ) and no. samples for all 145 space groups included in our experiments. Space
group numbers are sorted by the no. samples. The recall is tested on the ICSD test dataset. The
blue line shows the trend of the recall.
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Figure S9: Exemplary diffractogram from the ICSD, simulated without imperfections (noise and
background).
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Figure S10: Exemplary diffractogram from the synthetic crystal distribution, simulated without
imperfections (noise and background).
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Figure S11: Exemplary diffractogram from experimental RRUFF mineral database.
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Figure S12: Exemplary diffractogram from the synthetic crystal distribution, simulated with im-
perfections (noise, background, and impurity phase).
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Figure S13: Distribution (logarithmic scale) of space groups in the ICSD.
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