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Section 1. Experimental dataset: Gasification

Experimental results from the steam-oxygen gasification of biomasses with different origins

have been used in this work: pine sawdust, chestnut sawdust, torrefied pine sawdust,

torrefied chestnut sawdust, almond shells, cacao shells, grape pomace, olive stones, pine

kernel shells, and pine cone leaves. The dataset includes the experimental results published

in a previous work by our research team.S1

The experimental procedure and the plant where the experiments were performed

have been described in detail elsewhere.S1 Briefly, the gasification plant (PID Eng&Tech)

used experimentally consists of an atmospheric pressure bubbling fluidized bed reactor.

The plant comprises a double-hopper feeding system, a pre-heated gas inlet, a gasification

reactor with freeboard, an outlet gas double cyclone cleaning system, a tar trap, a condenser,

and control and measuring systems. The gasification reactor is a SS310 cylinder with

a height of 1 m and an inner diameter of 77 mm, which ends in a 59.2 mm long and

133 mm diameter freeboard. Both the reactor and the freeboard are surrounded by three

independent electrical furnaces that allow the temperature of the reactor wall to increase

up to 950 °C. The bed material used in the experiments was 1 kg of coal ash (212 µm

to 710 µm). The fuel feeding system includes a main storage hopper (10 L), which is

communicated by an auger (Ø = 20 mm) with a smaller secondary one. A water-cooled

secondary auger (Ø = 20 mm) directly introduces the fuel sample into the fluidized bed

reactor at approximately 6 cm above the bottom of the reactor. Gases are fed into the main

hopper by Bronkhorst High-Tech mass flow controllers. A Wilson 307 piston pump feeds

in the required mass flow of liquid water to the reactor. Fly ashes and solid particles

are retained in a cyclone and in a 100 µm pore diameter ceramic filter. The outlet gas is

directed to a heat exchanger where water and heavy tars condense. The lighter tars are

captured by a cold-trap and the cleaned gases are sent to the gas analyzers.
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Gasification experiments were carried out at different temperatures (T), steam-to-air

(SA) ratios, stoichiometric ratios (SR), and steam-to-biomass ratios (SBR). SR is defined as

the experimental oxygen-to-fuel weight ratio divided by the oxygen-to-fuel weight ratio

for stoichiometric combustion. SA, SR, and SBR are calculated by Eqs. (1), (2), and (3),

respectivelyS2–S4:

SA =
Total water supplied (mL/min)

Total air supplied (mL/min)
(1)

SR =
(Oxygen/fuel)experimental

(Oxygen/fuel)stoichiometric
(2)

SBR =
Total water supplied (g/min)

Fuel supplied (g/min)
(3)

The composition of the product gas after gasification was calculated on a nitrogen-free

and dry basis. The gas flow rates of the species generated during the experiments were

then calculated by means of a nitrogen balance (used as an internal standard). From the

results of the gaseous emissions, the gas yield (GAS)S5, the higher heating value (HHV) of

the gas obtained (HHVgas)S6, and the energy yield (Eyield) were determined as defined by

Eqs. (4), (5), and (6), respectively:

GAS (Nm3 gas/kg biom) =
Qoutlet-gas

mbiomass
(4)

HHVgas (MJ/Nm3) = (11.76 · xCO + 11.882 · xH2 + 37.024 · xCH4) · 10/1000 (5)

Eyield (MJ/kg biom) = GAS · HHVgas (6)
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where Qoutlet-gas is the volumetric flow of the outlet gas (Nm3/h), obtained by applying a

balance to the inert gas (N2), mbiomass is the biomass inlet mass flow on a dry basis (kg/h),

and xi (vol%) represents the volumetric percentage of each component in the dry product

gas.
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Section 2. Exploratory data analysis

Section 2.1. Data dictionary

• BIOMASS: type of biomass (AS=almond shells, CHE=chestnut sawdust, CHET=torrefied

chestnut sawdust, CS=cacao shells, GP=grape pomace, OS=olive stones, PCL=pine

cone leafs, PIN=pine sawdust, PINT=torrefied pine sawdust, PKS=pine kernel shells)

• SA: steam-to-air ratio used in the gasification experiments (vol/vol)

• SBR: steam-to-biomass ratio used in the gasification experiments (wt/wt)

• HHVbiom (MJ/kg): higher heating value (HHV) of the biomass (MJ/kg)

• T (K): gasification temperature (K)

• SR: stoichiometric ratio, i.e., experimental oxygen-to-fuel weight ratio divided by the

oxygen-to-fuel weight ratio for stoichiometric combustion

• C (%): carbon content of the biomass (wt%) on a dry basis

• N (%): nitrogen content of the biomass (wt%) on a dry basis

• H (%): hydrogen content of the biomass (wt%) on a dry basis

• S (%): sulfur content of the biomass (wt%) on a dry basis

• O (%): oxygen content of the biomass (wt%) on a dry basis

• ash (%): ash content of the biomass (wt%) on a dry basis

• VM (%): volatile matter content of the biomass (wt%) on a dry basis

• FC (%): fixed carbon content of the biomass (wt%) on a dry basis

• MC (%): moisture content of the biomass (wt%)
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• volCO2 (%): CO2 concentration in the gasification gas (vol%)

• volCO (%): CO concentration in the gasification gas (vol%)

• volCH4 (%): CH4 concentration in the gasification gas (vol%)

• volH2 (%): H2 concentration in the gasification gas (vol%)

• volCOMB (%): concentration of combustible gas (H2+CO+CH4) in the gasification gas

(vol%)

• GAS (m3/kg biom): gas production from the gasification process in m3/kg biom

To develop the model we used the following input features: SA, SBR, HHVbiom

(MJ/kg), T (K), SR, C (%), H (%), O (%), ash (%), VM (%), FC (%) and MC (%). Biomass N

and S contents were not included as inputs of the model because it is not expected that

they have an effect on the gasification gases studied. The outputs predicted by the model

were: volH2 (%), volCO (%), volCOMB (%), and GAS (m3/kg biom).

