Machine learning reaction barriers in low data regimes: A horizontal and diagonal transfer learning approach

Supporting Information

Samuel G. Espley, a Elliot H. E. Farrar, a David Buttar, Simone Tomasi, and Matthew N. Grayson* a

- a. Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- b. Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.
- c. Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.

Table of Contents

1.	Dataset Generation	2
2.	Feature Extraction	4
3.	Machine Learning	.10
4.	Machine Learning Hyperparameters and Metrics	. 13
5.	NN Feature Importances	. 19
6.	TL Datasets	. 20
7.	hTL Metrics	. 22
8.	dTL Metrics	. 28
9.	Dataset Plots	. 30
10.	Learning Curves	. 32
11.	Transition State Structural Analysis	.41
12.	Direct Training	.45
13.	References	.49

1. Dataset Generation

Preliminary geometries were constructed for 1355 endo/exo and 414 tetrazine/alkyne transition states by altering chosen Diels-Alder backbones based on literature examples with a variety of functional groups.^{1–13} These structures were generated using the Custom R-Group Enumeration in Schrödinger's MacroModel (version 12.7).¹⁴

Fig. S1 - Overview of the enumerations made to create the Diels-Alder dataset.

These enumerated reactant and transition state structures (Fig. S1) were then conformationally searched using Schrödinger's MacroModel (version 12.7)^{14,15} with the OPLS3e forcefield.¹⁶ The lowest energy OPLS3e conformers for all reactant and transition state structures were then optimised with AM1¹⁷, PM3¹⁸, and ω B97X-D/def2-TZVP^{19,20} using Gaussian 16 (Revision A.03 and C.01).^{21,22} All tetrazine Diels-Alder reactions were also optimised with DSD-PBEP86-D3(BJ)/def2-TZVP²³ for diagonal transfer learning. All reactant structures optimised to minima whilst the number of optimised concerted transition state structures for each level of theory (dataset size) ranged from 1065 – 1141 structures (Table S1). Free energy reaction barriers were calculated from temperature (298.15 K) and concentration corrected (1 mol l⁻¹) quasi-harmonic free energies obtained with GoodVibes (Table S1).²⁴

Dataset		Barrier Range / kcal mol ⁻¹	Dataset Size (with DFT)
A 5.41	Endo	30.22 - 59.75	1065
AIVII	Exo	28.13 - 53.07	1109
DN/2	Endo	32.3 - 56.33	1141
PIVIS	Exo	31.6 - 55.99	1141
DET	Endo	12.76 - 54.53	-
DFI	Exo	9.4 - 50.45	_

Table S1 - Transition state barrier ranges and dataset sizes for all levels of theory when combined with DFT calculations. Dataset size is for the combined X-DFT dataset where X is either AM1 or PM3.

The baseline methods of AM1 and PM3 were chosen based on their prevalence and usage within the literature to investigate the Diels-Alder reaction.^{25–28} The newer methods of PM6²⁹ and PM7³⁰ were also investigated however both exhibited issues in reaching convergence for concerted Diels-Alder reactions. For the target level of theory, the ω B97X-D¹⁹ functional was chosen alongside the polarised triple- ζ valence quality (def2-TZVP) basis set²⁰ based on their performance in barrier height calculations^{31,32} and previous work within this area utilising this combination.³³

To ensure a consistent dataset of Diels-Alder transition states, only those close to a concerted mechanism were used. All transition state structures with a difference between the C1–C2 and C3–C4 bond forming distances (Fig. S2) of greater than 0.6 Å at the AM1 and PM3 levels of theory were removed; distance value calculated by equation (1).

(1)
$$\Delta Distance = |Distance_{C1-C2} - Distance_{C3-C4}|$$

All Gaussian 16 computed output files are publicly available in *Dataset for "Machine learning reaction* barriers in low data regimes: A horizontal and diagonal transfer learning approach" in the University of Bath Research Data Archive (accessible at: <u>https://doi.org/10.15125/BATH-01229</u>). All structures visualised within this work were created using CYLView.³⁴

2. Feature Extraction

A number of physical organic chemical features were extracted for each Diels-Alder dataset at the AM1 and PM3 levels of theory utilising a select group of python packages (Table S2-3). Features were extracted for the core atoms in both the diene and dienophile reactant structures as well as for the associated transition state structure. Fig. S2 provides an example of an enumeration and of the common atoms (highlighted) that features were extracted for. With all models, the feature processing was consistently performed solely on the training sets before applying the same transformation to the test sets to prevent data leakage. All train-test splits were performed using the same random state (23), that was chosen at random, to ensure uniformity across splits.

Fig. S2 - General Diels-Alder Reaction and atom numbering. Features were extracted for core atoms (highlighted blue).

Feature	Description	Source
atomcharges_apt_01_ts	APT Atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
atomcharges_apt_sum_01_ts	APT Summed atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
atomcharges_mulliken_01_ts	Mulliken atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
atomcharges_mulliken_sum_01_ts	Mulliken summed atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
homoenergies_ts	Highest occupied molecular orbital (HOMO) energy - transition state.	CCLIB ³⁵
lumoenergies_ts	Lowest unoccupied molecular orbital (LUMO) energy - transition state.	CCLIB ³⁵
hardness_ts	Global hardness - transition state.	HSAB ³⁶
softness_ts	Global softness - transition state.	HSAB ³⁶
chemicalpotential_ts	Global chemical potential - transition state.	HSAB ³⁶
electrophilicity_ts	Global electrophilicity - transition state.	HSAB ³⁶
gv_E_ts	Electronic energy.	GoodVibes ²⁴
gv_ZPE_ts	Zero-point energy.	GoodVibes ²⁴
gv_H_ts	Enthalpy.	GoodVibes ²⁴
gv_T.S_ts	Entropy.	GoodVibes ²⁴
gv_T.qh-S_ts	Quasi-harmonic entropy.	GoodVibes ²⁴
gv_G(T)_ts	Gibbs free energy.	GoodVibes ²⁴
gv_qh-G(T)_ts	Quasi-harmonic Gibbs free energy.	GoodVibes ²⁴
ea_ts	Semi-Empirical Quasi-harmonic free energy reaction barrier.	GoodVibes ²⁴

sasa_1_ts	Solvent accessible surface area for each atom n (range 1-6) - transition state.	Freesasa ³⁷
sasa_R1_ts	Solvent accessible surface area for R1 atom - transition state.	
sasa_total_ts	Total Solvent accessible surface area for core atoms - transition state.	Freesasa ³⁷
sterimol_R1_L_ts	Sterimol L parameter for R1 substituent - transition state.	DBStep ³⁸
sterimol_R1_Bmin_ts	Sterimol B _{min} parameter for R1 substituent - transition state.	DBStep ³⁸
sterimol_R1_Bmax_ts	Sterimol B_{max} parameter for R1 substituent - transition state.	DBStep ³⁸
PBV_1_ts	Percent buried volume (3.5 Å) for each reacting atom n (range 1-4) - transition state.	DBStep ³⁸
HBA2_ts	Number of hydrogen bond acceptors - transition state.	Pybel ³⁹
HBD_ts	Number of hydrogen bond donors - transition state.	Pybel ³⁹
nF_ts	Number of Fluorine atoms - transition state.	Pybel ³⁹
bond_forming_distance_1_ts	Transition state bond forming distance between atoms 1 and 2.	-
bond_forming_distance_2_ts	Transition state bond forming distance between atoms 3 and 4.	-
bond_forming_angle_1_ts	Transition state bond forming angle between atoms 2, 1, and 3.	-
bond_forming_angle_2_ts	Transition state bond forming angle between atoms 4, 3, and 1.	-
bond_form_diff_ts	Transition state difference between the two bond forming distances.	-
bond_ang_diff_ts	Transition state difference between the two bond forming angles.	-
atomcharges_apt_01_di	APT Atomic charge for the diene reactant structure for each atom n (01, 03, 05, 06).	CCLIB ³⁵
atomcharges_apt_sum_01_di	APT Summed atomic charge for the diene reactant structure for each atom n (01, 03, 05, 06).	CCLIB ³⁵
atomcharges_mulliken_01_di	Mulliken atomic charge for the diene reactant structure for each atom n (01, 03, 05, 06).	CCLIB ³⁵
atomcharges_mulliken_sum_01_di	Mulliken summed atomic charge for the diene reactant structure for each atom n (01, 03, 05, 06).	CCLIB ³⁵
homoenergies_di	HOMO energy - diene reactant.	CCLIB ³⁵
lumoenergies_di	LUMO energy - diene reactant.	CCLIB ³⁵
vibfreqs_01_di	Lowest vibrational frequency for the diene reactant.	CCLIB ³⁵
vibirs_01_di	Lowest infrared intensity for the diene reactant.	CCLIB ³⁵
hardness_di	Global hardness - diene reactant.	HSAB ³⁶
softness_di	Global softness - diene reactant.	
chemicalpotential_di	Global chemical potential - diene reactant.	HSAB ³⁶
electrophilicity_di	Global electrophilicity - diene reactant.	HSAB ³⁶
sasa_1_di	Solvent accessible surface area for each atom n (1, 3, 5, 6) - diene reactant.	Freesasa ³⁷
sasa_R1_di	Solvent accessible surface area for R1 atom - diene reactant.	Freesasa ³⁷
sasa_total_di	Total solvent accessible surface area for core atoms - diene reactant.	Freesasa ³⁷

