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Materials and methods 

Protein sequence data preparation and embedding using protein language models 

A dataset comprising 163 KSβ sequences with known chemical structures was retrieved from the 

NCBI database. These sequences were designated as ‘labeled’. In contrast, KSβ sequences without 

corresponding chemical structures were classified as ‘unlabeled’. To further curate the unlabeled KSβ, 

the 163 labeled KSα and KSβ sequences were used to obtain 20 kb putative T2PK minimum BGCs 

following the in-house pipeline described by Chen et al.1. For the criterion of a reliable T2PK gene 

cluster, KSα and KSβ sequences should be identified in the same contig. This process yielded 2566 KSβ 

sequences without corresponding chemical structures. Additionally, the non-KSβ sequences from 

actinobacteria were obtained from UniRef50, with a focus on sequences between 300 and 500 amino 

acids in length. To eliminate irrelevant entries, we excluded any sequence matching the keywords ‘beta 

ketoacyl synthase’ or ‘chain length factor’. Taken together, our dataset consisted of 2729 (163 + 2566) 

KSβ sequences and 761,302 non-KSβ sequences, which were subjected to subsequent analysis. All 

sequences were confirmed to non-redundant using CD-HIT with 100% identity threshold.  

As protein sequences should be represented with numerical vectors before being input to the 

classification algorithm, we employed five general protein language models (PLMs) to embed the 

amino acids of each sequence, resulting in a representation vector obtained by averaging the 

embeddings across the entire sequence. We also aimed to investigate which PLMs produced high-

quality learned representations for distinguishing functions, as well as whether these representations 

were associated with the given labels. To achieve this, we used the UMAP dimension-reduction 

algorithm to visualize the high-dimensional embeddings. Our results demonstrated that the ESM-2 

model, with 3 billion parameters, outperformed the other models in terms of learned representation 

quality. This finding suggests that ESM-2 may be particularly useful for protein sequence classification 

tasks. 

Binary KSβ classifier development 

To construct a robust binary classification model, we utilized an 80/10/10 split of the KSβ and non-

KSβ datasets to produce a training, validation and test set, respectively. We trained four classifiers, 

namely, random forest, XGBoost, support vector machine (SVM) using the scikit-learn Python module 

(version 1.2) and multilayer perceptron (MLP) using the PyTorch module (version 2.0). The selected 

hyperparameters for each classifier are documented in Table S8. For the MLP classifier, a dropout 

layer with a value of 0.5 was incorporated into the network, and a focal loss function was utilized to 

handle the highly imbalanced positive and negative datasets. To evaluate the performance of the 



models, a 5-fold cross-validation technique was implemented, and the accuracy value of each fold was 

averaged. Due to the imbalanced nature of the two datasets, only accuracy, confusion matrix, and F1 

score were employed as evaluation metrics for the final model performance. The scikit-learn Python 

module was used to compute all these metrics. 

Relabeling 163 KSβ protein sequences 

Initially, 163 KSβ sequences were categorized into 5 classes based on the number of building blocks 

for the main carbon skeleton. Next, we developed a pipeline for tuning hyperparameters in clustering 

using HDBSCAN2 and UMAP3 to refine and expand the predefined 5 classes labels. Our pipeline was 

guided by the chatintents python packages (https://github.com/dborrelli/chat-intents), but we replaced 

unsupervised UMAP with supervised UMAP. This pipeline comprised four major functions: 

generate_clusters, score_clusters, objective and bayesian_search. Briefly, the main function 

bayesian_search takes in a dataset, hyperparameter space and other parameters. It deploys the ‘trials’ 

object within the bayesian_search function to monitor the results of each evaluation of the objective 

function. The objective function, on the other hand, receives hyperparameters from the space, applies 

the generate_clusters function to create a clustering object, and computes the number of clusters and 

a cost metric via the score_clusters function. It also imposes a penalty on the cost if the number of 

clusters falls outside the desired range. The Bayesian optimization process is conducted using the fmin 

function from the hyperopt package, with the tpe.suggest algorithm eventually yielding the optimal 

hyperparameters found, the resulting clustering object, and the trials object for further scrutiny. The 

hyperparameter space encompasses diverse parameters, including n_neighbors and min_dist of UMAP 

and cluster_selection_epsilon of HDBSCAN. The detailed range of hyperparameter spaces is 

supplemented in Table S9. Overall, the pipeline was designed to optimize the creation of new local 

clusters from global clusters, utilizing supervised UMAP and HDBSCAN with the aid of label penalty 

and Bayesian optimization techniques. By following this pipeline, we are able to generate new class 

labels based on the previous class labels while simultaneously improving their consistency with the 

protein structure information that is embedded in the data. 