Section 2.2. Distributions and correlations

Fig. S1 shows the distributions and correlations between a subset of features. Fig. S2 shows

the distributions and correlations between targets. Table S1 shows the descriptive statistics

of the gasification data used to build the machine learning model.
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Fig. S1. Distributions and correlations between a subset of features.
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Fig. S2. Distributions and correlations between targets.

Table S1. Descriptive statistics of the gasification data.

Parameter mean median minimum maximum

T (K) 1153 1173 973 1173
SA 1.96 2.33 0.11 2.33
SR 0.19 0.19 0.13 0.25
SBR 1.43 1.22 0.06 2.37
C (%) 51.20 52.32 45.50 54.50
H (%) 5.92 6.01 5.05 6.21
O (%) 39.70 38.99 34.73 43.41
ash (%) 2.41 1.81 0.30 12.73
VM (%) 78.02 78.41 67.59 85.10
FC (%) 19.56 19.78 14.50 22.36
HHVbiom (MJ/kg) 20.24 20.77 18.68 21.57
MC (%) 8.54 9.37 4.32 11.60
volH2 (%) 32.17 32.85 21.95 41.69
volCO (%) 30.47 33.39 14.11 39.09
volCH4 (%) 9.52 9.61 6.70 12.06
volCOMB (%) 72.16 74.00 59.34 83.32
GAS (m3/kg biom) 1.07 1.01 0.66 1.59
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Section 3. Single-output baseline models

To know the minimum performance that we can expect with our model, before building a

Gaussian process regression (GPR) model we evaluated the performance of some simple

baseline models, such as the mean dummy regressor and the median dummy regressor. We

also evaluated the performance of a more powerful model such as the XGBoost regressor

(XGBRegressor, default parameters, version 1.5.1). We used leave-one-out cross-validation

(LOOCV) for the training of the baseline models, as we did later for the GPR model. These

models are only able to predict single outputs, so independent models were built for

each output. The prediction performance of these models is determined by mean of the

coefficient of determination, R2, and the root mean squared error (RMSE) values, which

are shown in Tables S2 and S3, respectively.

Table S2. Coefficient of determination, R2, for the baseline models.

model H2 CO COMBgas GAS
(vol%) (vol%) (vol%) (m3/kg biom)

mean dummy regressor -0.0001 -0.0002 -0.0001 -0.00002
median dummy regressor 0.0360 -0.2120 -0.0813 -0.0903
XGBoost regressor 0.8606 0.8933 0.8826 0.6294

Table S3. Root mean squared error (RMSE) values for the baseline models.

model H2 CO COMBgas GAS
(vol%) (vol%) (vol%) (m3/kg biom)

mean dummy regressor 1.0946 1.0655 1.0581 1.0540
median dummy regressor 1.0746 1.1729 1.1002 1.1006
XGBoost regressor 0.4087 0.3480 0.3626 0.6417
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Section 4. Model selection and performance assessment

We used Gaussian process regression (GPR) models (with coregionalized kernels) as

they are able to capture complex non-linear relationships using only a limited amount of

data, besides providing uncertainty estimates. We used the GPy Python libraryS7 to build

and train the Gaussian process regression models. We tried different kernel functions

with automatic relevance determination (ARD) in an intrinsic model of coregionalization

(ICM).S8 As we explain in detail below, our selected coregionalized GPR model use as the

kernel the sum of the Radial basis function (RBF) kernel and the Linear kernel, with ARD.

A dataset of 30 samples was used to develop the model. All features and outputs

were z-score standardized using the mean and standard deviation of the training set

(using the scikit-learn Python packageS9). We evaluated the model performance from

three perspectives: predictive performance (using both cross-validation and experimental

validation), uncertainty estimation, and randomization test.

Section 4.1. Generalization performance

Since our dataset is small we use leave-one-out cross-validation (LOOCV)S10 to measure

the predictive performance of our model. That is, we train as many models as we have

datapoints (N) and then use N − 1 points for training and 1 point for testing. We then

measure the performance of the model at test points, which shows the ability of the model

to generate accurate predictions for unseen data. With the training of many models, we

accept a higher computational cost to have a more robust estimate of model performance.

For optimization of the kernel hyperparameters we performed 20 random restarts and

used hyperparameters corresponding to the best maximum likelihood solution. Based

on the findings of Wainer and CawleyS11 we did not perform nested LOOCV for model

selection but directly selected models based on the LOOCV results. We performed 15

replications of each LOOCV run to evaluate the variance in the model performance, and
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hence we provide all metric results as an average of these repetitions. To evaluate the

prediction performance of the models, we used the coefficient of determination, R2, and

the root mean squared error (RMSE).

In addition to LOOCV, to verify the predictive capacity of our model we also performed

an experimental validation of the model. For that, we carried out new gasification ex-

periments using two different biomasses that were not used previously for the training

and cross-validation of the model: walnut shells (WS) (T=1173 K, SA=2.33, and SR=0.13)

and hazelnut shells (HZS) (T=1173 K, SA=2.33, and SR=0.25). We then compared the

experimental results of the new gasification experiments with those predicted by the

model.

Section 4.2. Uncertainty calibration

To evaluate the uncertainty calibration of our model, we used the UQ360 implementa-

tion.S12 For that, the predictive uncertainty given by our GPR model is expressed as a

prediction interval, i.e., a region bounding the mean that we expect an observed value to

fall within with a certain probability. For this, we use the metrics Mean Prediction Interval

Width (MPIW),S12 which computes the average width of the 95% prediction interval, and

Prediction Interval Coverage Probability (PICP),S12 which computes the fraction of test

data for which the ground truth lies within a 95% prediction interval of the model.