sterimol_R1_L_di	Sterimol L parameter for R1 substituent - diene reactant	DBStep ³⁸
sterimol_R1_Bmin_di	Sterimol B _{min} parameter for R1 substituent - diene	DBStep ³⁸
sterimol_R1_Bmax_di	Sterimol B _{max} parameter for R1 substituent - diene reactant.	DBStep ³⁸
PBV_1_di	Percent buried volume (3.5 Å) for each reacting atom n $(1, 3)$ - diene reactant.	DBStep ³⁸
HBA2_di	Number of hydrogen bond acceptors - diene reactant.	Pybel ³⁹
HBD_di	Number of hydrogen bond donors - diene reactant.	Pybel ³⁹
nF_di	Number of Fluorine atoms - diene reactant.	Pybel ³⁹
atomcharges_apt_02_dp	APT atomic charge for the dienophile reactant structure for each atom n (02, 04).	CCLIB ³⁵
atomcharges_apt_sum_02_dp	APT Summed Atomic charge for the dienophile reactant structure for each atom n (02, 04).	CCLIB ³⁵
atomcharges_mulliken_02_dp	Mulliken Atomic charge for the dienophile reactant structure for each atom n (02, 04).	CCLIB ³⁵
atomcharges_mulliken_sum_02_dp	Mulliken Summed Atomic charge for the dienophile reactant structure for each atom n (02, 04).	CCLIB ³⁵
homoenergies_dp	HOMO energy - dienophile reactant.	CCLIB ³⁵
lumoenergies_dp	LUMO energy - dienophile reactant.	CCLIB ³⁵
handaasa da	Global bardness - diepophile reactant	
nardness_dp	Giobal fial difess - dienopfille reactant.	HSAB
softness_dp	Global softness - dienophile reactant.	HSAB ³⁶
softness_dp chemicalpotential_dp	Global softness - dienophile reactant. Global softness - dienophile reactant. Global chemical potential - dienophile reactant.	HSAB ³⁶ HSAB ³⁶
softness_dp chemicalpotential_dp electrophilicity_dp	Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶
softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp	Global softness - dienophile reactant. Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷
naroness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp	Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷
naroness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp sasa_total_dp	Global softness - dienophile reactant. Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant. Total solvent accessible surface area for core atoms - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷ Freesasa ³⁷
naroness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp sasa_total_dp sterimol_R1_L_dp	Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant. Total solvent accessible surface area for core atoms - dienophile reactant. Sterimol L parameter for R1 substituent - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷ Freesasa ³⁷ DBStep ³⁸
naroness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp sasa_total_dp sterimol_R1_L_dp sterimol_R1_Bmin_dp	Global softness - dienophile reactant. Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant. Total solvent accessible surface area for core atoms - dienophile reactant. Sterimol L parameter for R1 substituent - dienophile reactant. Sterimol B _{min} parameter for R1 substituent - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷ Freesasa ³⁷ DBStep ³⁸ DBStep ³⁸
naroness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp sasa_total_dp sterimol_R1_L_dp sterimol_R1_Bmin_dp sterimol_R1_Bmax_dp	Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant. Total solvent accessible surface area for core atoms - dienophile reactant. Sterimol L parameter for R1 substituent - dienophile reactant. Sterimol B _{min} parameter for R1 substituent - dienophile reactant. Sterimol B _{max} parameter for R1 substituent - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷ Freesasa ³⁷ DBStep ³⁸ DBStep ³⁸
naroness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp sasa_total_dp sterimol_R1_L_dp sterimol_R1_Bmin_dp sterimol_R1_Bmax_dp PBV_2_dp	 Global naroness - dienophile reactant. Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant. Total solvent accessible surface area for core atoms - dienophile reactant. Sterimol L parameter for R1 substituent - dienophile reactant. Sterimol B_{min} parameter for R1 substituent - dienophile reactant. Sterimol B_{max} parameter for R1 substituent - dienophile reactant. Percent buried volume (3.5 Å) for each reacting atom n (2, 4) - dienophile reactant. 	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷ Freesasa ³⁷ DBStep ³⁸ DBStep ³⁸ DBStep ³⁸
nardness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp sasa_total_dp sterimol_R1_L_dp sterimol_R1_Bmin_dp sterimol_R1_Bmax_dp PBV_2_dp HBA2_dp	Global softness - dienophile reactant. Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant. Total solvent accessible surface area for core atoms - dienophile reactant. Sterimol L parameter for R1 substituent - dienophile reactant. Sterimol B _{min} parameter for R1 substituent - dienophile reactant. Sterimol B _{max} parameter for R1 substituent - dienophile reactant. Percent buried volume (3.5 Å) for each reacting atom n (2, 4) - dienophile reactant. Number of hydrogen bond acceptors - dienophile reactant.	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷ Freesasa ³⁷ DBStep ³⁸ DBStep ³⁸ DBStep ³⁸ DBStep ³⁸ Pybel ³⁹
nardness_dp softness_dp chemicalpotential_dp electrophilicity_dp sasa_2_dp sasa_R1_dp sasa_total_dp sterimol_R1_L_dp sterimol_R1_Bmin_dp sterimol_R1_Bmax_dp PBV_2_dp HBA2_dp HBD_dp	 Global naroness - dienophile reactant. Global softness - dienophile reactant. Global chemical potential - dienophile reactant. Global electrophilicity - dienophile reactant. Solvent accessible surface area for each atom n (2, 4) - dienophile reactant. Solvent accessible surface area for R1 atom - dienophile reactant. Total solvent accessible surface area for core atoms - dienophile reactant. Sterimol L parameter for R1 substituent - dienophile reactant. Sterimol B_{min} parameter for R1 substituent - dienophile reactant. Sterimol B_{max} parameter for R1 substituent - dienophile reactant. Percent buried volume (3.5 Å) for each reacting atom n (2, 4) - dienophile reactant. Number of hydrogen bond acceptors - dienophile reactant. 	HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ HSAB ³⁶ Freesasa ³⁷ Freesasa ³⁷ Freesasa ³⁷ DBStep ³⁸ DBStep ³⁸ DBStep ³⁸ DBStep ³⁸ Pybel ³⁹

Table S2 - AM1 extracted features with brief description and source of given feature. Information on the origin of the feature is also included (e.g., reactant or transition state species).

Feature	Description	Source
atomcharges_apt_n_ts	APT atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
atomcharges_apt_sum_n_ts	APT summed atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
atomcharges_mulliken_n_ts	Mulliken atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
atomcharges_mulliken_sum_n_t s	Mulliken summed atomic charge for the transition state structure for each atom n (range 01-06).	CCLIB ³⁵
homoenergies_ts	HOMO energy - transition state.	CCLIB ³⁵
lumoenergies_ts	LUMO energy - transition state.	CCLIB ³⁵
hardness_ts	Global hardness - transition state.	HSAB ³⁶
softness_ts	Global softness - transition state.	HSAB ³⁶
chemicalpotential_ts	Global chemical potential - transition state.	HSAB ³⁶
electrophilicity ts	Global electrophilicity - transition state.	HSAB ³⁶
gv E ts	Electronic energy.	GoodVibes ²⁴
gv ZPE ts	Zero-point energy.	GoodVibes ²⁴
gy H ts	Enthalpy.	GoodVibes ²⁴
gy T.S ts	Entropy.	GoodVibes ²⁴
gv T.ah-S ts	Quasi-harmonic entropy.	GoodVibes ²⁴
gv	ts Gibbs free energy	
zy gh-G(T) ts Quasi-harmonic Gibbs free energy.		GoodVibes ²⁴
ea_ts	Semi-Empirical Quasi-harmonic free energy reaction barrier.	GoodVibes ²⁴
sasa_n_ts	Solvent accessible surface area for each atom n (range 1-6) - transition state.	Freesasa ³⁷
Sasa_R1_tsSolvent accessible surface area for R1 atom - transition state.		Freesasa ³⁷
sasa_total_ts	Total solvent accessible surface area for core atoms - transition state.	Freesasa ³⁷
sterimol_R1_L_ts	Sterimol L parameter for R1 substituent - transition state.	DBStep ³⁸
sterimol_R1_Bmin_ts	Sterimol B _{min} parameter for R1 substituent - transition state.	DBStep ³⁸
sterimol_R1_Bmax_ts	Sterimol B _{max} parameter for R1 substituent - transition state.	DBStep ³⁸
PBV_n_ts	Percent buried volume (3.5 Å) for each reacting atom n (range 1-4) - transition state.	DBStep ³⁸
HBA2_ts	Number of hydrogen bond acceptors - transition state.	Pybel ³⁹
HBD_ts	Number of hydrogen bond donors - transition state.	Pybel ³⁹
nF_ts	Number of Fluorine atoms - transition state.	Pybel ³⁹
bond_forming_distance_1_ts	Transition state bond forming distance between atoms 1 and 2.	-
bond_forming_distance_2_ts	Transition state bond forming distance between atoms 3 and 4.	-
bond_forming_angle_1_ts	Transition state bond forming angle between atoms 2, 1, and 3.	-
bond_forming_angle_2_ts	Transition state bond forming angle between atoms 4, 3, and 1.	-
bond_form_diff_ts	Transition state difference between the two bond forming distances.	-

bond ang diff ts	Transition state difference between the two bond	-
	forming angles.	
atomcharges_apt_n_di	each atom n (01, 03, 05, 06).	CCLIB ³⁵
atomcharges_apt_sum_n_di	APT summed atomic charge for the diene reactant structure for each atom n (01, 03, 05, 06).	CCLIB ³⁵
atomcharges_mulliken_n_di	Mulliken atomic charge for the diene reactant structure for each atom n (01, 03, 05, 06).	CCLIB ³⁵
atomcharges_mulliken_sum_n_ di	Mulliken summed atomic charge for the diene reactant structure for each atom n (01, 03, 05, 06).	CCLIB ³⁵
homoenergies_di	HOMO energy - diene reactant.	CCLIB ³⁵
lumoenergies_di	LUMO energy - diene reactant.	CCLIB ³⁵
vibfregs 01 di	Lowest vibrational frequency for the diene reactant.	CCLIB ³⁵
vibirs 01 di	Lowest infrared intensity for the diene reactant.	CCLIB ³⁵
hardness di	Global hardness - diene reactant.	HSAB ³⁶
 softness di	Global softness - diene reactant.	HSAB ³⁶
chemicalpotential di	Global chemical potential - diene reactant.	HSAB ³⁶
electrophilicity di	Global electrophilicity - diene reactant.	HSAB ³⁶
sasa_n_di	Solvent accessible surface area for each atom n (1, 3, 5, 6) - diene reactant.	Freesasa ³⁷
sasa_R1_di	Solvent accessible surface area for R1 atom - diene reactant.	Freesasa ³⁷
sasa_total_di	Total solvent accessible surface area for core atoms - diene reactant.	Freesasa ³⁷
sterimol_R1_L_di	Sterimol L parameter for R1 substituent - diene reactant.	DBStep ³⁸
sterimol_R1_Bmin_di	Sterimol B_{min} parameter for R1 substituent - diene reactant.	DBStep ³⁸
sterimol_R1_Bmax_di	Sterimol B_{max} parameter for R1 substituent - diene reactant.	DBStep ³⁸
PBV_n_di	Percent buried volume (3.5 Å) for each reacting atom n (1, 3) - diene reactant.	DBStep ³⁸
HBA2_di	Number of hydrogen bond acceptors - diene reactant.	Pybel ³⁹
HBD_di	Number of hydrogen bond donors - diene reactant.	Pybel ³⁹
nF_di	Number of Fluorine atoms - diene reactant.	Pybel ³⁹
homoenergies_dp	HOMO energy - dienophile reactant.	CCLIB ³⁵
lumoenergies_dp	LUMO energy - dienophile reactant.	CCLIB ³⁵
hardness_dp	Global hardness - dienophile reactant.	HSAB ³⁶
softness_dp	Global softness - dienophile reactant.	HSAB ³⁶
chemicalpotential_dp	Global chemical potential - dienophile reactant.	HSAB ³⁶
electrophilicity_dp Global electrophilicity - dienophile reactant.		HSAB ³⁶
sasa_n_dp	Solvent accessible surface area for each atom n (2, 4) - dienophile reactant.	Freesasa ³⁷
sasa_R1_dp	Solvent accessible surface area for R1 atom - dienophile reactant.	Freesasa ³⁷
sasa_total_dp	Total solvent accessible surface area for core atoms - dienophile reactant.	Freesasa ³⁷
sterimol_R1_L_dp	Sterimol L parameter for R1 substituent - dienophile reactant.	DBStep ³⁸
sterimol_R1_Bmin_dp	Sterimol B _{min} parameter for R1 substituent - dienophile reactant.	DBStep ³⁸

sterimol_R1_Bmax_dp	Sterimol B _{max} parameter for R1 substituent - dienophile reactant.	DBStep ³⁸
PBV_n_dp	Percent buried volume (3.5 Å) for each reacting atom $n (2, 4)$ - dienophile reactant.	DBStep ³⁸
HBA2_dp	Number of hydrogen bond acceptors - dienophile reactant.	Pybel ³⁹
HBD_dp	Number of hydrogen bond donors - dienophile reactant.	Pybel ³⁹
nF_dp	Number of Fluorine atoms - dienophile reactant.	Pybel ³⁹

Table S3 – PM3 extracted features with brief description and source of given feature. Information on the origin of the feature is also included (e.g., reactant or transition state species).

