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A Implementation details

Winter et al. 1 showed that their CDDD autoencoder model has a high validity rate of 97%, even when
traversing a large distance from the valid latent representations of randomly picked molecules. In our imple-
mentation of QMO, we dealt with decode failures by assigning a penalty score of 0.1 less than the score of
the starting molecule, f(z0)− 0.1.

Also, we only considered the molecules generated after each optimization iteration. That is, we did not
consider the Q molecules obtained from decoding the perturbed latent vectors {z + βuq}Qq=1 (used for
estimating gradients) in Ziterate despite that they were also used to query the oracle O. Especially in a
realistic drug discovery scenario where oracle evaluations are highly expensive, we would of course want to
also consider these molecules in case they exhibit good properties. In addition, while we considered there to
be Q+ 1 oracle evaluations necessary for each optimization iteration, the actual amount would be lower in
practice as some of the perturbed latent vectors would decode to the same molecule since the perturbations
are small (and a small number of latent vectors would also decode to no valid input).

All experiments were run using Google Colab, and code for QMO is available at: https://github.

com/IBM/QMO-bench. For the Graph-GA and GPBO baseline models, we adopt the implementation of Gao
et al. 2 . For Guacamol objectives, we use the implementation of the Therapeutic Data Commons (TDC)3

(https://tdcommons.ai).

B Additional results

B.1 Comparing 1-point and 2-point gradient estimators

Though we ran only 2-point gradient estimators on the Guacamol tasks, we also compared 1-point gradient
estimators on the QED4 objective. Specifically, following the setup of Hoffman et al. 5 , we defined a minimum
similarity threshold of 0.4 (and did not consider molecules with similarity less than 0.4 to the starting molecule)
and set the oracle O(x) = 4 ·QED(x)−max(0.4− sim(x, x0), 0) for molecule x ∈ X and starting molecule x0,
where sim(·) denotes Tanimoto similarity with Morgan fingerprints. We selected 100 molecules with QED
scores in [0.7, 0.8] from the test set in Jin et al. 6 (who extracted the molecules from ZINC) and optimized
each with T = 20 iterations and 20 random restarts each. We consider an optimized molecule a success if
its QED scores falls in [0.9, 1.0], and we visualize in Fig. B1 how many random restarts are necessary for
different ZO optimization methods to achieve a given success rate. As shown, 2-point gradient estimators
achieve significantly higher success rates than their 1-point counterparts given the same number of random
restarts.
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Figure B1: Optimization of QED with different ZO optimizers.

B.2 SMILES strings of molecules found by QMO

The SMILES strings s1, . . . , s9 from Fig. 2 and Fig. 3 of the main paper are as follows:

• s1 = CCCC(NC(C)Cn1c(C2CCCCC2)nc2cc(C(=O)O)ccc21)C(=O)OCC

• s2 = CCCC(C(=O)OCC)c1nc2cc(C(=O)O)ccc2n1C1CCCCC1C(C)=O

• s3 = CCCC(C)n1c(C(=O)NC(C)C(=O)OCC)cc2cc(C3CCCCC3)cc(C(=O)O)c21

• s4 = COc1cc(C(=O)NCC23CC=CC2C3)nc2c(C#N)cccc12

• s5 = CCC1(CC)C(C(=O)Nc2cccc(F)c2)=CN=C2C=C(C#N)C(=O)N21

• s6 = CCC12CC(CO1)N(C(=O)c1cnc3cccc(C#N)c(=O)c3c1)C2

• s7 = COc1cc2ncnc(Nc3ccc(F)c4ncccc34)c2cc1C(C)C

• s8 = CCCCOc1ncccc1C(=O)CNc1ncnc2cc(OC(F)F)c(F)cc12

• s9 = COc1cc(Nc2ncnc3cc(OC)c([N+](=O)[O-])cc23)ccc1F.

B.3 Diversity metrics

Table B1 shows the diversity of the QMO optimized molecules from Section 3.2 of the main paper (optimized
using sign 2p gs with Q = 50). For each starting molecule in the test set, the best molecule found after two
random restarts was used, showing the diversity of molecules that can be generated from different starting
points. Hoffman et al. 5 also showed how different random restarts starting from the same starting point can
find diverse candidates.

Table B1: Diversity of 20 QMO optimized molecules from different starting points.

Task Average score Diversity

perindopril mpo 0.628 0.678
zaleplon mpo 0.500 0.805
deco hop 0.859 0.664

2



B.4 Query efficiency tables

Scores from Fig. 2 of the main paper are summarized below in Tables B2, B3, and B4.

Table B2: Scores for perindopril mpo with various query budgets.

