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SUPPLEMENTARY INFORMATION

Validation corpus of papers

Validation data was gathered from the NIST database of emerging adsorbents in August 2022 using 
the search terms listed in Table S1. From this database, 69 isotherms were manually downloaded 
from 37 journal articles. 43 synthesis paragraphs were identified manually from the journal articles 
(as detailed in Table S2), from which synthesis sequences and bills of materials were extracted by 
the author for validation against the text mining used. In this supplementary information file, we 
provide in-depth analysis of the method’s performance, and all data and code used to create these 
validation analyses are provided in the GitHub repository accompanying this publication for the 
interested reader to perform their own analyses.

Table S1 – search terms for the NIST ISODB

Field Term
Adsorbent material ZIF-8
Adsorbate gas Nitrogen
Measurement Experimental
Temperature (K) 77

Table S2 – details of each synthesis paragraph extracted as validation data, alongside: the paragraph index as identified by 
ChemDataExtractor; the paragraph’s first 4 words which can be used as unique search strings; and the paragraph’s unique 

identifier used within the Synthetic Oracle software (and elsewhere within this supplementary information document).

Paper DOI Paragraph 
indexa

Paragraph starts with… Sequence identifier

10.1080/00958972.20
13.797966

16 “The reagents employed 
were…”

009589722013797966.16

6 “Synthesis of ZIF-8 was…” Aic13970.610.1002/Aic.13970
7 “To further remove the…” Aic13970.7

10.1002/Aic.14525 0a “In a typical synthesis…” Aic14525.0
10.1016/j.powtec.201
3.09.013

44 “ZIF-8 was obtained by…” Jpowtec201309013.44

10.1002/anie.2011043
83

0 “ZIF-8 nanoparticles were 
synthesized…”

anie201104383.0

10.1039/C1ce05780d 0 “Controllable synthesis of 
ZIF-8…”

c1ce05780d.0

10.1039/C2cc34893d 0 “ZIF-8 crystals: ZIF-8 
crystals…”

c2cc34893d.0

10.1039/C2jm15685g 24 “ZIF-8 nanoparticles were 
prepared…”

c2jm15685g.24

10.1039/C3ta11483j 23 “In a typical synthesis…” c3ta11483j.23
10.1039/C4ee01009d 0 “The ZIF-8 sample was…” c4ee01009d.0
10.1039/c5ra01183c 11 “Pure ZIF-8 was prepared…” c5ra01183c.11
10.1002/chem.201301
461

32 “Preparation of ZIF-8 
nanocrystals…”

chem201301461.32
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10.1021/cm3006953 27 “A solution of 20…” cm3006953.27
10.1016/j.electacta.20
14.11.093

30 “ZIF8 crystals were 
synthetized…”

jelectacta201411093.30

10.1016/j.ijhydene.20
15.10.038

40 “ZIF-8 was synthesized 
according…”

jijhydene201510038.40

10.1016/j.memsci.201
4.11.038

43 “ZIF-8 nanoparticles were 
prepared…”

jmemsci201411038.43

55 “The ZIF-8 nanocrystals 
were…”

jmemsci201505015.5510.1016/j.memsci.201
5.05.015

56b “The ZIF-8 nanocrystals 
were…”

jmemsci201505015.56

10.1016/j.micromeso.
2012.03.052

34 “ZIF-8 nanoparticles were 
synthesized…”

jmicromeso201203052.34

32 “As a standard synthesis…” jmicromeso201211012.3210.1016/j.micromeso.
2012.11.012 33 “The substrate mixture 

was…”
jmicromeso201211012.33

25 “All the reagents and…” jp407792a.2510.1021/Jp407792a
26 “Nanoscale ZIF-8 was 

prepared…”
jp407792a.26

1 “10 nm ZIF-8 sample…” jp5081466.1
2 “18 nm ZIF-8 sample…” jp5081466.2
3 “52 nm ZIF-8 sample…” jp5081466.3
4 “92 nm ZIF-8 sample…” jp5081466.4
5 “540 nm ZIF-8 sample…” jp5081466.5
6 “1 µm ZIF-8 sample…” jp5081466.6
7 “3.4 µm ZIF-8 sample…” jp5081466.7
8 “7.6 µm ZIF-8 sample…” jp5081466.8
9 “15.8 µm ZIF-8 sample…” jp5081466.9