3. Machine Learning

All regression models were built with sklearn.⁴⁰ Prior to building and training models, features were standardised using sklearn's StandardScaler. For all regression models, only the X values were standardised. However, for the neural networks (NNs) built with TensorFlow⁴¹, both the X and y were standardised with their own scalars ensuring that weights generated for the model are scaled in the same way as the input, thus reducing the computational time involved with training.

For all regression models generated using sklearn, an 80% training set was used to predict the DFT quasi-harmonic free energy barrier and the remaining 20% for testing. A similar process was used for NNs built using TensorFlow except for an additional validation set was used, thus the splitting consisted of 64% training, 16% validation, and 20% test sets. To explore the variability within algorithms, various kernels were chosen to be investigated for KRR and SVR models; radial basis function (RBF) and polynomial kernels were employed for both, whilst a Laplacian kernel was also tested for KRR models. Hyperparameter tuning was performed for all regression models built with sklearn utilising sklearn's GridSearchCV to search the hyperparameter space for the best cross validation (CV) MAE (Table S4). 5-fold CV was utilised in training to assess model and hyperparameter combinations. Upon completion of tuning, each regressor was individually fit with the associated best hyperparameters before obtaining predictions on the held-out test set.

The hyperparameter tuning for the NNs were performed using the Hyperband⁴² tuner with early stopping implemented to find the best set of hyperparameters. A sequential network architecture was used with 4 hidden layers and dropout layers included after every hidden layer to help prevent overfitting. Other architectures were tested however four hidden layers was found to provide the best average performance and the simplest structure (larger networks result in an increased computational cost for model training and hyperparameter tuning). The hyperparameters tuned were learning rate, number of nodes per layer, hidden layer regularisation value, and dropout rate (for the dropout layers only). Model performance was monitored by generating loss curves on the training and validation sets by rebuilding and refitting the network at each stage with the optimised hyperparameters.

	Hyperparameters		
Model	Tuning Method	Search Space	
Ridge Regression ⁴³	Grid Search	{'alpha': [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100]}	
Kernel Ridge Regression (RBF) ⁴⁴	Grid Search	{'alpha': [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100], 'gamma':[None, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1]}	
Kernel Ridge Regression (Polynomial) ⁴⁴	Grid Search	{'alpha': [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100], 'gamma':[None, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1]}	
Kernel Ridge Regression (Laplacian) ⁴⁴	Grid Search	{'alpha': [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100], 'gamma':[None, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1]}	
Support Vector Regression (RBF) ⁴⁵	Grid Search	{'gamma':['scale', 'auto'], 'epsilon':[0.001, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1], 'C':[0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 30, 50]}	
Support Vector Regression (Polynomial) ⁴⁵	Grid Search	{'gamma':['scale', 'auto'], 'epsilon':[0.001, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1], 'C':[1, 2, 5, 10, 20, 30, 50], 'coef0': [0, 1], 'degree': [1, 2, 3, 4, 5]}	
Sequential Neural Network	Hyperband ⁴²	<pre>{'reg_value':[1e-2, 1e-3, 1e-4], 'learning_rate':values=[1e-2, 1e-3, 1e-4],</pre>	

Table S4 - All models built using sklearn and TensorFlow with associated tuning method and search space for hyperparameter tuning.

To generate the leave-one-out (LOO) datasets, any diene/dienophile that was enumerated to have a Cl as the R group was removed from the dataset and set as its own leave-one-out dataset (Fig. S3). This was completed for both endo and exo datasets to give certain leave-one-out datasets that are summarised in Table S5. These datasets were subsequently split into train and test sets as previously described.

Fig. S3 - Base structures omitted in leave-one-out, dienes (left) and dienophiles (right).

Datasets	Base Dataset Size	LOO Size	LOO Pre-ML MAE / kcal mol ⁻¹
AM1 Endo + LODiO	895	170	9.93
AM1 Endo + LODpO	904	161	9.63
AM1 Exo + LODiO	937	172	9.13
AM1 Exo + LODpO	932	177	9.42
PM3 Endo + LODiO	965	176	11.65
PM3 Endo + LODpO	972	169	11.33
PM3 Exo + LODiO	968	173	11.35
PM3 Exo + LODpO	961	180	11.14

Table S5 - Dataset sizes and pre-ML MAEs for all data.

To perform transfer learning (TL), a NN was first built on the appropriate selection of data for the base model. The data was then partitioned into the base model train, test, and validation sets, as well as the TL target train, test, and validation sets. The hyperparameters were tuned from the same search space using the same method as previously stated (Table S4). Once optimal hyperparameters were obtained, the model was rebuilt using these values and predictions were made on the TL target test set to provide a pre-TL prediction for comparison. The first three hidden layers of the model were then frozen (with only the final hidden layer retrainable) before retraining with the TL target train set (and using the TL target validation set to monitor model performance). Once retrained, predictions were obtained for the TL target test set and compared to the pre-TL predictions. To determine TL performance at very low data regimes, the TL target train set was partitioned into different percentages to evaluate the data limits at which TL can perform effectively.

When testing these models, test MAE values were primarily used to assess performance with comparisons drawn to train MAEs where appropriate to highlight any potential instances of overfitting. Standard errors were also calculated for each prediction by dividing the standard deviation of each individual prediction absolute errors by the square root of the number of samples.

4. Machine Learning Hyperparameters and Metrics

Tables S6 and S7 display the train MAE, test MAE, and test R² for each standard ML model built using both the AM1-DFT and PM3-DFT datasets. The associated test errors and hyperparameters for each model are also provided. All results are provided across endo and exo models. Leave-one-out results are displayed in Tables S8-11 with the appropriate hyperparameters, metrics, and test errors.

AM1 Endo					
Model	Train MAE / kcal mol ⁻¹	Test MAE / kcal mol ⁻¹	Test R ²	Hyperparameters	
Ridge	0.771	0.767 ± 0.053	0.969	{'alpha': 0.01}	
KRR (RBF)	0.863	0.716 ± 0.062	0.966	{'alpha': 1e-06, 'gamma': None}	
KRR (Poly)	0.510	0.416 ± 0.032	0.990	{'alpha': 0.01, 'gamma': None}	
KRR (Laplacian)	0.690	0.597 ± 0.047	0.979	{'alpha': 1e-06, 'gamma': None}	
SVR (RBF)	0.584	0.503 ± 0.041	0.984	{'C': 50, 'epsilon': 0.001, 'gamma': 'auto'}	
SVR (Poly)	0.431	0.403 ± 0.033	0.990	{'C': 50, 'coef0': 1, 'degree': 2, 'epsilon': 0.025, 'gamma': 'auto'}	
NN	0.623	0.711 ± 0.046	0.977	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160}</pre>	
AM1 Exo					
Ridge	0.958	0.964 ± 0.055	0.972	{'alpha': 1e-05}	
KRR (RBF)	0.803	0.811 ± 0.074	0.966	{'alpha': 0.0001, 'gamma': None}	
KRR (Poly)	0.509	0.440 ± 0.038	0.991	{'alpha': 0.01, 'gamma': None}	
KRR (Laplacian)	0.701	0.648 ± 0.050	0.983	{'alpha': 1e-06, 'gamma': None}	
SVR (RBF)	0.606	0.542 ± 0.043	0.988	{'C': 50, 'epsilon': 0.001, 'gamma': 'scale'}	
SVR (Poly)	0.497	0.394 ± 0.036	0.992	{'C': 10, 'coef0': 1, 'degree': 3, 'epsilon': 0.01, 'gamma': 'auto'}	
NN	0.933	1.101 ± 0.079	0.980	{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160}	

Table S6 - AM1-DFT Endo and Exo standard ML train and test set metrics with associated hyperparameters.

	PM3 Endo					
Model	Train MAE / kcal mol ⁻¹	Test MAE / kcal mol ⁻¹	Test R ²	Hyperparameters		
Ridge	1.055	0.874 ± 0.048	0.961	{'alpha': 1e-06}		
KRR (RBF)	0.883	0.718 ± 0.054	0.965	{'alpha': 1e-06, 'gamma': None}		
KRR (Poly)	0.561	0.463 ± 0.031	0.987	{'alpha': 0.1, 'gamma': None}		
KRR (Laplacian)	0.693	0.614 ± 0.039	0.980	{'alpha': 1e-06, 'gamma': None}		
SVR (RBF)	0.639	0.517 ± 0.035	0.984	{'C': 50, 'epsilon': 0.001, 'gamma': 'auto'}		
SVR (Poly)	0.529	0.425 ± 0.033	0.987	{'C': 10, 'coef0': 1, 'degree': 3, 'epsilon': 0.025, 'gamma': 'scale'}		
NN	0.551	0.759 ± 0.043	0.977	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.1, 'dropout_rate2': 0.1, 'dropout_rate3': 0.1, 'dropout_rate4': 0.1, 'node_units1': 448, 'node_units2': 352, 'node_units3': 96, 'node_units4': 320}</pre>		
	1	PM3 Ex	0			
Ridge	1.126	1.231 ± 0.073	0.940	{'alpha': 1e-05}		
KRR (RBF)	0.880	0.717 ± 0.055	0.973	{'alpha': 1e-06, 'gamma': None}		
KRR (Poly)	0.598	0.459 ± 0.033	0.989	{'alpha': 0.01, 'gamma': None}		
KRR (Laplacian)	0.748	0.582 ± 0.037	0.985	{'alpha': 1e-06, 'gamma': None}		
SVR (RBF)	0.676	0.551 ± 0.038	0.985	{'C': 30, 'epsilon': 0.001, 'gamma': 'auto'}		
SVR (Poly)	0.580	0.432 ± 0.033	0.990	{'C': 10, 'coef0': 1, 'degree': 3, 'epsilon': 0.001, 'gamma': 'auto'}		
NN	0.648	0.881 ± 0.069	0.973	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.1, 'dropout_rate2': 0.1, 'dropout_rate3': 0.1, 'dropout_rate4': 0.1, 'node_units1': 448, 'node_units2': 352, 'node_units3': 96, 'node_units4': 320}</pre>		

Table S7 - PM3-DFT Endo and Exo standard ML train and test set metrics with associated hyperparameters.

