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1. Database Schema Flexibility
Both the D3TaLES frontend and backend schema are broad and can accommodate various data types with 
varying conditions including but not limited to computations at different levels of theory or considering 
different conditions, a broad range of experiments with various processing or data collection conditions, 
and literature-extracted data from learning models. 

While the molecule-centric frontend schema is convenient for machine and human interpretability and 
searchability, it is difficult for a molecule-centric schema alone to accommodate all the conditions and 
variables for computational and wet lab experiments, especially when there may be multiple experiments 
with different conditions producing multiple values for the same property. For this reason, the D3TaLES 
data infrastructure consists of two databases: An experiment-centric backend database and a molecule-
centric frontend database. The backend database includes all metadata and all calculated/measured 
values for each experiment instance. Importantly, each “data” attribute in a backend database instance 
has an attribute titled “conditions.” The “conditions” attribute contains all identifying conditions 
metadata that are likely to affect the experiment calculated/measured properties. For example, 
“conditions” for molecular DFT backend instances include code name and version, functional, basis set, 
tuning parameter, solvent, etc. “Conditions” for an electrochemistry experiment may include 
concentrations, supporting electrolytes, electrodes, solvents, temperature, etc. Complete documentation 
of D3TaLES  conditions can be found in the D3TaLES database documentation. 

When an experiment-derived property is pushed to the frontend database, the property value remains 
connected with the backend experiment ID, so a user can always find all the metadata for the original 
experiment. Additionally, the parent experiment’s “conditions” attribute is stored with the property value 
in the frontend database. Finally, a frontend property for a given molecule (e.g., oxidation potential) is 
not a single value. It is an array, where each item in the array has a value and associated conditions. Thus, 
for example, the property oxidation potential for a molecule might have three items, each one measured 
with different experimental conditions.

For more detailed discussion of the D3TaELS data schema, readers are encouraged to see reference the 
full documentation including an interactive visualization of the data schema.1

2. Database Technology Stack
Both the frontend and backend D3TaLES databases are implemented with MongoDB.2 Both databases use 
JSON Schema3 style schema that are publicly available.4 The D3TaLES website is built and hosted through 
Django5 and WSGI.6 The databases and website are located on OpenStack Virtual Machines at the 
University of Kentucky. Compressed raw data files and database backups are stored on a storage cluster 
at the University of Kentucky. All Database management and processing code are compiled in the D3TaLES 
API7 (discussed more in SI section 6).
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3. Database Molecular Structrues
Molecule Generation
The molecule generation process created potential redox-active molecules from fragments of molecules 
common in the field of NARFB. 10 backbones and 20 substituents commonly occurring in literature-
reported materials for NARFB were selected (Figure S3).8-10 To create the synthetic dataset, backbones 
and substituents were rendered as graphs via RDKit11 and NetworkX.12 The nodes on the generated graphs 
had a one-to-one mapping to the atom IDs on the corresponding RDKit molecules. Node attributes were 
added to denote atom type, if RDKit flagged the atom as aromatic, and if the atom appeared in a ring 
system within a molecule. The edges had a one-to-one mapping to the molecular bonds. Likewise, edge 
attributes denoted bond type. 

Backbones

Figure S3. Ten backbones and twenty substituents commonly occurring in literature-reported materials for NARFB. 
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When joining substituent and backbone fragments, we created a relabeling map between the node IDs in 
the fragment and the sum of each node ID with the number of nodes in the scaffold it would be joined to. 
The fragment was then relabeled with this new map to create an edge between the relabeled node ID on 
the fragment with the labeled node ID on the scaffold. The resulting edge was denoted as a single bond 
type. This process can be repeated for an arbitrary number of fragments to be added on a given scaffold. 

For the combination here, we manually selected the indices on which to combine molecular fragments 
with molecular scaffolds and iteratively combined each pair of indices. Rendering a molecule from the 
generated graph begins with an empty RDKit molecule. For each node in the generated graph, an atom is 
added to the new molecule with the type denoted in the node’s attributes. Likewise, for each edge in the 
graph, a bond is added to the new molecule between the corresponding atom IDs. To verify the validity 
of the new molecule, the RDKit molecule is converted to SMILES. 
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Database Structure Samplings 

Figure S4. Fifty randomly selected molecules form the cleaned ZINC dataset. 
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Figure S5. Fifty randomly selected molecules form the cleaned CSD dataset. 