10.1021/Jp5081466

10 “324 µm ZIF-8 sample…” jp5081466.10
10.1016/j.jssc.2014.06
.017

48 “The preparation of pure…” jssc201406017.48

10.1016/j.ultsonch.20
17.04.030

47 “Zeolitic imidazole 
framework-8 was…”

jultsonch201704030.47

1 “The 26 nm ZIF-8…” jz300855a.1
2 “The 7.9 µm ZIF-8…” jz300855a.2

10.1021/Jz300855a

3 “The 162 µm ZIF-8…” jz300855a.3
10.1021/La401471g 31 “For a typical ZIF-8…” la401471g.31
10.1007/s10450-012-
9407-1

18 “First, a solid mixture…” s10450-012-9407-1.18

10.1007/s12274-014-
0501-4

0 “Synthesis of ZIF-8: A…” s12274-014-0501-4.0

10.1016/s1872-
2067(14)60292-8

30 “ZIF-8 samples were 
synthesized…”

s1872-2067(14)60292-8.30

a) a paragraph index of 0 indicates the synthesis methodology section was contained within a 
supplementary information file

b) Multiple synthesis descriptions were manually split into two separate paragraphs for the 
purposes of validation



Cross-validation against GPT-powered grammar parsing

Since the publication of ChemicalTagger in 2011,1 significant advancements have been made in the 
field of named entity recognition and grammar parsing as has been recently reviewed in 
supplementary reference 2. More recently, large language models (LLMs) powered by transformer-
based machine learning architectures e.g. BERT3,4 and GPT5,6 represent an exciting new development 
in the field of natural language programming. Accordingly, to test the quality of ChemicalTagger-
based sequence extraction versus LLM-based sequence extraction, we developed a 5-step series of 
prompts using ChatGPT model gpt-3.5-turbo (release 0613) to perform equivalent pre-processing to 
ChemicalTagger. These stages are described in Table S3.

Table S3 - ChatGPT prompts used for cross-validation against ChemicalTagger

Stage System message Input message
1 "Extract the synthesis actions from the following text into a 

JSON object with the keys 'Action type' and 'Text'. \n"
Full synthesis 
paragraph

2 Classify the chemical synthesis action provided as either 'Add', 
'Apparatus action', 'Concentrate', 'Cool', 'Degas', 'Dissolve', 
'Dry', 'Extract', 'Filter', 'Heat', 'Partition', 'Precipitate', 'Purify', 
'Quench', 'Recover', 'Remove', 'Stir', 'Synthesize', 'Wait', 'Wash', 
or 'Yield'. Return the class name only, or 'invalid' if no class 
could be found. \n

Identified synthesis 
actions from stage 1

3 Identify the chemicals and solvents in the following statement 
and their quantities delimited by quotes. Return as a python list 
of json objects with the keys 'name' and 'quantity'. If any 
information is not provided or you are unsure, use 'N/A’. \n

Identified synthesis text 
from stage 1

4 Does the following statement mention a specific amount of 
time? If so, reply with the time mentioned as a python string, or 
a list of python strings if multiple times are mentioned. If no 
time values are mentioned or you are unsure, return an empty 
list. \n

Identified synthesis text 
from stage 1

5 Does the following statement mention a specific amount of 
temperature? If so, reply with the temperature mentioned as a 
python string, or a list of python strings if multiple 
temperatures are mentioned. If no temperature values are 
mentioned or you are unsure, return an empty list. \n"

Identified synthesis text 
from stage 1

Further details on validation of synthesis action parsing

The first action to be taken to break down a synthesis paragraph to its constituent actions is 
segmentation into individual phrases representing specific actions taken.2 Accordingly, the length of 
each sequence extracted is dependent on the method used. Once segmented, the phrases must be 
categorised according to which action is being taken. To maintain consistency between each 
validation method using in this study, we defaulted to the list of actions defined by Hawizy et al.1 
This led to three ways that sequences could be compared – their length, the set of actions identified 
therein, and the specific sequence of actions identified. It should be noted that during manual 
labelling, repeated actions e.g. when a sample was “washed three times” were only counted once to 
ensure that the text mining algorithms were not being penalised for their inability to account for 
such implicit actions.