Section 4.3. Model selection

Tables S4 and S5 show the performance metrics for some of the GPR models that we built

using different kernel functions.
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Table S4. Generalization and calibration metrics for GPR models using different
individual kernel functions (all with automatic relevance determination, ARD). Means
and standards deviations of 15 runs. R2: coefficient of determination; RMSE: root mean
squared error; PICP: Prediction Interval Coverage ProbabilityS12; MPIW: Mean Prediction
Interval WidthS12.

kernel H2 CO COMBgas GAS
(vol%) (vol%) (vol%) (m3/kg biom)

Radial Basis Function (RBF)
R2 0.8022±0.0051 0.8581±0.0009 0.8402±0.0022 0.7932±0.0024
RMSE 0.4867±0.0062 0.4013±0.0013 0.4230±0.0030 0.4777±0.0085
PICP 0.7244±0.0147 0.5600±0.0181 0.7000±0.0000 0.9000±0.0000
MPIW 1.3187±0.0126 0.7734±0.0141 0.9666±0.0222 1.5850±0.0166
Matérn 3/2
R2 0.8542±0.0023 0.9150±0.0008 0.9019±0.0007 0.8333±0.0016
RMSE 0.4179±0.0033 0.3105±0.0014 0.3315±0.0012 0.4304±0.0021
PICP 0.8333±0.0000 0.7689±0.0083 0.7689±0.0083 0.9000±0.0000
MPIW 1.3545±0.0032 0.8826±0.0018 1.0806±0.0033 1.5630±0.0031
Matérn 5/2
R2 0.8328±0.0033 0.8827±0.0023 0.8642±0.0016 0.8194±0.0035
RMSE 0.4475±0.0045 0.3648±0.0036 0.3899±0.0023 0.4479±0.0044
PICP 0.7667±0.0000 0.6667±0.0000 0.7667±0.0000 0.9200±0.0163
MPIW 1.3684±0.0085 0.8697±0.0023 1.0781±0.0038 1.6086±0.0066
Rational Quadratic
R2 0.7981±0.0015 0.8663±0.0010 0.8473±0.0026 0.8194±0.0027
RMSE 0.4918±0.0018 0.3895±0.0014 0.4135±0.0035 0.4479±0.0033
PICP 0.7444±0.0314 0.5667±0.0000 0.6911±0.0147 0.9000±0.0000
MPIW 1.3469±0.0088 0.8072±0.0063 1.0111±0.0051 1.5967±0.0076
Linear
R2 0.8183±0.0000 0.9253±0.0000 0.9087±0.0000 0.8089±0.0000
RMSE 0.4666±0.0000 0.2912±0.0000 0.3198±0.0000 0.4608±0.0000
PICP 0.9333±0.0000 0.9000±0.0000 0.9333±0.0000 0.9667±0.0000
MPIW 1.8188±0.0000 1.0405±0.0000 1.1189±0.0000 1.6967±0.0000
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Table S5. Generalization and calibration metrics for GPR models using different multiple
kernel functions (all with automatic relevance determination, ARD). Means and standards
deviations of 15 runs. R2: coefficient of determination; RMSE: root mean squared error;
PICP: Prediction Interval Coverage ProbabilityS12; MPIW: Mean Prediction Interval
WidthS12.

kernel H2 CO COMBgas GAS
(vol%) (vol%) (vol%) (m3/kg biom)

RBF + Linear
R2 0.8924±0.0052 0.9597±0.0012 0.9251±0.0022 0.8187±0.0026
RMSE 0.3589±0.0086 0.2138±0.0031 0.2896±0.0042 0.4488±0.0032
PICP 0.8200±0.0323 0.7667±0.0298 0.7583±0.0179 0.9533±0.0194
MPIW 0.9466±0.0207 0.6557±0.0186 0.9140±0.0169 1.5769±0.0120
Matérn 3/2 + Linear
R2 0.8783±0.0036 0.9515±0.0007 0.9169±0.0015 0.8252±0.0024
RMSE 0.3818±0.0056 0.2346±0.0018 0.3050±0.0028 0.4407±0.0031
PICP 0.7511±0.0239 0.7689±0.0147 0.7622±0.0166 0.9400±0.0133
MPIW 0.9384±0.0099 0.6619±0.0057 0.8984±0.0075 1.5378±0.0066
Matérn 5/2 + Linear
R2 0.8735±0.0028 0.9523±0.0013 0.9165±0.0018 0.8208±0.0030
RMSE 0.3892±0.0043 0.2327±0.0033 0.3057±0.0032 0.4462±0.0037
PICP 0.7556±0.0157 0.7644±0.0285 0.7556±0.0263 0.9422±0.0147
MPIW 0.9165±0.0134 0.6476±0.0088 0.8914±0.0133 1.5455±0.0069
Rational Quadratic + Linear
R2 0.8796±0.0057 0.9581±0.0020 0.9195±0.0017 0.8136±0.0064
RMSE 0.3796±0.0090 0.2181±0.0053 0.3001±0.0031 0.4550±0.0078
PICP 0.8022±0.0333 0.7356±0.0285 0.7333±0.0322 0.9200±0.0237
MPIW 0.8932±0.0194 0.6335±0.0133 0.8839±0.0194 1.5562±0.0122
RBF * Linear
R2 0.8703±0.0002 0.9346±0.0003 0.8944±0.0004 0.8093±0.0004
RMSE 0.3941±0.0004 0.2724±0.0005 0.3438±0.0007 0.4603±0.0005
PICP 0.9000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9667±0.0000
MPIW 1.7508±0.0014 1.4649±0.0009 1.7305±0.0008 2.0359±0.0010
RBF + Linear + Matérn 3/2
R2 0.9019±0.0034 0.9579±0.0028 0.9150±0.0048 0.8110±0.0104
RMSE 0.3427±0.0059 0.2185±0.0071 0.3083±0.0086 0.4580±0.0125
PICP 0.8267±0.0490 0.7467±0.0317 0.6822±0.0437 0.9222±0.0337
MPIW 0.9171±0.320 0.6378±0.0230 0.8979±0.0349 1.5845±0.0194