Methods AUC 500 q 1000 q 2000 q 5000 q 10000 q

graph ga 0.527 0.453 0.465 0.490 0.533 0.593
gpbo 0.502 0.446 0.478 0.478 0.494 0.583
sign 2p gs (Q = 30) 0.456 0.219 0.327 0.408 0.490 0.544
sign 2p gs (Q = 50) 0.441 0.176 0.284 0.388 0.485 0.541
sign 2p gs (Q = 100) 0.395 0.101 0.218 0.330 0.439 0.507
graph ga 4k + sign 2p gs (Q = 49) 0.522 0.466 0.491 0.501 0.531 0.572
gpbo 2k + sign 2p gs (Q = 49) 0.487 0.435 0.438 0.438 0.508 0.555

Table B3: Scores for zaleplon mpo with various query budgets.

Methods AUC 500 q 1000 q 2000 q 5000 q 10000 q

graph ga 0.315 0.167 0.239 0.294 0.337 0.362
gpbo 0.241 0.172 0.244 0.244 0.253 0.261
sign 2p gs (Q = 30) 0.259 0.001 0.013 0.105 0.321 0.406
sign 2p gs (Q = 50) 0.233 0.000 0.007 0.048 0.291 0.390
sign 2p gs (Q = 100) 0.158 0.000 0.000 0.013 0.168 0.333
graph ga 4k + sign 2p gs (Q = 49) 0.314 0.183 0.239 0.298 0.331 0.359
gpbo 2k + sign 2p gs (Q = 49) 0.307 0.223 0.254 0.276 0.329 0.350

Table B4: Scores for deco hop with various query budgets.

Methods AUC 500 q 1000 q 2000 q 5000 q 10000 q

graph ga 0.634 0.580 0.600 0.638 0.650 0.676
gpbo 0.663 0.587 0.615 0.615 0.626 0.792
sign 2p gs (Q = 30) 0.582 0.529 0.539 0.572 0.638 -
sign 2p gs (Q = 50) 0.652 0.529 0.548 0.576 0.669 0.783
sign 2p gs (Q = 100) 0.604 0.522 0.537 0.558 0.622 0.702
graph ga 4k + sign 2p gs (Q = 49) 0.661 0.592 0.602 0.637 0.655 0.741
gpbo 2k + sign 2p gs (Q = 49) 0.716 0.591 0.597 0.597 0.772 0.859

C Other ZO optimization methods

Other than the ZO optimization methods considered here, ZO stochastic coordinate descent (ZO-SCD)7

was also tested. However, because the coordinate-wise gradient estimator relies on perturbing coordinates
individually, the perturbed vector embeddings used to estimate gradients almost always decoded back to the
same molecule as the original non-perturbed vector. In other words, the autoencoder almost always perceived
the embedding vectors with all coordinates the same but one coordinate to be the same molecule, so the
coordinate-wise gradient estimates were almost always zero.
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D Hyperparameter tuning

Aside from the number of random perturbations Q, there are two other main hyperparameters for each of the
ZO optimization methods compared: function smoothing parameter β, and learning rate α. The value β = 10
was used for all tasks as it was found to work well with the CDDD model. Consistent with Hoffman et al. 5 ,
we find that β = 1 or below does not work well (as gradients cannot be accurately approximated without
sufficient smoothing) and β = 100 or above results in many decode failures. When trying a few molecules
with β values between this range (including β = {5, 10, 20, 50} for each task, β = 10 still performed best for
the majority of molecules. The values of α used in experiments are shown in Figure D1 while the tuning of α
is shown in Table D2 and Table D3. As a note, α larger than the largest tested values for each optimization
method often resulted in many decode failures, so even if the best α was the largest value tested, choosing
notably larger α (greater by more than a factor of 2) may not be a good idea. Also, for ZO-Adam, two
additional hyperparameters are used for the adaptive learning rate: the exponential averaging parameters β1

and β2. For these parameters, we use the default values used by the PyTorch Adam implementation, β1 = 0.9
and β2 = 0.999.

Table D1: Learning rates α used for Guacamol tasks in Figure 4.

Task Methods Q = 30 Q = 50 Q = 100

perindopril mpo

adam 2p bes-shrink 0.2 0.3 0.3
adam 2p gs 0.1 0.2 0.3
grad 2p bes-shrink 50.0 30.0 30.0
grad 2p gs 2.0 2.0 5.0
sign 2p bes-shrink 0.1 0.1 0.1
sign 2p gs 0.1 0.1 0.1

zaleplon mpo

adam 2p bes-shrink 0.1 0.2 0.2
adam 2p gs 0.1 0.1 0.2
sign 2p bes-shrink 0.1 0.1 0.2
sign 2p gs 0.1 0.1 0.1

deco hop

adam 2p bes-shrink 0.3 0.2 0.3
adam 2p gs 0.3 0.3 0.3
grad 2p bes-shrink 70.0 70.0 70.0
grad 2p gs 5.0 10.0 10.0
sign 2p bes-shrink 0.2 0.2 0.2
sign 2p gs 0.1 0.2 0.2

qed

adam 1p bes-shrink 0.2 0.2 0.2
adam 1p gs 0.2 0.2 0.2
adam 2p bes-shrink 0.2 0.2 0.2
adam 2p gs 0.2 0.2 0.2
grad 1p bes-shrink 1.5 1.5 1.5
grad 1p gs 0.2 0.2 0.2
grad 2p bes-shrink 20.0 20.0 20.0
grad 2p gs 1.5 2.0 2.0
sign 1p bes-shrink 0.2 0.2 0.2
sign 1p gs 0.2 0.2 0.2
sign 2p bes-shrink 0.2 0.2 0.2
sign 2p gs 0.2 0.2 0.2
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Table D2: Tuning of learning rate α for Guacamol tasks in Figure 4. Scores correspond to the average scores
after optimizing 20 molecules with 2 random restarts each (40 trials total) for T = 1000 iterations.