Sequence length

From manual processing each synthesis contained 5.5 ± 1.0 actions, contrasting with 7.7 ± 3.2 
actions identified with either ChemicalTagger or ChatGPT. As can be seen in Figure S1A, manually 
segmented paragraphs were shorter on average than either automatic parsing method. As described 
in the main text, sequence actions were mapped to the labels “addition,” “reaction,” “extraction” 
and “other,” reducing the overall length of each sequence. Once condensed, the sequence length 
was reduced to 2.8 ± 0.6 actions for manually-parsed sequences, 3.2 ± 1.3 actions for sequences 
parsed with ChemicalTagger, and 3.1 ± 1.2 actions for sequences parsed with ChatGPT (Figure S1B). 

   

Figure S1 – Histograms of synthesis actions identified from each parsing method. (A) raw sequence actions and (B) 
condensed sequence actions

Actions identified

To more precisely compare the number of actions between each parsing methods, the specific 
frequency of action terms was compared against manual parsing to provide information about each 
text mining system’s precision, recall and F1-score (as defined in the main text). Furthermore, 
actions identified with ChemicalTagger and ChatGPT were cross-validated against one another, 
providing insight into the consistency of the text mining software and juxtaposition against the 
manual identification. 

From this analysis, both ChatGPT and ChemicalTagger performed almost equivalently when 
compared against manually-identified synthesis actions (Table S4, Figure S2). Both precision and 
recall showed F1-scores of approximated 65%, which jumped to ca. 85% when the two text-mining 
algorithms were compared against one another. This step change when changing from manual 
validation indicates that while the text mining methods were able to consistently categorise 
synthesis actions, manual categorisation is highly user-subjective and therefore has a low level or 
reliability; for example, introduction of reagents at the start of the reaction could reasonably be 
assigned the “add” or “dissolve” action categories due to their semantic similarities.

A final analysis performed was the Levenshtein sequence similarity test,7 which identifies the 
number of modifications required to convert sequence A to sequence B. Here, the discrepancy 
between manual validation and cross-validation is starker – with sequence similarity increasing from 
55% to 98% - supporting the idea that manually-labelled synthesis actions were too subjective to 
reliably match the text-mined data. 

Table S4 – Average text mining parsing metrics for action identification. Error bars are one standard deviation around the 
mean (n=43)

Validation Precision Recall F1 (%) Levenshtein 



method (%) (%) similarity (%)
ChemicalTagger 59 ± 19 77 ± 20 66 ± 19 55 ± 19
ChatGPT 58 ± 20 76 ± 21 65 ± 20 54 ± 19
Cross-validation 100 ± 3 99 ± 8 99 ± 5 98 ± 8

     

  

Figure S2 – Histograms of text mining performance metrics for raw synthesis sequences. (A) Precision, (B) recall, (C) F1-
score, and (D) Levenshtein similarity

To reduce this subjectivity, we repeated this analysis on the sequence of condensed actions, where 
the number of categories was reduced to “addition,” “reaction,” “extraction,” and “other,” and 
neighbouring actions of the same type were condensed together (Table S5, Figure S3). Here, each of 
the text mining techniques significantly improved compared against manual parsing while remaining 
approximately equivalent when comparing ChemicalTagger against ChatGPT. From this, we conclude 
that the use of reduced synthesis action categories is significantly more reliable than the 15 
categories proposed by Hawizy et al.1 and therefore the use of a reduced synthesis action vocabulary 
like that proposed in supplementary reference 8 will significantly improve synthesis text mining in 
future studies.

Table S5 – Average text mining parsing metrics for condensed synthesis action identification. Error bars are one standard 
deviation around the mean (n=43)

Validation 
method

Precision 
(%)

Recall 
(%)

F1 (%) Levenshtein 
similarity (%)

ChemicalTagger 83 ± 22 89 ± 16 84 ± 16 75 ± 24
ChatGPT 84 ± 21 89 ± 17 84 ± 17 76 ± 22



Cross-validation 100 ± 0 97 ± 10 98 ± 6 97 ± 10

     

   

Figure S3 – Histograms of text mining performance metrics for condensed synthesis sequences. (A) Precision, (B) recall, (C) 
F1-score, and (D) Levenshtein similarity