According to the metrics shown in Tables S4 and S5, we selected the model that uses as

the kernel the sum of the Radial basis function (RBF) kernel and the Linear kernel, with

ARD in an intrinsic model of coregionalization (ICM), as the best GPR model. This model
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shows high R2 and PICP values, and the lowest RMSE and MPIW values. The parity

plots of the selected model predictions of the gasification outputs versus the experimental

results (z-score standardized) are shown in Fig. S3. The coefficient of determination, R2,

shows values between 0.82 and 0.98, which indicates a good predictive performance. The

low standard deviation of the metrics calculated from the run replications indicates that

our model is stable. After selecting the best model, we retrained it on all data to perform an

experimental validation of the model, and for prediction purposes on input data collected

from the literature.
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Fig. S3. Leave-one-out cross-validation results (test points). True and predicted values are
z-score standardized using the mean and standard deviation of the training set. Error bars
show the predicted standard deviations, for CH4 we compute the error bars considering
the error propagation and covariance (see Section 4.5). R2 (mean and standard deviation of
15 runs): H2=0.892±0.005, CO=0.960±0.001, CH4=0.978±0.000, COMBgas=0.925±0.002,
GAS=0.819±0.002.

The results of the experimental validation of the model are shown in Fig. S4, where

we can compare the experimental and predicted results of novel gasification experiments

using two new biomasses not previously used for the training of the model. These results

show a good agreement between the experimental results and the corresponding values

predicted by the model.
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Fig. S4. Results of the experimental validation of the model. For experimental validation
we compare new experimental results obtained from the gasification of walnut shells (WS)
(T=1173 K, SA=2.33, and SR=0.13) and hazelnut shells (HZS) (T=1173 K, SA=2.33, and
SR=0.25) with the values predicted by the model.
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Section 4.4. Randomization test: y-scrambling

We used a randomization test, y-scrambling,S13 to ensure that the model learned something

meaningful. To test the null hypothesis that the model uncovered no meaningful pattern

in the data, we trained 150 models with scrambled labels. We used leave-one-out cross-

validation (LOOCV) to measure the metrics for each of the models. Fig. S5 compares

the predicted values with the true values for the test points from the LOOCV results for

one of the models trained with randomly shuffled data, showing a very poor prediction

performance.

Fig. S6 shows the histograms of the R2 scores (LOOCV) for the predictions of the

150 different models trained with scrambled labels. The red line indicates the R2 score

obtained for the model trained on the original data, i.e., with unshuffled labels. For all

outputs, this value is much better that those obtained for the models trained with shuffled

labels. We also calculated an empirical p-value against the null hypothesis that features

and targets are independent. The p-value is very low (p = 0.006), which indicates a very

low probability that the good score obtained with the unshuffled data would be obtained

by chance. These results indicate that our model performs poorly on randomly shuffled

data, meaning that that the model predictions are not made just by chance, and verifying

the robustness of the model.
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Fig. S6. Results of the randomization test: y-scrambling. Histograms of R2 scores
(LOOCV) for predictions of the models trained with shuffled labels. Results from 150
repetitions (permutation test p-value = 0.006 for all outputsS14,S15). Red line indicates the
R2 score obtained for the model trained on the original data, i.e., with unshuffled labels.

Section 4.5. Predicting methane volume fraction: Error propagation

The methane volume fraction is one of the outcomes of the biomass gasification process.

However, for this variable, the noise in the data is relatively large, which makes it more
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difficult to build a sufficiently reliable predictive model based on these data. Therefore, we

predicted the CO, H2 and total combustible gas (COMBgas) concentrations (COMBgas is

the sum of H2, CO, and CH4), which are variables that can be predicted more accurately

with our model. Then, we estimated the methane volume fraction from those outputs.

For the CH4 concentration, as it is estimated from other outputs, we compute the error

bars (or uncertainty) considering the error propagation. The associated covariance term is

also taken into account since we consider that the measurements are dependent (and they

have non-zero covariances). The parity plot of the CH4 concentration predictions versus

the experimental results is shown in Fig. S3. The value of the coefficient of determination,

R2, indicates a good prediction performance for this output.
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Section 5. Feature importance analysis

Section 5.1. Methods

To determine the feature importance we used two approaches: the SHapley Additive

exPlanations (SHAP) techniqueS16 marginalized over the full dataset to calculate SHAP

values, and the partial dependence plotsS17 in which the plotted features are marginalized

out over the distribution of all features.

To perform the SHAP analysis for the CH4 concentration, we built a custom function

for the SHAP kernel explainer that accounts for the estimation of this output from the

model predicted targets.

We used partial dependence plotsS17 to show the marginal effect that the features

have on the predicted outcomes of our machine learning model. The partial dependence

function for regression is defined by Eq. (7).

f̂S(xS) = EXC

[
f̂ (xS, XC)

]
=

∫
f̂ (xS, XC)dP(XC) (7)

The xS are the features for which the partial dependence function is plotted and XC are the

other features used in the machine learning model f̂ .