AM1 LODiO Endo						
Model	Train MAE / kcal mol ⁻¹	Test MAE / kcal mol ⁻¹	Test R ²	LODiO MAE / kcal mol ⁻¹	Hyperparameters	
Ridge	0.802	0.822 ± 0.064	0.960	1.603 ± 0.18	{'alpha': 1e-06}	
KRR (RBF)	0.998	0.761 ± 0.063	0.964	1.441 ± 0.236	{'alpha': 1e-06, 'gamma': None}	
KRR (Poly)	0.572	0.473 ± 0.036	0.987	0.802 ± 0.129	{'alpha': 0.01, 'gamma': None}	
KRR (Laplacian)	0.760	0.600 ± 0.045	0.980	0.758 ± 0.111	{'alpha': 1e-06, 'gamma': None}	
SVR (RBF)	0.666	0.483 ± 0.036	0.987	0.794 ± 0.116	{'C': 30, 'epsilon': 0.001, 'gamma': 'auto'}	
SVR (Poly)	0.493	0.443 ± 0.033	0.989	1.011 ± 0.119	{'C': 30, 'coef0': 1, 'degree': 2, 'epsilon': 0.05, 'gamma': 'scale'}	
NN	0.533	0.705 ± 0.043	0.976	0.977 ± 0.120	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160}</pre>	
	1	AM1	LODiO Exo	1		
Ridge	0.970	0.994 ± 0.068	0.963	1.018 ± 0.167	{'alpha': 1e-05}	
KRR (RBF)	0.929	0.757 ± 0.065	0.972	1.717 ± 0.291	{'alpha': 0.001, 'gamma': None}	
KRR (Poly)	0.562	0.489 ± 0.043	0.988	0.837 ± 0.123	{'alpha': 0.01, 'gamma': None}	
KRR (Laplacian)	0.767	0.635 ± 0.046	0.983	0.878 ± 0.114	{'alpha': 1e-06, 'gamma': None}	
SVR (RBF)	0.672	0.564 ± 0.050	0.983	0.879 ± 0.117	{'C': 50, 'epsilon': 0.001, 'gamma': 'auto'}	
SVR (Poly)	0.527	0.501 ± 0.045	0.987	0.758 ± 0.114	{'C': 10, 'coef0': 1, 'degree': 3, 'epsilon': 0.01, 'gamma': 'scale'}	
NN	0.792	1.059 ± 0.082	0.953	1.036 ± 0.094	{'reg_value': 0.001, 'learning_rate': 0.001, 'dropout_rate1': 0.2, 'dropout_rate2': 0.1, 'dropout_rate3': 0.1, 'dropout_rate4': 0.4, 'node_units1': 480, 'node_units2': 288, 'node_units3': 64, 'node_units4': 224}	

Table S8 - AM1-DFT Endo and Exo leave-one-diene-out standard ML train and test set metrics with associated hyperparameters.

PM3 LODiO Endo						
Model	Train MAE / kcal mol ⁻¹	Test MAE / kcal mol ⁻¹	Test R ²	LODiO MAE / kcal mol ⁻¹	Hyperparameters	
Ridge	1.076	0.925 ± 0.062	0.960	2.501 ± 0.196	{'alpha': 1e-06}	
KRR (RBF)	0.963	0.846 ± 0.066	0.961	2.061 ± 0.276	{'alpha': 0.0001, 'gamma': None}	
KRR (Poly)	0.599	0.551 ± 0.050	0.980	1.232 ± 0.223	{'alpha': 0.1, 'gamma': None}	
KRR (Laplacian)	0.779	0.683 ± 0.048	0.977	0.779 ± 0.133	{'alpha': 1e-06, 'gamma': None}	
SVR (RBF)	0.670	0.596 ± 0.045	0.981	1.006 ± 0.163	{'C': 30, 'epsilon': 0.001, 'gamma': 'auto'}	
SVR (Poly)	0.566	0.531 ± 0.052	0.980	1.042 ± 0.175	{'C': 5, 'coef0': 1, 'degree': 3, 'epsilon': 0.001, 'gamma': 'scale'}	
NN	0.555	0.881 ± 0.074	0.963	0.960 ± 0.138	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.1, 'dropout_rate2': 0.1, 'dropout_rate3': 0.1, 'dropout_rate4': 0.1, 'node_units1': 448, 'node_units2': 352, 'node_units3': 96, 'node_units4': 320}</pre>	
		PM3	LODiO Exo			
Ridge	1.166	1.151 ± 0.065	0.952	2.009 ± 0.181	{'alpha': 0.01}	
KRR (RBF)	0.950	0.769 ± 0.062	0.971	1.351 ± 0.215	{'alpha': 1e-06, 'gamma': None}	
KRR (Poly)	0.631	0.538 ± 0.045	0.985	1.01 ± 0.158	{'alpha': 0.01, 'gamma': None}	
KRR (Laplacian)	0.779	0.654 ± 0.044	0.981	0.701 ± 0.077	{'alpha': 1e-06, 'gamma': None}	
SVR (RBF)	0.730	0.582 ± 0.045	0.983	0.852 ± 0.115	{'C': 50, 'epsilon': 0.001, 'gamma': 'auto'}	
SVR (Poly)	0.621	0.542 ± 0.046	0.984	0.867 ± 0.128	{'C': 20, 'coef0': 1, 'degree': 3, 'epsilon': 0.025, 'gamma': 'auto'}	
NN	0.612	0.887 ± 0.063	0.971	0.793 ± 0.103	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160}</pre>	

Table S9 – PM3-DFT Endo and Exo leave-one-diene-out standard ML train and test set metrics with associated hyperparameters.

AM1 LODpO Endo							
Model	Train MAE / kcal mol ⁻¹	Test MAE / kcal mol ⁻¹	Test R ²	LODiO MAE / kcal mol ⁻¹	Hyperparameters		
Ridge	0.827	0.762 ± 0.045	0.975	1.616 ± 0.216	{'alpha': 0.01}		
KRR (RBF)	0.969	0.791 ± 0.073	0.958	1.7 ± 0.254	{'alpha': 1e-06, 'gamma': None}		
KRR (Poly)	0.564	0.521 ± 0.041	0.984	0.612 ± 0.084	{'alpha': 0.01, 'gamma': None}		
KRR (Laplacian)	0.748	0.672 ± 0.048	0.977	0.935 ± 0.162	{'alpha': 1e-06, 'gamma': None}		
SVR (RBF)	0.646	0.574 ± 0.053	0.977	0.766 ± 0.093	{'C': 50, 'epsilon': 0.001, 'gamma': 'auto'}		
SVR (Poly)	0.499	0.463 ± 0.035	0.988	0.823 ± 0.120	{'C': 30, 'coef0': 1, 'degree': 2, 'epsilon': 0.025, 'gamma': 'scale'}		
NN	0.824	0.913 ± 0.059	0.970	0.932 ± 0.104	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160}</pre>		
		AM1	LODpO Exo	·			
Ridge	0.929	0.914 ± 0.061	0.971	3.325 ± 0.472	{'alpha': 0.001}		
KRR (RBF)	0.923	0.688 ± 0.069	0.974	1.641 ± 0.214	{'alpha': 1e-06, 'gamma': None}		
KRR (Poly)	0.527	0.513 ± 0.048	0.986	0.754 ± 0.108	{'alpha': 0.01, 'gamma': None}		
KRR (Laplacian)	0.777	0.670 ± 0.051	0.982	0.868 ± 0.128	{'alpha': 1e-06, 'gamma': None}		
SVR (RBF)	0.655	0.624 ± 0.054	0.981	0.669 ± 0.126	{'C': 50, 'epsilon': 0.001, 'gamma': 'scale'}		
SVR (Poly)	0.499	0.474 ± 0.048	0.987	1.085 ± 0.149	{'C': 50, 'coef0': 1, 'degree': 2, 'epsilon': 0.05, 'gamma': 'auto'}		
NN	0.955	1.141 ± 0.076	0.973	1.213 ± 0.137	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160.</pre>		

Table S10 - AM1-DFT Endo and Exo leave-one-dienophile-out standard ML train and test set metrics with associated hyperparameters.

PM3 LODpO Endo							
Model	Train MAE / kcal mol ⁻¹	Test MAE / kcal mol ⁻¹	Test R ²	LODiO MAE / kcal mol ⁻¹	Hyperparameters		
Ridge	1.007	0.968 ± 0.062	0.956	2.975 ± 0.344	{'alpha': 0.001}		
KRR (RBF)	0.950	0.792 ± 0.074	0.958	1.350 ± 0.200	{'alpha': 1e-05, 'gamma': None}		
KRR (Poly)	0.569	0.489 ± 0.040	0.986	0.907 ± 0.109	{'alpha': 0.1, 'gamma': None}		
KRR (Laplacian)	0.743	0.628 ± 0.051	0.979	1.291 ± 0.141	{'alpha': 1e-06, 'gamma': None}		
SVR (RBF)	0.669	0.575 ± 0.047	0.982	0.869 ± 0.106	{'C': 50, 'epsilon': 0.001, 'gamma': 'auto'}		
SVR (Poly)	0.536	0.482 ± 0.039	0.987	1.261 ± 0.115	{'C': 30, 'coef0': 1, 'degree': 2, 'epsilon': 0.01, 'gamma': 'scale'}		
NN	0.568	0.750 ± 0.047	0.978	0.991 ± 0.124	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160}</pre>		
		PM3	LODpO Exo	1			
Ridge	1.121	1.078 ± 0.062	0.954	3.346 ± 0.356	{'alpha': 0.01}		
KRR (RBF)	0.897	0.755 ± 0.061	0.97	1.301 ± 0.154	{'alpha': 1e-06, 'gamma': None}		
KRR (Poly)	0.602	0.552 ± 0.05	0.981	0.708 ± 0.096	{'alpha': 0.01, 'gamma': None}		
KRR (Laplacian)	0.806	0.655 ± 0.045	0.98	1.126 ± 0.121	{'alpha': 1e-06, 'gamma': None}		
SVR (RBF)	0.692	0.588 ± 0.051	0.98	0.671 ± 0.088	{'C': 50, 'epsilon': 0.001, 'gamma': 'auto'}		
SVR (Poly)	0.599	0.550 ± 0.050	0.981	0.762 ± 0.108	{'C': 30, 'coef0': 1, 'degree': 3, 'epsilon': 0.05, 'gamma': 'auto'}		
NN	0.660	0.841 ± 0.064	0.967	0.891 ± 0.160	<pre>{'reg_value': 0.0001, 'learning_rate': 0.001, 'dropout_rate1': 0.3, 'dropout_rate2': 0.2, 'dropout_rate3': 0.2, 'dropout_rate4': 0.1, 'node_units1': 480, 'node_units1': 480, 'node_units2': 416, 'node_units3': 352, 'node_units4': 160.</pre>		

Table S11 – PM3-DFT Endo and Exo leave-one-dienophile-out standard ML train and test set metrics with associated hyperparameters.