4. Computational Data
Properties of interest from DFT 
To establish the D3TaLES database of redox-active small organic molecules, a high-throughput density 
functional theory (DFT) workflow was created and implemented to populate the database with quantum-
chemical information about each molecule. The following section discusses several properties of interest 
that were determined through this process. 
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Figure S1. Methods for calculating various properties of interest with DFT, specifically (A) redox potential, (B) 
solubility (adapted from Cheng et. al.13), and (C) stability with three different methods (fraction spin density and 
radical buried volume adapted from Sowndarya et. al.14). 

Oxidation and Reduction Potentials

Molecular oxidation and reduction potentials convey a molecule’s tendency to lose and gain an electron, 
respectively.15 In designing molecules for NARFB, molecules should be relatively resistant to redox events, 
having a low reduction potential (analyte) or high oxidation potential (catholyte). This increases the 
voltage window in which the battery can operate. Especially in NARFB, it is crucial to have a large potential 
window since the increased solvent potential window is one of the primary reasons for using nonaqueous 
solvents over water. 

D3TaLES uses a detailed approximation for oxidation (and reduction) potentials involving six DFT 
calculations, based on the Born-Haber cycle. For a given molecule, DFT geometry optimizations are 
performed for the ground-state molecule and the first oxidation (or reduction) event, both in the gas 
phase. Frequency calculations follow and serve two purposes: (1) confirm the optimized geometry is the 
true minimum energy geometry and (2) determine the Gibbs free energy correction for the calculated 
energies. For each of the gas phase ground state and oxidized (reduced) molecules, the free energy is the 
enthalpy found in the molecule’s optimization calculations plus its Gibbs free energy correction. Then, 
single-point energy calculations are performed for each of the optimized molecules in an acetonitrile 
solution simulated by a polarized continuum implicit solvent model. Acetonitrile is among the most 
common solvents used for non-aqueous redox flow batteries because of its stability, relatively wide 
voltage range, and availability.16-24 However, we note that (as explained in section 1) the D3TaLES  data 
schema is broad and versatile, meaning that in the future the database could include computational 
and/or experimental data using other solvents. The Gibbs free energy corrections for the ground state 
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and cation gas phase calculations are assumed to be equivalent to the corrections for their respective 
solvent calculations.

As the Born-Haber cycle dictates, these four free energies produce the change in Gibbs free energy for 

oxidation in solution ( ) (Figure S1A). With this energy, the molecule’s oxidation potential (∆𝐺 °
𝑠𝑜𝑙𝑛, 𝑜𝑥

) relative to the standard hydrogen electrode is found with Equation S1 where 4.42 eV is the ∆𝐸 °
𝑐𝑒𝑙𝑙, 𝑜𝑥

potential of the standard hydrogen electrode.25 The analogous equation is used for reduction potential. 

∆𝐸 °
𝑐𝑒𝑙𝑙, 𝑜𝑥 =

∆𝐺 °
𝑠𝑜𝑙𝑛, 𝑜𝑥

‒ 𝑛𝐹
+ 4.42 𝑒𝑉#𝑆1

Solubility 

High solubility for catholyte and analyte materials in RFB is a critical characteristic. Redox-active molecules 
that have larger solubility can achieve greater charge per volume in a battery, increasing the battery 
capacity. Solubility matters for all states – i.e., the ground state and oxidized/reduced states. 
Unfortunately, solubility is difficult to estimate computationally.13 The thermodynamic method for 
predicting solubility involves relating the dissolution change in Gibbs free energy with intrinsic solubility, 

 (Figure S1B).𝑆

Δ𝐺𝑑𝑖𝑠𝑜𝑙. = Δ𝐺𝑠𝑢𝑏 + Δ𝐺𝑠𝑜𝑙𝑣 =‒ 𝑅𝑇𝑙𝑛𝑆𝑉𝑚#𝑆2

In Equation S2,  and  are the ideal gas constant and temperature,  is Gibbs free energy of 𝑅 𝑇 Δ𝐺𝑑𝑖𝑠𝑜𝑙

dissolution,  is Gibbs free energy of sublimation,  is Gibbs free energy of solvation, and  is Δ𝐺𝑠𝑢𝑏 Δ𝐺𝑠𝑜𝑙𝑣 𝑉𝑚

the molar volume of the molecule in crystalline form. While  and  are known and  can be 𝑅 𝑇 Δ𝐺𝑠𝑜𝑙𝑣

estimated as the difference between gas phase and solvated energies,  and  are unknown Δ𝐺𝑠𝑢𝑏 Δ𝑉𝑚

without the molecule’s crystal structure, which is very difficult to predict for novel molecules. While it is 
possible to estimate solubility with the energy of solvation alone, this is often inaccurate. To mitigate 
these challenges, several efforts have been report to develop machine learning (ML) methods to predict 
solubility.26-28 