Section 5.2. SHAP importance values

We determined the SHAP values for the features that characterize the biomass and the

gasification operating process (Fig. S7). The x-axis gives the SHAP value, i.e., the impact

of this feature with respect to the baseline (the average gasification products values), and

the y-axis displays the most relevant features that impact the output the most. Each point

on these graphs corresponds to one SHAP value for a prediction and feature. The color

coding gives the value of this feature (red high, blue low). If a feature is irrelevant, all

dots, irrespective of color, will be on the baseline. A positive SHAP value with a red color
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means that a positive value of this feature leads to a higher output value than the average.

The global importance of the features (across all biomass) is therefore given by the width

of the spread of the SHAP values. In Fig. S7, we show the SHAP summary plots for the

H2, CO, CH4, and combustible gas (COMBgas) concentrations in the gasification outlet

gas, and for the gas yield (GAS).

Focusing on the gasification operating parameters, our model identifies the temperature

as one of the most important features for our outputs. Fig. S7a shows that the most

important feature shown by the SHAP plots for the H2 concentration prediction is the

gasification temperature, and we can see that high-temperature values have positive

importance values, which means that the gasification temperature has a positive influence

on the prediction of the H2 content in the outlet gas. We can also see that a very low

gasification temperature (dark blue color points) has a very relevant negative effect on

the hydrogen production. We can explain this because higher temperatures favor the

endothermic water gas and steam reforming reactions according to Le Chatelier’s principle,

favoring the conversion of formed methane and char produced during the gasification

process.S18 A similar effect of the gasification temperature is found for the gas yield

(Fig. S7e), also highlighting the negative effect of low gasification temperatures on the gas

production.S19 Higher temperatures can favor the production of gas during the biomass

devolatilization, as well as promote cracking reactions of secondary hydrocarbons, tars,

and char, together with steam reforming and gasification reactions that increase the gas

production.S20,S21 Although of slightly lower importance, the gasification temperature has

also a positive influence on the production of combustible gas (Fig. S7d), undoubtedly

influenced by the H2 concentration.
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Fig. S7. Impact of the feature values on the gasification predictions. The plots show on
the x-axis the SHapley Additive exPlanations (SHAP) values that indicate the impact of a
feature on the model output compared to a baseline (vertical lines at x = 0). The y-axis
shows the most relevant features, that impact the output the most. The color coding for
the points indicates the feature values. For the SHAP analysis, we used all the points in
our dataset, which were used to build the coregionalized GPR model. T: temperature (K),
SA: steam-to-air ratio, SR: stoichiometric ratio, SBR: steam-to-biomass ratio, C: carbon
(wt%), H: hydrogen (wt%), O: oxygen (wt%), ash: ash content (wt%), VM: volatile matter
(wt%), FC: fixed carbon (wt%), HHVbiom: biomass higher heating value (MJ/kg), MC:
moisture content (wt%). a H2 predictions. b CO predictions. c CH4 predictions, computed
by predicting the combustible volume fraction along with H2 and CO. d Combustible gas
(COMBgas) predictions. e Gas yield (GAS) predictions.

On the contrary, the gasification temperature has a negative effect on the prediction of

the CO (Fig. S7b) and CH4 (Fig. S7c) concentrations, and higher gasification temperatures

decrease their values. The concentration of CO in the produced gas is the result of different

competing reactions that occur during the conversion process of the biomass. There are

several reactions that can produce CO during the gasification process, such as the partial

oxidation, water gas, steam methane reforming, tar reforming, and Boudouard reactions,
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while it is consumed by the water gas shift (WGS) reaction. A higher production of CO by

the partial oxidation reaction is probable at lower temperatures, whereas at higher temper-

atures a higher CO production by endothermic reactions can shift the WGS equilibrium

towards the consumption of CO. Higher temperatures also favor the endothermic steam

methane reforming reaction, decreasing the CH4 content produced during the biomass

conversion. We can therefore conclude that higher gasification temperatures favor the H2

production at the expense of CO and CH4.

Looking at the other gasification operating parameters, we can see in Fig. S7a that the

steam-to-air (SA) ratio has a very high importance for the H2 concentration prediction. The

feature importance analysis indicates that high values of SA have a positive effect on the

H2 content, while negative importance values are shown by low SA ratios. This confirms

the importance of performing the gasification process with steam, compared to air, if

our objective is a higher production of H2. Although with lower importance, a positive

effect of the SA ratio on the gas yield is also shown, since it favors the overall conversion

reactions. However, in the case of the CO and CH4 concentrations, lower SA ratios have

positive importance values and hence higher SA ratios show a negative importance, which

indicates a negative influence of this feature on the prediction of the CO and CH4 contents.

This can be explained because higher steam contents in the gasifying agent favor the WGS

reaction, producing a higher amount of H2 at the expense of CO. Likewise, a higher steam

content favors the steam methane reforming reaction, which also produces H2 from CH4.

Another gasification operating parameter that has some influence on the outputs is

the stoichiometric ratio (SR). SR is a measure of the amount of oxygen used in the gasifi-

cation process compared to the stoichiometric amount of oxygen needed for a complete

combustion of the feedstock. From the SHAP plots in Fig. S7, it can be deduced that higher

SR values have a negative effect on the prediction of the H2, CO, CH4 and combustible

gas concentrations. However, a positive effect of SR is seen in the case of the gas yield

prediction. When a higher amount of air is used, the combustion reaction is favored and
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the conversion increased, in turn reducing the partial oxidation reaction that would convert

the biomass organic matter to CO. This can explain a lower concentration of combustible

gases since they would be converted to CO2 to a higher extent. On the other hand, the air

combustion reactions can avoid an excessive decrease in the reactor temperature by the

endothermic reactions, favoring the overall conversion and increasing the gas production,

which explains the positive effect detected on the gas yield. Indeed, the main reason for

using air in the gasifying atmosphere is to compensate for the high demand for heat by

the reforming endothermic reactions. Finally, the steam-to-biomass ratio, SBR, was also a

studied gasification operation parameter, which only shows a certain importance on the

gas yield (Fig. S7e), probably because the SA ratio and SR values have a higher relative

relevance when the gasification process is carried out under a steam-oxygen atmosphere.