T2PK classifier architecture and training in different label types 

In the present investigation, a total of 163 KSβ sequences, each with known chemical structures, 

were assigned five manually annotated and nine autogenerated class labels. Owing to the significant 

imbalance in the labeled dataset, the dataset was only divided into training and test sets following an 

80/20 ratio. Notably, random partitioning of data is typically avoided in biological sequence modeling 

due to its tendency to yield an overly simplistic evaluation of generalization. Thus, sticking to the 



80/20 ratio, we conducted manual partitioning of the dataset. Detailed information is provided in Table 

S4. To assess the quality of the assigned labels and to determine the most suitable multiclass 

classification algorithm, four multiclass classifiers were trained using the scikit-learn and Pytorch 

modules. Hyperparameter optimization was performed using grid searches, and model performance 

was assessed by the metrics mentioned above. 

To enhance the robustness of the initial MLP classifier, we employed a consistency regularization-

based semisupervised framework, as proposed by Laine et al4. The loss function comprised two distinct 

components: the standard cross-entropy loss, which exclusively evaluated the labeled inputs, and a 

second component that evaluated all inputs (both labeled and unlabeled). This second component 

penalized divergent predictions for the same training input, measured by the mean square difference 

between the prediction vectors and perturbed vectors. To augment the unlabeled data, Gaussian noise 

was added to the embeddings by specifying a standard deviation for the Gaussian distribution. The 

optimal amount of noise was determined based on its effect on the training accuracy. The resulting 

neural network classifier was then trained using a weighted total loss function, consisting of both the 

consistency loss and the standard cross-entropy loss. The detailed hyperparameter spaces mentioned 

above have been summarized in Table S8. 

Detection of T2PKs with potentially new skeletons 

Softmax-based classifiers are known to generate overconfident posterior distributions when 

presented with out-of-distribution detection (ODD) data. To address this issue, a generative classifier, 

specifically Gaussian discriminant analysis, and a Mahalanobis distance-based framework were 

utilized to obtain confidence scores, as described by Lee et al5. To evaluate the performance of this 

approach, 163 KSα sequences were designated ODD data, and 163 KSβ sequences were designated in-

distribution (ID) data. The feature vector for each layer was extracted from the neural network, and a 

generative classifier was applied to obtain the mean and covariance matrix for each class. The 

Mahalanobis distance-based scores were then calculated between a test sample and the closest class 

Gaussian to obtain confidence scores for both datasets. To identify the feature layer that was most 

suitable for distinguishing between ID and ODD data, all layers were evaluated using a one-class SVM 

on both datasets. The layer that exhibited the best performance on both datasets was selected. The 

isolation forest, a general abnormal data detection algorithm, was then used to detect novelty data from 

an unlabeled dataset. The protein structure of the detected KSβ novelty data was predicted using 

ESMFold6 in silico, and the difference in protein structures was determined using the root-mean-square 

deviation. 



General microbiology and chemistry experiments 

Total DNA of five Streptomyces strains was used for experimental confirmation, and their genomes 

were extracted using a custom genomic extraction protocol. The genomes were sequenced using a one-

dimensional MinION flow cell with an r9.4.1 flow cell from Oxford Nanopore Technologies, UK, and 

base-calling was performed with Guppy v6.2.1. Additionally, some DNA samples were sequenced 

using MiSeq sequencing from Illumina, CA, USA. Quality control of the long reads (LRs) and short 

reads (SRs) was conducted using fastqc v0.11.67, with quality control performed using different 

software suites: Porechop v0.2.48 and Filtlong v0.2.0 (https://github.com/rrwick/Filtlong) for LRs and 

FASTX-Toolkit for SRs. A hybrid assembly using Unicycler v0.5.09 was then performed by 

combining LRs and SRs. For samples with LRs only, the assembly was carried out using canu 2.110 

and polished with racon 1.011. The protein sequences of all genomes were predicted using prokka 

v1.14.612. The BGCs of the six genomes were predicted using DeepBGC13 and antiSMASH14. The 

performance of DeepT2, DeepBGC and antiSMASH in predicting T2PKs was compared. 