5. NN Feature Importances

Feature importances were calculated for the endo and exo NN models by taking each individual feature in the X test and randomly shuffling one feature exclusively and using this new X test to predict y test (Fig. S4). This yields an indication on the importance of a given feature on predictive ability (Fig. S5 and S6). All feature importances are for AM1-DFT endo and exo models.

	X Test Features					
F ₁	F ₂		F _{n-1}	Fn		
a 1	b1		Y 1	z ₁		
a ₂	b ₂		Y ₂	z ₂		
a ₃	b ₃		y ₃	Z ₃		
a ₄	b ₄		y 4	z ₄		
a ₅	b ₅		y 5	z ₅		
Random Shuffling of F1						
			Random Sh	uffling of F ₁		
	х	Test Feature	Random Sh	uffling of F ₁		
F ₁	F ₂	Test Feature	Random Sh es F _{n-1}	uffling of F ₁		
F ₁	F ₂ b ₁	Test Feature	Random Sh es F _{n-1} y ₁	F _n		
F ₁ a ₂ a ₅	F ₂ b ₁ b ₂	Test Feature	Random Sh es F _{n-1} Y ₁ Y ₂	Fn Z1 Z2		
F ₁ a ₂ a ₅ a ₄	F ₂ b ₁ b ₂ b ₃	Test Feature	Fn-1 y1 y2 y3	Example 1 Fn Z1 Z2 Z3		
F ₁ a ₂ a ₅ a ₄ a ₁	F ₂ b ₁ b ₂ b ₃ b ₄	Test Feature	Fn-1 Y1 Y2 Y3 Y4	Example Fn Z1 Z2 Z3 Z4		

Fig. S4 - Explanation of how feature importances were generated for NNs. Each feature (F_1 through F_2) is independently shuffled within the X test set and a prediction made on each new set of X test features.

Fig. S5 - Feature Importances for AM1 endo NN. Test MAE (dark blue) plotted with 10 highest test MAEs (light blue) achieved after feature importance analysis.

Fig. S6 - Feature Importances for AM1 exo NN. Test MAE (dark blue) plotted with 10 highest test MAEs (light blue) achieved after feature importance analysis.

6. TL Datasets

The whole dataset created was partitioned into different enumerations and Diels-Alder reaction classes to provide TL datasets. These partitions yielded source domain A and source domain B, which were paired with target domains α and β , respectively, for TL (Fig. S7 and S8). The enumeration used for generating the [3+2] cycloaddition dataset is also included here (Fig. S9). For the [3+2] cycloaddition dataset, a broadly representative sample was selected from a recently published dataset⁴⁶ and enumerated and calculated with our workflow to generate a dataset of 420 [3+2] cycloaddition reactions.

Fig. S7 - Partition of data to create source domain A and target domain α . Source domain A contains hetero/homo and cyclopropane-containing intermolecular Diels-Alder reactions. Target domain α contains intramolecular Diels-Alder reactions.

Fig. S8 - Partition of data to create source domain B and target domain β . Source domain B contains hetero/homo and cyclopropane-containing intermolecular Diels-Alder reactions along with intramolecular Diels-Alder reactions. Target domain β contains tetrazine Diels-Alder reactions.

Figure S9 - Enumerated [3+2] cycloaddition dataset used as target domain hTL. The source domain for this hTL was the B source domain from Fig. S7. Out of the 420 possible enumerated reactions, 408 were successfully optimised at the DFT level of theory. Extensive attempts to optimise the TSs of the remaining 12 reactions were unsuccessful.

7. hTL Metrics

Table S12 show metrics for before and after the hTL procedure. Tables S13-S16 show the test and train MAEs for the hTL work with associated errors at three random states across different hTL training percentage splits. This work was performed on the AM1-DFT dataset. hTL was also performed for an enumerated group of [3+2] reactions to provide an extended test (Table S17 and S18 for test and train metrics respectively).

AM1 hTL Endo							
Model	Base Train	Base Test	Base Test	Base Target	TL Target	TL	
	MAE	MAE	R ²	MAE	MAE	Target R ²	
	/ kcal mol ⁻¹	/ kcal mol⁻¹		/ kcal mol ⁻¹	/ kcal mol ⁻¹		
$A \rightarrow \alpha$	0.503	0.647 ± 0.045	0.974	5.090 ± 0.443	0.946 ± 0.085	0.987	
$B \rightarrow \beta$	0.623	0.711 ± 0.046	0.977	1.921 ± 0.325	0.932 ± 0.191	0.783	
			AM1 hTL	Exo	·	- -	
$A \rightarrow \alpha$	0.464	0.680 ± 0.043	0.978	4.953 ± 0.413	1.039 ± 0.100	0.985	
$B \rightarrow \beta$	0.933	1.101 ± 0.079	0.980	3.318 ± 0.399	1.242 ± 0.198	0.741	

Table S12 – AM1-DFT endo and exo train and base/hTL test metrics. Test metrics for the target are provided for before and after hTL was performed.

$A \rightarrow \alpha$ Endo Test MAE / kcal mol ⁻¹ hTL Train Percentages						
Percent of		Random State		A		
Training Data	21	22	23	Average		
10	2.540 ± 0.327	2.235 ± 0.256	2.839 ± 0.316	2.538 ± 0.299		
20	2.361 ± 0.236	1.576 ± 0.220	1.849 ± 0.224	1.928 ± 0.227		
30	1.480 ± 0.171	1.220 ± 0.136	1.629 ± 0.155	1.443 ± 0.154		
40	1.395 ± 0.135	1.295 ± 0.146	1.705 ± 0.167	1.465 ± 0.149		
50	1.164 ± 0.133	1.219 ± 0.139	1.159 ± 0.096	1.181 ± 0.123		
60	1.160 ± 0.122	1.290 ± 0.120	1.216 ± 0.127	1.222 ± 0.123		
70	0.993 ± 0.108	1.082 ± 0.116	1.051 ± 0.092	1.042 ± 0.105		
80	0.947 ± 0.089	0.999 ± 0.107	0.914 ± 0.077	0.953 ± 0.091		
90	0.917 ± 0.093	0.943 ± 0.105	0.790 ± 0.072	0.883 ± 0.090		
100	0.835 ± 0.098	0.889 ± 0.093	0.946 ± 0.085	0.890 ± 0.092		
	$A \rightarrow \alpha$ Exo Test M	MAE / kcal mol ⁻¹ hT	L Train Percentages			
10	2.769 ± 0.282	2.198 ± 0.208	2.746 ± 0.267	2.571 ± 0.252		
20	1.813 ± 0.207	2.891 ± 0.315	1.962 ± 0.195	2.222 ± 0.239		
30	1.514 ± 0.156	1.189 ± 0.141	1.458 ± 0.159	1.387 ± 0.152		
40	1.745 ± 0.210	1.362 ± 0.159	1.712 ± 0.186	1.606 ± 0.185		
50	1.321 ± 0.130	1.314 ± 0.134	1.358 ± 0.155	1.331 ± 0.140		
60	1.038 ± 0.114	1.155 ± 0.127	1.115 ± 0.121	1.102 ± 0.121		
70	1.171 ± 0.125	1.486 ± 0.158	1.501 ± 0.131	1.386 ± 0.138		
80	0.963 ± 0.100	1.028 ± 0.110	1.031 ± 0.114	1.007 ± 0.108		
90	1.107 ± 0.118	1.064 ± 0.100	0.925 ± 0.107	1.032 ± 0.108		
100	0.794 ± 0.078	1.016 ± 0.100	1.039 ± 0.100	0.950 ± 0.093		

Table S13 - AM1-DFT A $\rightarrow \alpha$ endo and exo hTL test MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of hTL training data.

$A \rightarrow \alpha$ Endo Train MAE / kcal mol ⁻¹ hTL Train Percentages						
Percent of		Random State		A		
Training Data	21	22	23	Average		
10	1.073	0.859	1.078	1.003		
20	1.046	0.920	0.810	0.925		
30	0.571	0.600	0.772	0.648		
40	0.861	0.677	0.865	0.801		
50	0.598	0.433	0.802	0.611		
60	0.694	0.753	0.634	0.693		
70	0.489	0.415	0.475	0.460		
80	0.606	0.485	0.542	0.544		
90	0.470	0.409	0.393	0.424		
100	0.590	0.506	0.614	0.570		
	$A \rightarrow \alpha$ Exo Train	MAE / kcal mol ⁻¹ hT	L Train Percentages	5		
10	1.010	0.468	1.404	0.961		
20	1.130	1.142	1.207	1.160		
30	0.879	0.502	0.608	0.663		
40	0.936	0.764	0.838	0.846		
50	0.931	0.747	0.912	0.863		
60	0.546	0.825	0.579	0.650		
70	0.866	1.093	0.873	0.944		
80	0.620	0.533	0.568	0.574		
90	0.748	0.592	0.483	0.607		
100	0.499	0.671	0.753	0.641		

Table S14 - AM1-DFT A $\rightarrow \alpha$ endo and exo hTL train MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of hTL training data.