The effect of the biomass properties on the process performance has hardly been

studied in the literature. From the feature importance analysis, we can see in Fig. S7 that

the most important biomass property is the biomass calorific value (HHVbiom). The

high importance of HHVbiom to explain the gasification results has not been reported

in previous studies in the literature, where the importance of the biomass C content

has usually been highlighted.S22–S24 The SHAP values show that all outputs, except H2,

increase if we increase the value of the biomass calorific value. In the case of H2, the

biomass calorific value has a relatively lower (negative) importance for the prediction of

the H2 concentration, which makes sense as it is favoring the production of the other gases.

Fig. S7 also shows that the fixed carbon (FC) content of the biomass has a substantial

importance on the prediction of the gasification outputs. High values of this feature

correspond with low SHAP values for the CO, CH4 and combustible gas concentrations,

and also for the gas yield. This indicates that by decreasing the value of the biomass FC

content, we increase the predictions of these gasification outputs. From this, a negative

influence of this biomass property on the production of combustible gas from the gasifica-

tion process can be deduced. On the contrary, the biomass FC content shows a positive
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influence on the H2 concentration prediction. The biomass FC content is related to the

volatile matter (VM) and ash contents. Biomass samples usually have a relatively much

higher content of volatile matter than FC and ash. Therefore, we can say that a higher FC

value is usually related to a lower value of VM. Although the biomass VM content shows

lower importance on the predictions, its favorable effect can also be found from the feature

importance analysis in Fig. S7. Accordingly, from these results, we can deduce that the

biomass VM content has a positive influence on the CO and combustible gas production,

but negative on the H2 concentration.

The biomass O content also shows a relevant importance on the predictions of the

gasification outputs. The most relevant finding shown by the feature importance plots

in Fig. S7 is the negative influence of the biomass O content on the prediction of the H2

and combustible gas concentrations and on the gas yield. A higher value of the O content

could be related to lower contents of C and H (majority elements in the biomass elemental

composition). For the CO and combustible gas concentrations, and the gas yield, the

biomass C and H contents show a significant positive influence on their predictions, i.e.,

they have an opposite effect than the O content, which means that higher contents of C and

H would favor the prediction of these outputs. The importance of the C and H contents

is lower in the case of the H2 concentration, which agrees with the higher importance of

the O content for this output, and we can therefore deduce that a low biomass O content

could be related with a higher H2 production.

Finally, the biomass moisture content (MC) shows a positive effect on the predictions

of CO, CH4 and combustible gas concentrations. Higher contents of moisture in biomass

can decrease the gasifier temperature by heat consumption, decreasing the conversion

of other gases to H2. This effect is noticeable in this study to a certain extent, although

biomass with significantly high moisture contents were not used in this work. If this type

of biomass wants to be gasified, a study including biomasses with really high MC contents

is recommended to have a better understanding of the effect of the moisture content.
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Section 5.3. Partial dependence plots

To determine the feature importance in our study we also used a second approach, i.e.,

the partial dependence plots between some of the most relevant features, in which the

plotted features are marginalized out over the distribution of all features.S17 Firstly, in

Fig. S8a we show the dependence between the two most important gasification operating

parameters, the gasification temperature (T) and steam-to-air (SA) ratio. We can clearly

see that the gasification temperature has a higher importance for the predictions than the

SA ratio, since small changes in the temperature have a strong impact on the outputs,

while the effect is lower when the SA ratio changes. In relation to the SA ratio, it should

be pointed out that the positive effect of increasing SA on the H2 prediction is especially

relevant at lower values of the steam-to-air ratio, when SA<1, and this effect decreases

with the excess steam in the gasifying atmosphere. This agrees with the positive effect of a

steam atmosphere on the hydrogen production. Accordingly, the lower effect of higher

SA values can also be detected in the other outputs. From this plot, we can also conclude

that higher temperatures and higher SA ratios significantly increase the production of

H2, which in turn leads to higher production of combustible gas and gas yield from the

biomass gasification process. The importance analysis performed through our model not

only tells us the positive or negative influence of the process parameters, but it gives an

importance value to each feature, and this allows us to know which of the gasification

operating parameters are more relevant for the prediction of each of the process outcomes.

In practice, this can help us to prioritize some experimental conditions as a function of the

desired results.
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Fig. S8. Partial dependence plots between features. a Gasification temperature (T) and
steam-to-air (SA) ratio in the gasifying atmosphere. b Biomass calorific value (HHVbiom)
and gasification temperature (T). c Biomass volatile matter (VM) content and gasification
temperature (T).

Secondly, given the high importance of the process temperature, it can be interest-

ing to compare the influence on the outputs of some relevant biomass properties with

that of the gasification process temperature. For this purpose, we show in Fig. S8b the

partial dependence plots for the gasification temperature and the biomass calorific value
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(HHVbiom), which, interestingly, was revealed as one of the biomass properties with

higher importance on the prediction of the gasification outputs, as mentioned above. We

can see that the biomass calorific value is a really relevant parameter for the production of

CO, CH4 and combustible gas, and also for the gas yield. Although high temperatures are

unquestionably favorable to obtain high concentrations of combustible gas and high gas

yield, the importance of the calorific value of the biomass feedstock cannot be underesti-

mated if we want to obtain a high-energy gasification product. Fig. S8a also shows that

the importance of the biomass calorific value is much lower for the prediction of the H2

concentration, which means that the biomass HHV is not a so relevant parameter for the

hydrogen production. From these results, we could deduce that since CO and CH4 are

more immediate products from the biomass conversion, while H2 is produced from the

conversion of the previously produced gases, the influence of a higher energy contribution

by the solid biomass is lower for the hydrogen production.