Stability

Among the most challenging properties to predict and optimize is stability. Like solubility, stability matters 
for all states of charge. In RFB, any unstable species will degrade and prevent reversible electrochemical 
processes. Additionally, unstable intermediates can react with solvent molecules or other redox-active 
species. These factors impede cyclability and shorten battery lifetime. Detailed computational analysis 
can calculate reaction energies for bond dissociations and various side reactions. However, it is difficult 
to consider every possible side reaction and, given the molecule-specific nature of the side reactions, it is 
nearly impossible to automate the calculations to run in a high-throughput manner. Other methods 
roughly estimate the stability of a system (Figure S1C). For example, it is possible to calculate the root 
mean squared error (RMSE) between the ground state atomic coordinates and those of a redox species. 
This method assumes that a notable change in geometry occurring with a redox event indicates 
destabilization, which is often the case. Often, RMSE above 0.1 Å indicate unstable redox species.13 This, 
of course, does not consider the original stability of the ground state species or potential side reactions. 
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The highest fraction of electronic spin density that is concentrated on one atom, another measure of 
stability, estimates thermodynamic stability. This metric quantified the highest fraction of electronic spin 
density that is concentrated on one atom.14 Alternatively, the kinetic stability can be estimated with the 
percent radical buried volume, which captures the extent to which the radical (the atom with the highest 
spin) is sheltered sterically. Sowndarya et. al. combined the fractional spin density and buried volume 
metrics to produce a radical stability score.14

Synthetic Accessibility Score 

Here we incorporate the synthetic accessibility score developed by Ertl and Schuffenhauer29 and 
implemented by RDKit11. While there is some debate about the efficacy of this score and users are 
encouraged to use the score carefully,30 it is widely used in the molecular screening.31-35 For a more 
detailed explanation of the synthetic accessibility score, see Ertl and Schuffenhauer’s original work.29

High-throughput computational workflow
The workflow first initializes a molecule and performs an initial DFT geometry optimization before 
completing (ionization-potential) IP fitting to tune the ω parameter for the LC-ωHPBE functional, tuning 
the amount of long and short-range exchange (Figure S2).36 This tuned functional is used for all 
subsequent calculations. Next, the workflow splits into five species workflows: one each for the ground 
state, mono- and di-cation, and mono- and di-anion states (assuming in the discussion here, for the sake 
of clarity, that we start from a neutral, closed-shell ground state). Di-ion calculations are included to 
identify systems with potential for multiple redox events, which would increase battery energy density.18, 

37 Each species geometry is optimized and confirmed to be a minimum on the potential energy surface 
with vibrational normal mode analysis. The ground state, mono-cation state, and mono-anion state 
workflows include single-point energy calculations of the ground state geometry with a mono-
cation/anion charge and mono-cation/anion geometry with the ground state charge. The workflow also 
contains a single-point energy calculation performed in an implicit solvent (most frequently in 
acetonitrile). All solvation calculations are performed with the implicit polarized continuum model (PCM), 
estimating acetonitrile with a dielectric constant ε of 35.688. Oxidation potentials estimated with the 
Born-Haber cycle method38 were benchmarked with experimentally measured oxidation potentials. (See 
SI for more details.) All five species workflows include time-dependent DFT (TDDFT) calculations to 
evaluate the properties of the low-lying electronic excited states. The TDDFT calculations produce 
absorption spectra, which are useful in validating several experimental observables (e.g., identifying 
molecular species, determining stability over time, assessing aggregation in the context of solubility, etc.). 
While some calculations fail for various reasons (most often unconverged geometry optimizations), 
approximately 31,000 molecules have completed the oxidative computational workflow.
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Figure S2. Computational workflow for molecular DFT on D3TaLES molecules. Pink indicates molecular initiation, 
navy indicates optimization, orange indicates IP fitting, teal green indicates a single-point energy calculation, and 
light blue indicates time-dependent DFT (TD-DFT).