$B \rightarrow \beta$ Endo Test MAE / kcal mol ⁻¹ hTL Train Percentages						
Percent of		Random State		A		
Training Data	21	22	23	Average		
10	1.843 ± 0.336	1.255 ± 0.224	1.698 ± 0.340	1.599 ± 0.300		
20	1.470 ± 0.258	1.774 ± 0.189	1.835 ± 0.316	1.693 ± 0.254		
30	1.529 ± 0.222	0.977 ± 0.154	1.315 ± 0.272	1.274 ± 0.216		
40	0.997 ± 0.156	1.036 ± 0.162	1.262 ± 0.189	1.098 ± 0.169		
50	1.163 ± 0.138	0.910 ± 0.161	0.896 ± 0.152	0.989 ± 0.150		
60	1.241 ± 0.206	0.681 ± 0.156	0.911 ± 0.126	0.944 ± 0.163		
70	1.135 ± 0.185	0.789 ± 0.150	0.675 ± 0.126	0.866 ± 0.154		
80	1.166 ± 0.205	0.760 ± 0.118	0.571 ± 0.112	0.832 ± 0.145		
90	0.912 ± 0.136	0.388 ± 0.080	0.658 ± 0.126	0.653 ± 0.114		
100	1.031 ± 0.145	0.618 ± 0.128	0.932 ± 0.191	0.860 ± 0.155		
	$B \rightarrow \beta$ Exo Test N	/IAE / kcal mol ⁻¹ hTl	Train Percentages			
10	2.009 ± 0.314	2.797 ± 0.325	2.124 ± 0.354	2.310 ± 0.331		
20	1.680 ± 0.203	1.554 ± 0.232	1.789 ± 0.260	1.674 ± 0.231		
30	1.217 ± 0.172	1.200 ± 0.168	1.392 ± 0.213	1.270 ± 0.184		
40	1.174 ± 0.202	1.197 ± 0.255	1.329 ± 0.182	1.233 ± 0.213		
50	1.126 ± 0.181	1.348 ± 0.217	0.704 ± 0.146	1.059 ± 0.181		
60	1.077 ± 0.179	0.993 ± 0.194	0.784 ± 0.102	0.951 ± 0.158		
70	1.184 ± 0.192	0.771 ± 0.153	0.767 ± 0.128	0.907 ± 0.158		
80	1.151 ± 0.190	0.559 ± 0.090	0.665 ± 0.116	0.791 ± 0.132		
90	0.880 ± 0.130	0.632 ± 0.113	0.631 ± 0.150	0.715 ± 0.131		
100	1.016 ± 0.134	0.814 ± 0.134	1.242 ± 0.198	1.024 ± 0.155		

Table S15 - AM1-DFT B $\rightarrow \beta$ endo and exo hTL test MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of hTL training data.

$B \rightarrow \beta$ Endo Train MAE / kcal mol ⁻¹ hTL Train Percentages					
Percent of		Random State		A	
Training Data	21	22	23	Average	
10	1.595	0.984	1.039	1.206	
20	0.885	1.143	0.866	0.965	
30	0.938	0.605	0.616	0.720	
40	0.460	0.383	0.721	0.521	
50	0.704	0.798	0.496	0.666	
60	0.928	0.658	0.599	0.728	
70	0.387	0.560	0.427	0.458	
80	0.478	0.437	0.385	0.433	
90	0.379	0.438	0.278	0.365	
100	0.625	0.697	0.854	0.725	
	$B \rightarrow \beta$ Exo Train M	MAE / kcal mol ⁻¹ hT	L Train Percentages	i	
10	1.901	1.960	1.079	1.647	
20	0.885	1.177	1.142	1.068	
30	0.822	0.927	1.084	0.944	
40	0.657	0.718	0.923	0.766	
50	0.379	0.808	0.576	0.588	
60	0.454	0.811	0.617	0.627	
70	0.416	0.451	0.445	0.437	
80	0.421	0.424	0.394	0.413	
90	0.361	0.324	0.382	0.356	
100	0.867	0.959	1.106	0.977	

Table S16 - AM1-DFT B $\rightarrow \beta$ endo and exo hTL train MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of hTL training data.

$B \rightarrow [3+2]$ Endo Test MAE / kcal mol ⁻¹ hTL Train Percentages						
Percent of		Random State				
Training Data	21	22	23	Average		
10	2.137 ± 0.188	1.801 ± 0.148	2.126 ± 0.204	2.021 ± 0.180		
20	1.976 ± 0.183	1.539 ± 0.141	1.382 ± 0.117	1.632 ± 0.147		
30	1.748 ± 0.176	1.312 ± 0.124	1.098 ± 0.095	1.386 ± 0.132		
40	1.388 ± 0.147	1.063 ± 0.107	1.461 ± 0.149	1.304 ± 0.134		
50	1.194 ± 0.128	1.017 ± 0.090	1.366 ± 0.158	1.192 ± 0.125		
60	0.912 ± 0.120	0.812 ± 0.086	0.895 ± 0.101	0.873 ± 0.102		
70	1.102 ± 0.114	0.724 ± 0.073	0.752 ± 0.087	0.859 ± 0.092		
80	0.734 ± 0.082	0.648 ± 0.066	0.747 ± 0.087	0.710 ± 0.078		
90	0.977 ± 0.126	0.670 ± 0.079	0.772 ± 0.092	0.806 ± 0.099		
100	0.822 ± 0.113	0.774 ± 0.077	0.669 ± 0.082	0.755 ± 0.091		
	B → [3+2] Exo Test	t MAE / kcal mol ⁻¹ h	nTL Train Percentag	es		
10	1.813 ± 0.187	1.880 ± 0.180	2.451 ± 0.215	2.048 ± 0.194		
20	1.759 ± 0.178	1.380 ± 0.127	1.480 ± 0.120	1.540 ± 0.142		
30	1.495 ± 0.150	1.338 ± 0.137	1.250 ± 0.122	1.361 ± 0.136		
40	1.327 ± 0.133	1.085 ± 0.118	1.289 ± 0.124	1.233 ± 0.125		
50	1.392 ± 0.142	0.945 ± 0.085	1.336 ± 0.149	1.224 ± 0.126		
60	0.974 ± 0.120	0.689 ± 0.077	1.122 ± 0.126	0.928 ± 0.108		
70	0.943 ± 0.105	0.627 ± 0.066	0.850 ± 0.108	0.807 ± 0.093		
80	0.806 ± 0.091	0.736 ± 0.066	1.044 ± 0.095	0.862 ± 0.084		
90	0.834 ± 0.106	0.713 ± 0.075	0.772 ± 0.080	0.773 ± 0.087		
100	1.257 ± 0.142	0.904 ± 0.081	0.715 ± 0.071	0.959 ± 0.098		

Table S17 - AM1-DFT B \rightarrow [3+2] endo and exo hTL test MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of hTL training data.

$B \rightarrow [3+2]$ Endo Train MAE / kcal mol ⁻¹ hTL Train Percentages						
Percent of		Random State				
Training Data	21	22	23	Average		
10	1.071	0.723	1.432	1.075		
20	0.826	0.817	0.676	0.773		
30	0.821	0.663	0.529	0.671		
40	0.737	0.800	0.975	0.837		
50	0.630	0.689	0.843	0.720		
60	0.438	0.534	0.507	0.493		
70	0.670	0.473	0.531	0.558		
80	0.508	0.453	0.416	0.459		
90	0.509	0.450	0.624	0.528		
100	0.425	0.534	0.504	0.488		
	B → [3+2] Exo Trai	n MAE / kcal mol ⁻¹ l	hTL Train Percentag	ges		
10	0.812	0.801	1.434	1.016		
20	0.629	0.691	0.592	0.637		
30	0.528	0.778	0.775	0.694		
40	0.457	1.085	1.121	0.888		
50	0.676	0.603	1.060	0.780		
60	0.452	0.448	0.736	0.545		
70	0.544	0.411	0.465	0.473		
80	0.399	0.550	0.932	0.627		
90	0.413	0.452	0.547	0.470		
100	0.817	0.514	0.520	0.617		

Table S18 - AM1-DFT B \rightarrow [3+2] endo and exo hTL train MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of hTL training data.

8. dTL Metrics

Table S19 displays metrics for before and after the dTL procedure. Table S20 and S21 show the test and train MAEs for the dTL work with associated errors at three random states across different dTL training percentage splits. This work was performed on the AM1-DFT dataset from source domain B to target domain β .

AM1 dTL Endo							
Model	Base Train	Base Test	Base Test	Base Target	TL Target	TL	
	MAE	MAE	R ²	MAE	MAE	Target R ²	
	/ kcal mol ⁻¹	/ kcal mol ⁻¹		/ kcal mol ⁻¹	/ kcal mol ⁻¹		
$B \rightarrow \beta$	0.623	0.711 ± 0.046	0.977	10.920 ± 0.492	1.584 ± 0.284	0.557	
AM1 dTL Exo							
$B \rightarrow \beta$	0.933	1.101 ± 0.079	0.980	10.155 ± 0.721	0.781 ± 0.150	0.854	

Table S19 - AM1-DFT endo and exo train and base/dTL test metrics. Test metrics for the target are provided for before and after dTL was performed.

$B \rightarrow \beta$ Endo Test MAE / kcal mol ⁻¹ dTL Train Percentages							
Percent of	Percent of Random State						
Training Data	21 22		23	Average			
10	2.368 ± 0.418	2.630 ± 0.352	2.290 ± 0.378	2.430 ± 0.383			
20	1.748 ± 0.263	1.900 ± 0.286	1.999 ± 0.319	1.883 ± 0.289			
30	1.428 ± 0.231	1.508 ± 0.212	1.746 ± 0.381	1.561 ± 0.275			
40	1.262 ± 0.166	1.020 ± 0.187	1.375 ± 0.161	1.219 0.171			
50	1.301 ± 0.194	1.232 ± 0.210	0.839 ± 0.153	1.124 ± 0.182			
60	1.274 ± 0.213	0.996 ± 0.158	1.036 ± 0.156	1.102 ± 0.176			
70	1.476 ± 0.209	0.797 ± 0.184	0.759 ± 0.129	1.011 ± 0.174			
80	1.299 ± 0.221	0.811 ± 0.156	0.862 ± 0.141	0.991 ± 0.173			
90	1.167 ± 0.170	0.883 ± 0.161	0.647 ± 0.148	0.899 ± 0.160			
100	1.354 ± 0.233	1.146 ± 0.199	1.584 ± 0.284	1.361 ± 0.239			
$B \rightarrow \beta$ Exo Test MAE / kcal mol ⁻¹ dTL Train Percentages							
10	2.562 ± 0.427	2.597 ± 0.366	2.486 ± 0.340	2.548 ± 0.378			
20	1.802 ± 0.271	2.165 ± 0.268	2.776 ± 0.350	2.248 ± 0.296			
30	1.809 ± 0.307	1.288 ± 0.227	1.824 ± 0.310	1.640 ± 0.282			
40	1.193 ± 0.291	1.194 ± 0.232	1.372 ± 0.186	1.253 ± 0.236			
50	1.229 ± 0.182	1.463 ± 0.179	0.851 ± 0.165	1.18 ± 0.175			
60	1.112 ± 0.184	1.104 ± 0.160	0.700 ± 0.122	0.972 ± 0.155			
70	1.261 ± 0.213	1.023 ± 0.182	0.817 ± 0.124	1.033 ± 0.173			
80	1.502 ± 0.249	1.146 ± 0.187	0.790 ± 0.134	1.146 ± 0.190			
90	1.376 ± 0.203	0.970 ± 0.171	0.762 ± 0.142	1.036 ± 0.172			
100	1.821 ± 0.310	1.076 ± 0.171	0.781 ± 0.150	1.226 ± 0.210			

Table S20 - AM1-DFT B $\rightarrow \beta$ endo and exo dTL test MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of dTL training data.