Unless stated otherwise, all chemicals were supplied by Macklin. All solvents were of HPLC grade 

or equivalent. Actinomycetes were cultivated at 30 °C on ISP2 agar. Crude metabolites were extracted 

by ethyl acetate. Samples were analyzed by LCMS/MS on an Agilent G6500 UHPLC system attached 

to a quadrupole time-of-flight (Q-ToF) mass spectrometer. The spray chamber conditions were as 

follows: nebulizer, 5 L/min; drying gas, 200; sheath gas temperature, 350 °C; sheath gas flow, 11 

L/min; and drying gas on, 5 L/min. The instrument was calibrated using an API-TOF Reference Mass 

Solution Kit according to the manufacturer’s instructions. The following analytical LCMS method was 

used throughout this study: Phenomenex Kinetex C18 column (100 × 2.1 mm, 100 Å); mobile phase 

A: water + 0.1% formic acid; mobile phase B: acetonitrile + 0.1% formic acid. Elution gradient: 0-1 

min, 20% B; 1-12 min, 20%-100% B; 12-14 min, 100% B; 14-14.1 min, 100%-20% B; 14.1-17 min, 

20% B; flow rate: 0.3 mL/min; injection volume: 10 µL. HPLC was performed on an Agilent 1290 

system, and the following method was used throughout this study: Phenomenex Kinetex C18 column 

(100 × 2.1 mm, 100 Å); mobile phase A: water + 0.1% formic acid; mobile phase B: acetonitrile + 0.1% 

formic acid. Elution gradient: 0-1 min, 20% B; 1-12 min, 20%-100% B; 12-14 min, 100% B; 14-14.1 

min, 100%-20% B; 14.1-17 min, 20% B; flow rate: 0.3 mL/min; injection volume: 10 µL. UV: 250 

and 415 nm. 

Molecular networking description 

A molecular network was created using the online workflow on the GNPS website 

(http://gnps.ucsd.edu)15. The data were filtered by removing all MS/MS fragment ions within +/- 17 

http://gnps.ucsd.edu/


Da of the precursor m/z. MS/MS spectra were window filtered by choosing only the top 6 fragment 

ions in the +/- 50 Da window throughout the spectrum. The precursor ion mass tolerance was set to 1 

Da with an MS/MS fragment ion tolerance of 0.5 Da. A network was then created where edges were 

filtered to have a cosine score above 0.2 and more than 2 matched peaks. Furthermore, edges between 

two nodes were kept in the network if and only if each of the nodes appeared in each other's respective 

top 10 most similar nodes. Finally, the maximum size of a molecular family was set to 100, and the 

lowest scoring edges were removed from molecular families until the molecular family size was below 

this threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figures 

 

Figure S1. Dimensional-reduction representations of KSβ and non- KSβ embeddings are encoded in five 

general protein language models. KSβ: 2,729; non- KSβ: Random selection of 36,089 from 761,302. 

  



 

Figure S2. Dimensional-reduction representations of 163 KSβ embeddings with two types of class label 

are encoded in five general protein language models. Panel A: Five class labels according to the building 
block number of their corresponding to T2PK main skeleton, namely, 8, 9, 10, 12 and 13; Panel B: Nine class 

labels derived from five class labels using constrained optimization approach. These dimensional-reduction 

representations were generated through an unsupervised UMAP algorithm. 

  



 

 

Figure S3. Two-dimensional representations showing the process of class labeling for T2PKs. Details of 

the hyperparameters used for cluster generation are referred to Table S8. 

 

 

 

 

 

 

 



 

Figure S4. Two-dimensional representations of the features extracted from each layer of enhanced T2PK 

classifier model. The in-distribution data comprised 163 labeled KSβ, while the out-of-distribution data comprised 

163 labeled KSα. The Mahalanobis distance-based scores calculated by Gaussian discriminant analysis are plotted on 

the X-axis, while the Y-axis denotes the index of each datapoint in their dataset. 

 

 



 

Figure S5. Heatmap representation showing the root mean square deviation (RMSD) of the predicted 

protein structure between 13 novel KSβ in cluster 1 and 163 labeled KSβ. Detailed values are referred to 

Table S5. 

 

 

 

 

 

 



 

 

Figure S6. Identification of T2PKs detected in this work. Liquid chromatography high-resolution mass 

spectrometry (LCHRMS) showing alnumycin (molecular formula C22H24O8, calculated [M + H]+ = 417.1544, 

observed [M + H]+ = 417.1549, Δ = 1.2 ppm), polyketomycin (molecular formula C44H48O18, calculated [M + 
H]+ = 865.2913, observed [M + H]+ = 865.2914, Δ = 1 ppm), , and lysolipin (molecular formula C29H24NO11Cl, 

calculated [M + H]+ = 598.1111, observed [M + H]+ = 598.1117, Δ = 0.12 ppm), respectively. 
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Supplementary Tables 

Note that deo to the scales Table S1-2, S4-5 are deposited as independent Excel spreadsheets. 