On the other hand, in order to better understand the effect of the VM matter content on

the outputs, we show the partial dependence plot for the VM content and the gasification

temperature (Fig. S8c). As expected, we can see that the effect of the temperature is clearly

higher than that of VM for the prediction of the H2 concentration, but also for the CH4 and

combustible gas contents, and for the gas yield. However, importantly, the results show

that the biomass VM content can have a significant influence on the CO concentration in

the outlet gas. The positive effect of VM on these gases indicates a positive relationship

between the volatile matter of the biomass and its conversion to CO, and CH4 at a lower

extent, which would be generated during the devolatilization step of the gasification

process. On the other hand, the negative effect of VM on the H2 concentration can be

highlighted, indicating that a higher hydrogen production could be favored by biomasses

with lower VM contents (and hence higher FC contents).

To summarize, from our feature importance analysis, we want to highlight the com-

peting behavior of the different components of the output gas based on the gasification
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process parameters and biomass properties. As relevant remarks, we have learned that the

production of CO, CH4 and overall combustible gas is significantly favored by high values

of the calorific value of the biomass feedstock, and also that high biomass contents of C,

H and VM could promote the combustible gas generation. However, the H2 production

would mainly be favored by high gasification temperatures and steam-to-air ratios in the

gasifying atmosphere, and besides, high FC (and hence low biomass VM) together with

low O contents appear to be favorable conditions for the hydrogen generation.
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Section 6. Selection of key performance indicators (KPIs)

for biomass applications

To select the key performance indicator (KPI) parameters that help us to choose the best

use for a given biomass, we analyze the experimentally measured gasification outputs,

i.e., the CO, H2, CH4 and combustible gas (COMBgas) concentrations in the gasification

outlet gas, and the gas yield (GAS). In addition, based on those predicted outputs, we also

estimate other gasification outcomes that can be relevant to evaluate the performance of

the gasification process, i.e., the molar H2/CO ratio, the gas calorific value (HHVgas) and

the gas energy yield (Eyield). The estimation of these parameters is described in Section 1.

At first, we can think that the combustible gas production (COMBgas) and the hydrogen

production (H2 (vol%)) could be good indicators of the biomass potential according to

the main possible uses of the gasification product gas, i.e., heat/electricity generation,

and synthesis of other products such as hydrogen, synthetic natural gas, methanol or

hydrocarbon fuels. In Fig. S9 we show the results of the predicted gasification outputs for a

sample of all biomasses gathered from the literature. We have not used these biomasses in

our training set, so these results are predictions of our model. In this case, we use our model

to predict the gasification outputs under fixed process operating conditions (T=1173 K,

SA=2.33, and SR=0.25). The values for each gasification output have been scaled between

0 and 1 to be able to use the same color palette for all the output variables and so compare

them. In Fig. S9, the biomasses shown in the x-axis are ordered according to the results

for the combustible gas concentration (COMBgas), which shows blue colors when it has

lower values (left side of the plot) and red colors when COMBgas is higher (right side

of the plot). We have chosen this output as a preliminary reference parameter because if

we want to maximize the production of energy from the biomass conversion, we would

like to maximize the combustible gas concentration from the gasification process. From
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this plot, we can see that the order of the biomasses according to the CO concentration is

quite similar to that established for COMBgas. The order of the biomasses according to

the CH4 concentration does not match exactly that for CO and COMBgas, but a similar

color pattern is shown, with lower values on the left side and higher values on the right

side. In this case, the order of the individual biomasses is slightly different, since some

biomasses have relatively very high values of CH4 content (darker red colors than the

reference pattern), such as eucalyptus sawdust (EUCS), poplar sawdust (POP), beech wood

(BEE), or prune pits (PRU).
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Fig. S9. Biomass ranking plots to select the key performance indicators (KPIs) for
biomass applications. All predicted gasification outputs are shown for some biomasses
gathered from the literature. The values for each gasification output have been scaled
between 0 and 1 for comparison purposes. Biomasses shown in the x-axis are ordered
according to the results for the combustible gas concentration (COMBgas). The gasifica-
tion outputs have been predicted under fixed process operating conditions of T=1173 K,
SA=2.33, and SR=0.25.

The calorific value of the product gas, HHVgas, follows the same general tendency

established by the combustible gas, and the order of the biomasses in this case is quite
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similar to that for COMBgas. Indeed, the calorific value of the product gas is determined

from the concentration of combustible gases in the gasification product. However, some

biomasses show a darker red color for HHVgas than for COMBgas, which is due to high

CH4 concentration values (e.g., eucalyptus sawdust (EUCS), poplar sawdust (POP), beech

wood (BEE), or prune pits (PRU)). A higher value of the CH4 content for a given biomass

increases the calorific value of the produced gas at a higher extent, since the calorific value

of CH4 is higher than that of the other combustible gases in the blend. This indicates that

the CH4 concentration can have a relevant effect on the energy production.

The gas yield, GAS, also shows the same general color pattern established by the

combustible gas, but we can see some differences. GAS is related with the biomass

conversion, since it is a measure of the amount of solid fuel that is transformed into gas.

We can see that a higher gas production does not always mean a higher gas calorific value.

For example, eucalyptus sawdust (EUCS) has lower gas yield but higher gas calorific value,

which is associated to a higher CH4 content, while apricot pits (APR) and prune pits (PRU)

show higher gas yields. From these results, we can deduce that if we want to obtain the

maximum conversion to energy from the gasification process, we can not only trust on the

combustible gas concentration in the outlet gas, or on its heating value, as performance

indicator parameters, since the gas yield can also be a relevant parameter that depends

on the biomass composition. On the other hand, Eyield is a parameter related with both

the gas yield and the calorific value of the produced gas, and it represents the amount of

energy in the product gas per mass unit of biomass, giving a measure of the conversion

efficiency to energy. Fig. S9 shows that the energy yield is very influenced by the gas yield

value, which means that a higher gas yield can significantly increase Eyield. Therefore,

Eyield could be the best KPI for the energy production from biomass gasification, since it

accounts for the calorific value and the conversion efficiency.