$B \rightarrow \beta$ Endo Train MAE / kcal mol ⁻¹ dTL Train Percentages						
Percent of	Random State					
Training Data	21 22 23		Average			
10	1.206	2.035	1.145	1.462		
20	0.833	1.716	0.966	1.172		
30	0.887	0.908	1.166	0.987		
40	0.700	1.054	0.809	0.854		
50	0.741	0.808	0.527	0.692		
60	0.549	0.629	0.855	0.678		
70	0.796	0.523	0.423	0.581		
80	0.690	0.523	0.595	0.603		
90	0.430	0.633	0.469	0.511		
100	0.759	1.130	1.167	1.019		
$B \rightarrow \beta$ Exo Train MAE / kcal mol ⁻¹ dTL Train Percentages						
10	1.953	2.497	1.057	1.836		
20	0.570	1.634	1.305	1.170		
30	1.331	1.035	1.386	1.251		
40	0.886	0.565	0.726	0.726		
50	0.603	0.710	0.486	0.600		
60	0.838	0.602	0.594	0.678		
70	0.854	0.624	0.488	0.655		
80	0.582	0.427	0.757	0.589		
90	0.537	0.628	0.605	0.590		
100	1.204	1.070	0.928	1.067		

Table S21 - AM1-DFT B $\rightarrow \beta$ endo and exo dTL train MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of dTL training data.

9. Dataset Plots

Plots displaying SQM vs. DFT barriers with the chemical accuracy threshold displayed (grey zones). Plots show spread of both training and test sets for the ML models along with pre-ML MAE and R^2 (Fig. S10 – S13).

Fig. S10 - AM1 vs DFT endo activation barrier plot with pre-ML R² and MAE.

Fig. S11 - AM1 vs DFT exo activation barrier plot with pre-ML R^2 and MAE.

Fig. S12 – PM3 vs DFT endo activation barrier plot with pre-ML R^2 and MAE.

Fig. S13 – PM3 vs DFT exo activation barrier plot with pre-ML R² and MAE.

10. Learning Curves

The learning curves for the standard ML approaches on both the endo and exo datasets are provided in Fig. S14-25. In each case, the train and test MAEs match well suggesting that no significant overfitting has occurred. All curves are for AM1 models.

Fig. S15 - AM1-DFT endo KRR (Polynomial) learning curve.

50%

%09

Percentage Training Data

70%

80%

%06

100%

10%

20%

30%

40%

Fig. S16 - AM1-DFT endo KRR (RBF) learning curve.

Fig. S17 - AM1-DFT endo Ridge Regression learning curve.

Fig. S18 - AM1-DFT endo SVR (Polynomial) learning curve.

Fig. S19 - AM1-DFT endo SVR (RBF) learning curve.

Fig. S20 - AM1-DFT exo KRR (Laplacian) learning curve.

Fig. S21- AM1-DFT exo KRR (Polynomial) learning curve.

Fig. S22 - AM1-DFT exo KRR (RBF) learning curve.

Fig. S23 - AM1-DFT exo Ridge Regression learning curve.

Fig. S24 - AM1-DFT exo SVR (Polynomial) learning curve.

Fig. S25 - AM1-DFT exo SVR (RBF) learning curve.

The learning curves for both hTL and dTL were calculated by taking percentage splits of the target domain training set and performing the hTL/dTL with these splits. The metrics were obtained across three different random states and mean values taken and plotted. These curves look at the lower limits of training data required for obtaining chemically accurate free energy barrier target test set predictions on a different reaction class at the same or at a higher level of theory (LoT) relative to the base model. All curves are for AM1 data. Figures S26-S29 are for hTL and Figures S30 and S31 are for dTL.

Fig. S26 - AM1-DFT endo A $\rightarrow \alpha$ hTL target test set learning curve.

Fig. S27 - AM1-DFT exo A $\rightarrow \alpha$ hTL target test set learning curve.

Fig. S28 - AM1-DFT endo B $\rightarrow \beta$ hTL target test set learning curve.

Fig. S29 - AM1-DFT exo B $\rightarrow \beta$ hTL target test set learning curve.

Fig. S30 - AM1-higher LoT DFT endo B \rightarrow 6 dTL target test set learning curve.

Fig. S31 - AM1-higher LoT DFT exo $B \rightarrow \beta$ dTL target test set learning curve.

11. Transition State Structural Analysis

Root-mean-squared deviations of atomic positions (RMSDs) were calculated for both AM1 and PM3 transition state (TS) structures against their respective DFT TS structures. RMSDs were calculated using a quaternion-based characteristic polynomial method⁴⁷ with the spyrmsd Python package (Fig. S32 – S34).⁴⁸

Fig. S32 - AM1-DFT TS RMSDs for both endo and exo structures.

Fig. S33 – PM3-DFT TS RMSDs for both endo and exo structures.

Fig. S34 – PM3-AM1 TS RMSDs for both endo and exo structures.

For TL similarity metric analysis, RDKit was used to generate Morgan fingerprints for each AM1 TS structure in the source and target domain. Tanimoto and Dice similarities were then calculated for every structure in the source domain against every structure in the target domain. Fig. S35 - S38 show $A \rightarrow \alpha$ and $B \rightarrow \beta$ Tanimoto and Dice similarity frequencies, respectively, along with corresponding mean values.

Fig. S35 – Endo AM1 A $\rightarrow \alpha$ source and target domain Tanimoto and Dice similarities obtained from Morgan fingerprints.

Fig. S36 - Exo AM1 A \rightarrow α source and target domain Tanimoto and Dice similarities obtained from Morgan fingerprints.

Fig. S37 - Endo AM1 B $\rightarrow \beta$ source and target domain Tanimoto and Dice similarities obtained from Morgan fingerprints.

Fig. S38 - Exo AM1 B $\rightarrow \beta$ source and target domain Tanimoto and Dice similarities obtained from Morgan fingerprints.

A feature vector similarity approach was also performed on the normalised feature vectors. Below is a step by step of how this was performed:

- 1. Normalise the feature vectors from both the source and target domains.
- 2. Calculate the mean for each normalised feature vector in both the source and target domains.
- 3. Calculate the absolute difference between each normalised feature vector mean from the source and the target domain to give a difference value for every feature vector.
- 4. Calculate the mean value for all normalised feature vector differences to obtain a singular similarity metric between a given source and target domain.

Table S22 shows the results from this. For comparative purposes, the metric was calculated for the case in which the endo dataset is both the source and target domain. This would yield a metric of 0 as the values are identical thus, values closer to 0 should indicate higher similarity between a given source and target domain.

Source and Target Domain	Similarity Metric
Endo - Endo	0
Exo - Exo	0
Endo A - α	0.0024043
Εχο Α - α	0.0024942
Endo Β - β	0.0041303
Exo B - β	0.0040968
Endo – [3+2]	0.0042639
Exo – [3+2]	0.0043456

Table S22 – Normalised feature vector similarity metrics for combinations of source and target domain.

12. Direct Training

To evaluate overfitting in the extreme low data regimes, the target datasets for hTL and dTL (α and β) as well as the [3+2] dataset were used to train NNs directly. Tables S23-S26 show the results from this direct training.

α Endo Test MAE / kcal mol ⁻¹ Direct Training Train Percentages							
Percent of		A					
Training Data	21 22		23	Average			
10	3.122 ± 0.257	2.924 ± 0.315	3.449 ± 0.323	3.165 ± 0.298			
20	2.341 ± 0.230	1.935 ± 0.207	2.613 ± 0.294	2.296 ± 0.243			
30	1.994 ± 0.219	1.849 ± 0.219	1.363 ± 0.123	1.736 ± 0.187			
40	1.608 ± 0.190	1.476 ± 0.161	1.546 ± 0.142	1.544 ± 0.164			
50	1.306 ± 0.154	1.617 ± 0.172	1.349 ± 0.125	1.424 ± 0.15			
60	1.362 ± 0.159	1.566 ± 0.16	1.264 ± 0.13	1.397 ± 0.149			
70	1.208 ± 0.161	1.227 ± 0.132	1.106 ± 0.089	1.18 ± 0.127			
80	1.328 ± 0.170	1.194 ± 0.129	1.032 ± 0.109	1.185 ± 0.136			
90	1.111 ± 0.149	1.121 ± 0.098	0.928 ± 0.102	1.053 ± 0.117			
100	0.994 ± 0.112	0.998 ± 0.087	0.975 ± 0.08	0.989 ± 0.093			
α Endo Train MAE / kcal mol ⁻¹ Direct Training Train Percentages							
10	1.001	1.273	0.907	1.06			
20	1.045	1.315	1.242	1.2			
30	0.852	0.958	0.684	0.831			
40	1.004	0.914	0.814	0.911			
50	0.503	0.700	0.710	0.638			
60	0.802	0.705	0.868	0.791			
70	0.558	0.479	0.566	0.534			
80	0.791	0.569	0.770	0.71			
90	0.683	0.537	0.647	0.622			
100	0.609	0.484	0.503	0.532			

Table S23 - AM1-DFT α endo direct training test and train MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of direct training data.

α Exo Test MAE / kcal mol ⁻¹ Direct Training Train Percentages						
Percent of		A				
Training Data	21 22		23	Average		
10	4.643 ± 0.417	4.607 ± 0.417	2.328 ± 0.206	3.859 ± 0.347		
20	1.856 ± 0.176	2.953 ± 0.386	2.948 ± 0.318	2.585 ± 0.293		
30	1.825 ± 0.172	1.314 ± 0.155	1.787 ± 0.228	1.642 ± 0.185		
40	1.483 ± 0.178	1.493 ± 0.172	1.626 ± 0.197	1.534 ± 0.182		
50	1.065 ± 0.112	1.343 ± 0.148	1.286 ± 0.161	1.231 ± 0.140		
60	0.975 ± 0.118	1.040 ± 0.123	1.687 ± 0.189	1.234 ± 0.143		
70	1.602 ± 0.129	1.551 ± 0.205	2.442 ± 0.242	1.865 ± 0.192		
80	0.866 ± 0.088	1.322 ± 0.141	1.207 ± 0.115	1.132 ± 0.115		
90	1.000 ± 0.093	1.240 ± 0.127	1.129 ± 0.131	1.123 ± 0.117		
100	0.846 ± 0.116	1.120 ± 0.126	1.100 ± 0.111	1.022 ± 0.118		
α Exo Train MAE / kcal mol ⁻¹ Direct Training Train Percentages						
10	1.753	1.577	1.877	1.736		
20	1.327	0.925	1.691	1.314		
30	0.881	0.511	0.848	0.747		
40	0.787	0.604	0.747	0.713		
50	0.613	0.626	0.588	0.609		
60	0.520	0.524	1.384	0.809		
70	1.204	1.169	2.082	1.485		
80	0.536	0.632	0.717	0.628		
90	0.721	0.810	0.639	0.724		
100	0.407	0.722	0.668	0.599		

Table S24 - AM1-DFT α exo direct training test and train MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of direct training data.