Task Methods Learning rate α Q = 30 Q = 50 Q = 100

perindopril mpo

adam 2p bes-shrink
0.1 0.555 0.598 0.607
0.2 0.578 0.617 0.635
0.3 0.564 0.617 0.654

adam 2p gs
0.1 0.600 0.600 0.604
0.2 0.589 0.611 0.635
0.3 0.560 0.605 0.637

grad 2p bes-shrink
30.0 0.429 0.585 0.611
50.0 0.466 0.555 0.598

grad 2p gs
2.0 0.584 0.582 0.571
5.0 0.500 0.566 0.630

sign 2p bes-shrink
0.05 0.531 0.593 0.602
0.1 0.598 0.630 0.629
0.2 0.531 0.575 0.615

sign 2p gs
0.05 0.583 0.595 0.593
0.1 0.585 0.610 0.635
0.2 0.534 0.564 0.617

zaleplon mpo

adam 2p bes-shrink
0.1 0.386 0.445 0.449
0.2 0.208 0.447 0.483
0.3 0.151 0.376 0.470

adam 2p gs
0.1 0.455 0.465 0.472
0.2 0.374 0.453 0.491
0.3 0.321 0.425 0.483

sign 2p bes-shrink
0.05 0.382 0.398 0.429
0.1 0.478 0.485 0.477
0.2 0.410 0.445 0.485

sign 2p gs
0.05 0.436 0.442 0.429
0.1 0.460 0.487 0.488
0.2 0.399 0.441 0.483

deco hop

adam 2p bes-shrink
0.1 0.544 0.564 0.605
0.2 0.578 0.636 0.722
0.3 0.585 0.628 0.738

adam 2p gs
0.1 0.564 0.585 0.603
0.2 0.603 0.638 0.735
0.3 0.612 0.669 0.741

grad 2p bes-shrink
50.0 0.480 0.587 0.666
70.0 0.508 0.634 0.739

grad 2p gs

2.0 0.554 0.544 0.543
5.0 0.608 0.597 0.584
7.0 0.596 0.681 0.653
10.0 0.592 0.696 0.688

sign 2p bes-shrink
0.1 0.645 0.709 0.784
0.2 0.663 0.748 0.860
0.3 0.613 0.670 0.746

sign 2p gs
0.1 0.676 0.763 0.762
0.2 0.657 0.783 0.865
0.3 0.616 0.621 0.763
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Table D3: Tuning of learning rate α for QED task in Figure B1. Scores correspond to the average of the
success rates of optimizing 100 molecules after 1, 5, and 20 random restarts with T = 20 iterations per restart.

Methods Learning rate α Q = 30 Q = 50 Q = 100

adam 1p bes-shrink
0.05 0.007 0.013 0.050
0.1 0.193 0.193 0.290
0.2 0.287 0.277 0.403

adam 1p gs
0.05 0.003 0.010 0.030
0.1 0.180 0.200 0.237
0.2 0.317 0.290 0.350

adam 2p bes-shrink
0.05 0.187 0.363 0.497
0.1 0.443 0.577 0.730
0.2 0.623 0.730 0.777

adam 2p gs
0.05 0.337 0.400 0.507
0.1 0.627 0.707 0.777
0.2 0.723 0.733 0.787

grad 1p bes-shrink
0.5 0.053 0.070 0.123
1.5 0.440 0.507 0.590

grad 1p gs
0.1 0.420 0.243 0.100
0.2 0.437 0.497 0.453
0.5 0.120 0.220 0.323

grad 2p bes-shrink
10.0 0.137 0.357 0.767
20.0 0.283 0.633 0.840

grad 2p gs

0.2 0.103 0.090 0.087
0.5 0.350 0.323 0.260
1.5 0.750 0.770 0.743
2.0 0.697 0.793 0.780

sign 1p bes-shrink
0.05 0.010 0.027 0.040
0.1 0.257 0.287 0.317
0.2 0.453 0.490 0.503

sign 1p gs
0.05 0.000 0.017 0.010
0.1 0.173 0.270 0.287
0.2 0.447 0.480 0.500

sign 2p bes-shrink
0.05 0.177 0.360 0.510
0.1 0.497 0.723 0.810
0.2 0.670 0.833 0.890

sign 2p gs
0.05 0.293 0.373 0.483
0.1 0.677 0.730 0.813
0.2 0.777 0.800 0.860
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