In contrast, Fig. S9 shows that the values of H2 concentration and H2/CO ratio follow

a different trend. We can say that for these two outputs the distribution of the biomasses
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follows an inverse order than that established by the combustible gas concentration,

showing an opposite color scale, with red colors on the left side of the plot, i.e., higher

output values, and blue colors on the right side of the plot, where the biomasses with the

lowest values of these variables are located. However, the H2 concentration values do not

match exactly the same order than the H2/CO ratios. The H2/CO ratio is usually calculated

for synthesis applications of the gasification gas and used as a reference parameter. This

means that the H2/CO ratio would be a more precise KPI than the H2 concentration for

these applications.

If we look at the full plot, we can deduce that biomasses with red colors on the

right side of the plot are characterized by high values of CO, CH4 and combustible gas

concentrations, as well as high values of the gas calorific value, gas yield and gas energy

yield, i.e., gasification outputs mainly associated with the production of energy from the

biomass gasification process. However, biomass with red colors on the left side of the plot

produce higher values of H2 from gasification, and hence higher H2/CO ratio values. This

means that biomasses able to produce higher values of Eyield are expected to have a higher

potential to be used for applications based on the energy production, while biomasses that

give higher values of H2/CO ratio would have a higher potential to be used for synthesis

applications. From this evaluation, Eyield and H2/CO ratio are the parameters that we

select as key performance indicators for the exploration of biomass applications.
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Section 7. K-means clustering

K-means is an unsupervised clustering algorithmS25 to cluster unlabeled data to a number

of groups or clusters. K-means clustering provides an unsupervised grouping of samples

with similarity. With this analysis, we can find clusters of data points (biomasses) which

share similar characteristics, being different from other data points that are in a different

cluster. In our work, we performed a cluster analysis to identify the groups of biomasses

that share similar gasification outputs, with the objective of finding common biomass

properties that can explain the different gasification results in each group.

We applied k-means clustering to the gasification outputs, including the H2, CO, CH4

and combustible gas (COMBgas) concentrations in the gasification gas, gas yield (GAS),

molar H2/CO ratio, and gas energy yield (Eyield). K-means scikit-learn Python algorithm

was used, with k-means++ as method for initialization and a number of clusters of 4.S9 We

used several methods to choose the number of clusters and we obtained similar results,

selecting four clusters for our analysis. The groups of biomasses that the k-means algorithm

identified based on the gasification outputs are shown in Fig. S10 as a function of the

Eyield and H2/CO ratio values, where we can see the distribution of the different biomass

types studied into the different groups. In Fig. S11 we represent the identified clusters as a

function of the different biomass properties, showing the distribution of the biomass types

studied into the groups.
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Fig. S10. Biomass groups identified by the k-means cluster analysis represented as a
function of the Eyield and H2/CO ratio values. K-means cluster analysis was based on the
gasification outputs. Gasification operating conditions: T=1173 K, SA=2.33, and SR=0.25.
The distribution of the different biomass types studied into the different clusters is also
shown.
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Fig. S11. Biomass groups identified by the k-means cluster analysis represented as a
function of different biomass properties. K-means cluster analysis was based on the
gasification outputs. Gasification operating conditions: T=1173 K, SA=2.33, and SR=0.25.
The distribution of the different biomass types into the clusters is shown in the legend.
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Section 8. Tuning the gasification gas characteristics by chang-

ing the process conditions

With our model we can tune the gasification gas characteristics by changing the process

conditions. The feature importance analysis shows that the gasification temperature and

steam-to-air ratio are the most important process variables. Therefore, we show here how

the gasification outputs change if we modify these process parameters. In Fig. S12 we

represent the predictions of Eyield and H2/CO ratio for three gasification temperatures

and three SA ratios. The values of these gasification outputs decrease with the decrease

in both temperature and SA ratio. For example, in Fig. S12a we can see that at lower

gasification temperatures (973 K and 1073 K), we are not able to achieve H2/CO values

around 2 for almost any biomass, and we would need a further WGS reaction if we want

to increase the H2 content in the syngas. The Eyield values are also lower for gasification

temperatures below 1173 K, although we can still obtain relatively high values for some

biomasses at 1073 K. Fig. S12b shows that the decreasing effect of the SA ratio is lower

than that of the temperature, and we can still obtain H2/CO values close to 2 or relatively

high Eyield values for some of the biomasses.

In general, we can conclude that a gasification temperature of 1173 K and a SA ratio of

70/30 are the best-operating conditions if we want to maximize the energy content in the

gasification gas for a given biomass. However, these results indicate that by changing the

temperature and SA ratio we can obtain a target H2/CO ratio in the gasification gas. For

example, for some biomasses that are able to give high values of the H2/CO ratio, it would

be possible to produce a H2/CO ratio of two if we use a specific gasification temperature

between 1073 K and 1173 K (Fig. S12a). For those biomasses, a H2/CO ratio of two could

also be obtained at 1173 K if we adjust the SA ratio conveniently between 25/75 and 70/30

(Fig. S12b).

S-38



Fig. S12. Predictions of the key performance indicators (KPIs), Eyield and H2/CO ratio,
under different process conditions of temperature (T) and steam-to-air (SA) ratio. a
Effect of the gasification temperature (T) on the predictions. b Effect of the steam-to-air
(SA) ratio on the predictions.
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