Benchmark studies 
After construction, the workflow was implemented and evaluated. First, calculations were performed for 
several known molecules, some published and some unpublished. These calculations were manually 
inspected to ensure the workflow ran the appropriate calculations. 

For the second benchmark stage, the computational oxidation potential estimations were benchmarked 
with a dataset already benchmarked in the literature.38 The study contained a set of small organic 
molecules (~1-2 rings) with experimental oxidation potentials. Calculations were completed for 118 
molecules. Overall, the experimentally known and computationally predicted redox potentials show good 
agreement except for a few outliers (Figure S6A). Next, we benchmarked a series of 20 more complex 
systems developed for NARFB applications. In these systems, the predicted oxidation potential does not 
necessarily align with the measured value (B). This is unsurprising, especially considering different 
electrodes and solvents were used. However, clear trends emerge. As the predicted oxidation potential 
increases, so do the experimental potentials relative to potentials with the same conditions.
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A. B. Literature-Reported 
Benchmark Replication

NARFB Materials 
Benchmarking Family

1.2 M LiPF6 EC/EMC

 
Figure S6. Benchmarking data for oxidation potentials. (A) Computationally predicted vs measured oxidation 
potential for the published benchmarking dataset.38 (B) Measured and calculated oxidation potentials vs molecule 
name for 20 more complex systems developed for use in NARFB. Notice pink triangles show computationally 
predicted values, while other points show measured values for various electrodes and solvents. Abbreviations 
include EC for ethylene carbonate, EMC for ethyl methyl carbonate, PC for propylene carbonate, and ACN for 
acetonitrile. 

5. Funnel Workflow
Calculation times 
All core-hour estimations for the funnel workflow properties are estimated based on computing times for 
jobs performed on the TACC Stampede2 Intel Xeon Skylake (SKX) nodes. More information about these 
computing nodes can be found at https://docs.tacc.utexas.edu/hpc/stampede2/. 

https://docs.tacc.utexas.edu/hpc/stampede2/
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Structures resulting from the funnel workflow 

Figure S7. Fifty randomly selected structures from the 12,132 molecules that passed the size test.
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Figure S8. Fifty randomly selected structures from the 11,728 molecules that passed the size and synthetic stability 
score tests. 
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Figure S9. Fifty randomly selected structures from the 3,735 molecules that passed the size, synthetic stability score, 
and stability tests.



15

Figure S10. Fifty randomly selected structures from the 2,856 molecules that passed the size, synthetic stability 
score, stability, and solvation tests. 
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Figure S11. Fifty randomly selected structures from the 364 molecules that passed all five (size, synthetic stability 
score, stability, solvation, and oxidation) tests.

6. D3TaLES API: More Information
The full documentation for the D3TaLES API is available at https://d3tales.github.io/d3tales_api/. 

The Processors module contains various parsing classes for extracting useful data from instrument-
produced computational and experimental data files. It currently supports cyclic voltammetry data from 
Pine WaveNow instruments and UV/Vis data in Excel format. The module also supports computational 
data from Gaussian log files. Extracted properties include all listed properties in the D3TaLES schema. All 
parsing classes can format extracted data to fit the D3TaLES schema.1 This module also contains a class 

https://d3tales.github.io/d3tales_api/
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for transforming data from the backend D3TaLES database to the format for the frontend D3TaLES 
database; however, this is likely not as useful to the general community. 

The D3database module contains features most useful to D3TaLES database administrators such as data 
insertions/validation and direct database queries (both of which require user authentication). However, 
it does contain a class for accessing the D3TaLES database via Python through the REST API. This module 
also contains functions for gathering and plotting D3TaLES properties as one- and two-dimensional 
histograms.7 

The Calculators module provides tools that allow users to calculate useful experimental and 
computational properties from nested data, and all calculators contain unit conversion features. Useful 
molecular DFT calculators include reorganization energy, root mean squared error between atoms in two 
geometries, change in Gibbs energy for solvation, redox potential, radical buried volume39, and radical 
spin density.33 Useful cyclic voltammetry calculators include solution concentration general CV properties 
(peaks, reversibility, E1/2, peak splitting, etc.), diffusion constant using the Randles-Scidwick equation and 
charge transfer rate. While the D3TaLES API documentation explains basic usage for these calculators, we 
also provide Google Collaboratory notebooks that use the calculators to perform calculations without the 
need for the user to know python coding.40
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