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Figure S1: Evolution of the MSE as a function of the number of epochs. Data points are obtained from
five-times-repeated five-fold cross-validation simulations on the full training set.
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Figure S2: Spectra (upper ) and G2 wACSF (lower ) as a function of spectral shift. Black: Original
spectrum, Dark Grey: 1.0 eV shift, Grey: 2.0 eV shift. The six-letter codes are the Cambridge Structural
Database identifiers upon which the original spectra are based.
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Figure S3: Spectra (upper ) and G2 wACSF (lower ) as a function of spectral broadening. Black: Original
spectrum, Dark Grey: 0.5 eV additional Gaussian Broadening, Grey: 1.0 eV additional Gaussian Broad-
ening and Light Grey: 3.0 eV additional Gaussian Broadening. The six-letter codes are the Cambridge
Structural Database identifiers upon which the original spectra are based.
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Figure S4: Example G2 wACSF predicted from the held-out data set using the optimised network. The
grey lines are the predicted structures with light grey regions showing ±2σ calculated from the bootstrap
resampling. The black traces show the true target G2 wACSF. The upper two panels show predictions
from the 0th-10th percentiles, i.e. the best performers when held-out set is ranked by MSE. The centre
two panels show predictions from the 45th-55th percentiles, i.e. around the median. The bottom two
panels show K-edge XANES spectra from the 90th-100th percentiles,i.e. the lowest performance. The
six-character labels in the lower right of each panel are the Cambridge Structural Database (CSD) codes
for the samples.
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Figure S5: G2 wACSF predicted from experimental spectra. The source of the experimental spectra
is given in Table S1. The grey lines are the predicted structures with light grey regions showing ±2σ
calculated from the bootstrap resampling. The black traces show the expected G2 wACSF from experi-
mentally reported structures, as discussed in the main text
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Figure S6: G2 wACSF predicted from experimental spectra. The source of the experimental spectra
is given in Table S1. The grey lines are the predicted structures with light grey regions showing ±2σ
calculated from the bootstrap resampling. The black traces show the expected G2 wACSF from experi-
mentally reported structures, as discussed in the main text.
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Figure S7: G2 wACSF predicted from experimental spectra. The source of the experimental spectra
is given in Table S1. The grey lines are the predicted structures with light grey regions showing ±2σ
calculated from the bootstrap resampling. The black traces show the expected G2 wACSF from experi-
mentally reported structures, as discussed in the main text
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