Further details on chemical identification and quantity matching

Once sequences had been segmented into specific phrases, the next step to be taken was the 
identification of chemicals and their associated quantities in each phrase. In the ChemicalTagger 
software, chemicals are identified using the OSCAR4 named entity recognition algorithm9 which 
combines regular expression matching, ontological parsing, and feature-matching  to identify 
chemicals. Conversely ChatGPT used no such rule-based entity recognition, simply identifying 
chemical-like tokens through its general language parsing structure. This meant that a large number 
of tokens were falsely flagged by ChatGPT as chemical entities e.g. “100 mL autoclave” or 
“filtration”. Once tokens were identified, their structures were cross-referenced against the 
PubChem database of chemical entities and a manually-compiled hash table. This had the benefit of 
discarding the obviously incorrect chemical entities recognised by ChatGPT. As with synthesis 
actions, parsing quality was judged by comparing against manual chemical identification after cross-
referencing (Figure S4, Table S6). This led to significantly better parsing accuracy for both text mining 
techniques when compared against action categorisation and approximately identical performance 
between the algorithms, indicating that large language models are equally adept at identifying 
chemicals chem compared against dedicated algorithms.



 

Figure S4 - Histograms of text mining performance metrics for chemical identification. (A) Precision, (B) recall, (C) F1-score

Table S6 – Average text mining parsing metrics for chemical entity identification. Error bars are one standard deviation 
around the mean (n=43)

Validation 
method

Precision 
(%)

Recall 
(%)

F1 (%)

ChemicalTagger 81 ± 23 94 ± 18 85 ± 20
ChatGPT 86 ± 20 92 ± 21 87 ± 18

Alongside identificaiton of the chemicals, associated quantities such as the chemical’s mass or 
volume must be connected to the chemical structure. In ChemicalTagger this is performed by 
sentence grammar parsing algorithms, where chemical names and quantities are stored within 
individual “Molecule” XML tags. Conversely, these actions are performed implicitly with ChatGPT. 
However, when quantity identification was compared between methods, the text mining 
performance was approximately equivalent in all cases (Figure S5, Table S7). Therefore, despite the 
preponderance of false positive chemical names identified with ChatGPT, the parsing quality is 
approximately equivalent.



 

Figure S5 - Histograms of text mining performance metrics chemical quantity matching for those chemicals which were 
correctly identified. (A) Precision, (B) recall, (C) F1--score

Table S7 – Average text mining parsing metrics for chemical quantity identification. Error bars are one standard deviation 
around the mean (n=43)

Validation 
method

Precision 
(%)

Recall 
(%)

F1 (%)

ChemicalTagger 81 ± 23 94 ± 18 85 ± 20
ChatGPT 86 ± 20 92 ± 21 87 ± 18

Further details on time and temperature parsing

The final synthesis aspects considered in this study were times and temperatures associated with 
specific synthesis steps. These quantities were identified in much the same way as chemical names 
and amounts – named entity recognition in the case of ChemicalTagger and general language 
parsing in the case of ChatGPT. In both cases, parsing quality was very high (Table S8, Table S9), with 
the majority of synthesis protocols being parsed in with perfect fidelity (Figure S6, Figure S7). 



  

Figure S6 - Histograms of text mining performance metrics for time quantity identification. (A) Precision, (B) recall, (C) F1-
score

Table S8 – Average text mining parsing metrics for time quantity identification. Value agreement is the number of syntheses 
where the total time agreed between manual and text-mined values. Error bars are one standard deviation around the 

mean (n=43)

Validation 
method

Precision 
(%)

Recall 
(%)

F1 (%) Value 
agreement 
(%)

ChemicalTagger 72 ± 43 74 ± 43 72 ± 42 69
ChatGPT 72 ± 43 74 ± 43 72 ± 42 69



 

Figure S7 - Histograms of text mining performance metrics for temperature quantity identification. (A) Precision, (B) recall, 
(C) F1-score

Table S9 – Average text mining parsing metrics for temperature quantity identification. Value agreement is the number of 
syntheses with temperature values identified between text mining and manual parsing. Error bars are one standard 

deviation around the mean (n=43)

Validation 
method

Precision 
(%)

Recall 
(%)

F1 (%) Value 
agreement 
(%)

ChemicalTagger 76 ± 34 83 ± 32 77 ± 31 74
ChatGPT 76 ± 34 83 ± 32 77 ± 31 74
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