β Test MAE / kcal mol ⁻¹ Direct Training Train Percentages							
Percent of		A					
Training Data	21 22		23	Average			
10	2.054 ± 0.410	1.958 ± 0.177	1.629 ± 0.321	1.880 ± 0.303			
20	1.318 ± 0.268	1.997 ± 0.249	1.343 ± 0.324	1.553 ± 0.280			
30	1.080 ± 0.184	0.896 ± 0.141	1.476 ± 0.242	1.151 ± 0.189			
40	1.049 ± 0.160	1.003 ± 0.180	1.315 ± 0.172	1.122 ± 0.171			
50	1.032 ± 0.187	0.686 ± 0.123	0.959 ± 0.158	0.892 ± 0.156			
60	1.003 ± 0.206	0.628 ± 0.120	0.453 ± 0.079	0.694 ± 0.135			
70	1.108 ± 0.203	0.659 ± 0.131	0.612 ± 0.106	0.793 ± 0.147			
80	1.035 ± 0.184	0.404 ± 0.088	0.503 ± 0.076	0.647 ± 0.116			
90	0.927 ± 0.142	0.529 ± 0.095	0.475 ± 0.082	0.644 ± 0.107			
100	0.857 ± 0.139	0.533 ± 0.098	0.496 ± 0.076	0.629 ± 0.104			
β Train MAE / kcal mol ⁻¹ Direct Training Train Percentages							
10	1.161	1.038	0.425	0.875			
20	0.483	1.356	0.394	0.744			
30	0.326	0.375	0.579	0.427			
40	0.368	0.392	0.387	0.382			
50	0.393	0.342	0.388	0.374			
60	0.349	0.387	0.408	0.381			
70	0.351	0.501	0.466	0.44			
80	0.412	0.368	0.409	0.396			
90	0.445	0.445	0.366	0.419			
100	0.517	0.509	0.513	0.513			

Table S25 - AM1-DFT 6 direct training test and train MAEs across three random states (21,22,23) with averaged MAEs. Metrics provided for different percentages of direct training data.

[3+2] Test MAE / kcal mol ⁻¹ Direct Training Train Percentages						
Percent of		A				
Training Data	21 22 23		23	Average		
10	2.116 ± 0.182	2.116 ± 0.189	2.716 ± 0.203	2.316 ± 0.191		
20	2.108 ± 0.178	1.377 ± 0.119	1.373 ± 0.114	1.619 ± 0.137		
30	1.660 ± 0.157	1.284 ± 0.127	1.176 ± 0.099	1.373 ± 0.128		
40	1.273 ± 0.149	1.014 ± 0.101	1.118 ± 0.086	1.135 ± 0.112		
50	1.310 ± 0.138	1.052 ± 0.094	1.088 ± 0.079	1.150 ± 0.104		
60	0.947 ± 0.124	0.718 ± 0.081	0.886 ± 0.096	0.851 ± 0.100		
70	0.880 ± 0.098	0.850 ± 0.087	0.689 ± 0.072	0.806 ± 0.085		
80	0.812 ± 0.090	0.559 ± 0.061	0.783 ± 0.077	0.718 ± 0.076		
90	0.789 ± 0.077	0.632 ± 0.068	0.620 ± 0.079	0.680 ± 0.075		
100	0.749 ± 0.080	0.626 ± 0.060	0.616 ± 0.060	0.664 ± 0.067		
[3+2] Train MAE / kcal mol ⁻¹ Direct Training Train Percentages						
10	0.966	0.417	0.775	0.720		
20	0.737	0.645	0.520	0.634		
30	0.430	0.757	0.575	0.587		
40	0.488	0.720	0.738	0.649		
50	0.665	0.785	0.614	0.688		
60	0.434	0.438	0.495	0.456		
70	0.442	0.613	0.413	0.489		
80	0.502	0.359	0.572	0.478		
90	0.553	0.423	0.450	0.475		
100	0.429	0.433	0.374	0.412		

 Table S26 - AM1-DFT [3+2] direct training test and train MAEs across three random states (21,22,23) with averaged MAEs.

 Metrics provided for different percentages of direct training data.

13. References

- L. M. Harwood, G. Jones, J. Pickard, R. M. Thomas and D. Watkin, *Tetrahedron Lett.*, 1988, **29**, 5825–5828.
- 2 L. M. Harwood, S. A. Leeming, N. S. Isaacs, G. Jones, J. Pickard, R. M. Thomas and D. Watkin, *Tetrahedron Lett.*, 1988, **29**, 5017–5020.
- 3 R. Gordillo and K. N. Houk, J. Am. Chem. Soc., 2006, **128**, 3543–3553.
- 4 B. J. Levandowski and K. N. Houk, J. Am. Chem. Soc., 2016, **138**, 16731–16736.
- 5 P. Binger, P. Wedemann, R. Goddard and U. H. Brinker, J. Org. Chem., 1996, **61**, 6462–6464.
- 6 L. A. Fisher, N. J. Smith and J. M. Fox, J. Org. Chem., 2013, 78, 3342–3348.
- 7 F. Liu, R. S. Paton, S. Kim, Y. Liang and K. N. Houk, J. Am. Chem. Soc., 2013, **135**, 15642–15649.
- 8 R. Ukis and C. Schneider, J. Org. Chem., 2019, **84**, 7175–7188.
- 9 V. Eschenbrenner-Lux, K. Kumar and H. Waldmann, Angew. Chem. Int. Ed., 2014, 53, 11146– 11157.
- 10 D. v. Osipov, V. A. Osyanin, G. D. Khaysanova, E. R. Masterova, P. E. Krasnikov and Y. N. Klimochkin, *J. Org. Chem.*, 2018, **83**, 4775–4785.
- 11 S. N. Pieniazek and K. N. Houk, *Angew. Chem. Int. Ed.*, 2006, **45**, 1442–1445.
- 12 N. K. Devaraj, R. Weissleder and S. A. Hilderbrand, *Bioconjug. Chem.*, 2008, **19**, 2297–2299.
- 13 F. Liu, Y. Liang and K. N. Houk, J. Am. Chem. Soc, 2014, **136**, 11483–11493.
- 14 MacroModel, Schrödinger, *Schrödinger Release 2018-2*, LLC, New York, 2018.
- 15 F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, *J. Comput. Chem.*, 1990, **11**, 440–467.
- 16 K. Roos, C. Wu, W. Damm, M. Reboul, J. M. Stevenson, C. Lu, M. K. Dahlgren, S. Mondal, W. Chen, L. Wang, R. Abel, R. A. Friesner and E. D. Harder, *J. Chem. Theory. Comput.*, 2019, 15, 1863–1874.
- 17 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, **107**, 3902–3909.
- 18 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221–264.
- 19 J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615.
- 20 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, J. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, J. C. A. Rendell, S. Burant, S. Iyengar, J.

Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. v. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford, CT, 2016.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, J. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, J. C. A. Rendell, S. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. v. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 16, Revision C.01*, Gaussian, Inc., Wallingford, CT, 2016.
- 23 S. Kozuch and J. M. L. Martin, *Phys. Chem. Chem. Phys.*, 2011, **13**, 20104–20107.
- 24 G. Luchini, J. v Alegre-Requena, I. Funes-Ardoiz and R. S. Paton, *F1000Research*, 2020, **9**, 291.
- 25 D. Margetic and R. N. Warrener, *Croat. Chem. Acta*, 2003, **76**, 357–363.
- 26 C. Cativiela, V. Dillet, J. I. García, J. A. Mayoral, M. F. Ruiz-López and L. Salvatella, *J. Mol. Struct.* (*Theochem*), 1995, **331**, 37–50.
- 27 B. S. Jursic and Z. Zdravkovski, *Tetrahedron*, 1994, **50**, 10379–10390.
- 28 T. H. Musslimani and H. Mettee, J. Mol. Struct. (Theochem), 2004, 672, 35–43.
- 29 J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173–1213.
- 30 J. J. P. Stewart, J. Mol. Model., 2013, **19**, 1–32.
- 31 N. Mardirossian and M. Head-Gordon, *Mol. Phys.*, 2017, **115**, 2315–2372.
- 32 L. Goerigk and S. Grimme, *WIREs Comput. Mol. Sci.*, 2014, **4**, 576–600.
- 33 E. H. E. Farrar and M. N. Grayson, *Chem. Sci.*, 2022, **13**, 7594–7603.
- 34 C. Legault, *CYLview20*, Université de Sherbrooke, 2020.
- 35 N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comput. Chem., 2008, **29**, 839–845.
- 36 R. M. LoPachin, T. Gavin, A. DeCaprio and D. S. Barber, *Chem. Res. Toxicol.*, 2012, **25**, 239–251.
- 37 S. Mitternacht, S. J. Hubbard and Y. Zhou, *F1000Research*, **5**, 189.
- 38 G. Luchini and R. Paton, *DBSTEP: 1.2-alpha Release*, 2021.
- 39 N. M. O'Boyle, C. Morley and G. R. Hutchison, *Chem. Cent. J.*, 2008, 2.
- F. Pedregosa, V. Michel, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, J. Vanderplas, D.
 Cournapeau, F. Pedregosa, G. Varoquaux, A. Gramfort, B. Thirion, O. Grisel, V. Dubourg, A.
 Passos, M. Brucher, M. Perrot and É. Duchesnay, *J. Mach. Learn. Res.*, 2011, 12, 2825–2830.

- 41 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu and Xiaoqiang Zheng, *TensorFlow: Large-scale machine learning on heterogeneous systems*, 2015.
- 42 L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, *J. Mach. Learn. Res.*, 2018, **18**, 1–52.
- 43 A. E. Hoerl and R. W. Kennard, *Technometrics*, 1970, **12**, 55.
- 44 V. Vovk, *Empirical Inference*, Springer Berlin Heidelberg, 2013.
- 45 C. Cortes, V. Vapnik and L. Saitta, *Mach. Learn.*, 1995, **20**, 273–297.
- 46 T. Stuyver, K. Jorner and C. W. Coley, *Sci. Data.*, 2023, **10**, 1–14.
- 47 D. L. Theobald, *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 2005, **61**, 478–480.
- 48 R. Meli and P. C. Biggin, J. Cheminform., 2020, **12**, 1–7.