 

Table S3. Performance metrics of KSβ classifier trained by Random Forest, XGBoost, support vector machine 

(SVM), and multilayer perceptron (MLP). TPR: True positive rate; FPR: False positive rate. 

Model TPR (%) FPR (%) Accuracy Precision Recall F1-score 

Random Forest 98.89 1.11 1.00 1.00 0.99 0.99 

XGBoost 99.63 0.37 1.00 1.00 1.00 1.00 

SVM 100.00 0.00 1.00 1.00 1.00 1.00 

MLP 100.00 0.00 1.00 1.00 1.00 1.00 

 

Table S6. Average root-mean-square deviation (RMSD) calculation between ODD cluster 1 and IV, V, VI, VII 

classes. 

 IV V VI VII 
ODD 

cluster 1 

IV 0.24     

V 0.53 0.39    

VI 0.48 0.57 0.29   

VII 0.45 0.57 0.58 0.30  

ODD 

cluster 1 
0.51 0.59 0.62 0.58 0.20 

 



Table S7. Performance comparison on predicting T2PKs using DeepT2, DeepBGC and antiSMASH. 

Strain name Genome  

Size (bp) 

DeepBGC Antismash Our model 

(DeepT2) 

Counts T2PK name Counts Class T2PK name Euclidean distance 

S. sp. PS14 6848633 polyketide 2 

Spore pigment 

2 

VIII 

Cur 0.87 

Sch 0.88 

Formicamycin 0.92 

Lysolipin IX 

Lysolipin 0.45 

Anthrabenzoxocinone 0.61 

+ABXA-BE-24566B 0.62 

S. sp. WY13 10713003 polyketide 3 

Polyketomycin 

3 

VI 

Dutomycin 0.33 

LL-D49194α1-Ile 0.42 

Polyketomycin 0.45 

Gaudimycin VII 

Gaudimycin 0.68 

LandomycinE 0.69 
Landomycin 0.71 

Spore pigment VIII 

Collinone 0.69 

Cur 0.82 

Sch 1.07 

S. sp. WY86 11617619 polyketide 1 Alnumycin 1 I 

Frenolicin-Bu 0.41 

Alnumycin-Bu 0.58 

Granaticin 0.60 

S. kanamyceticus 

4.1441 
10265719 polyketide 3 

Aurachin 

3 

I 

Isoindolinomycin-Gly 0.34 

R1128-Leu 0.56 

Fogacin 0.57 

cinerubin B VI 

Keyicin 0.25 

Chrysomycin-Pr 0.42 

Gilvocarcin-Pr 0.44 

Formicamycin VIII 
Accramycin (fasamycin) 0.61 
Formicamycin 0.75 

Sch 1.40 

S. sp. WY170 8864212 polyketide 1 Spore pigment 1 VIII 

ZHMpentangular 0.80 

Cur 0.82 

WhiE 0.88 



Table S8. General information on selected hyperparameters to all classifier. 

Classifier type Model type Hyperparameters 

Binary KSβ classifier 

Random forest 

n_estimators = 150; 

max_features=’sqrt’; 

min_samples_split=4; 

min_samples_leaf=1; 

max_depth=6 

XGBoost 

learning_rate=0.1; 

max_depth=5; 

min_child_weight=1; 

subsample=0.7 

Multilayer perceptron 

num_epochs=20; 

learning_rate=0.001; 
activation=’relu’; 

solver=’adam’; 

neuron = 50; 

hidden_layer = 3 

Support vector machine 

C=10; 

gamma=1; 

kernel=’ rbf’ 

Initial T2 PK classifier 

Random forest 

n_estimators = 150; 

max_features=’log2’; 

min_samples_split=5; 

min_samples_leaf=1; 

max_depth=6 

XGBoost 

learning_rate=0.2; 

max_depth=3; 

min_child_weight=1; 
subsample=0.6 

Multilayer perceptron 

num_epochs=120; 

learning_rate=0.001; 

activation=’tanh’; 

solver=’adam’; 

neuron=200; 

hidden_layer=3; 

dropout=0.5 

train_loader_batch_size=12 

test_loader_batch_size=3 

Support vector machine 

C=10; 

gamma=1; 

kernel=’ rbf’; 

Enhanced T2 PK classifier Multilayer perceptron 

num_epochs=500; 
learning_rate=0.001; 

activation=’tanh’; 

solver=’adam’; 

neuron=200; 

hidden_layer=3; 

Gaussian_noise_mean=0 

Gaussian_noise_stddev =0.07 

train_loader_batch_size=12 

test_loader_batch_size=3 

merge_loader_batch_size=64 

Unsupervised loss weight: 
max_val=50; 

ramp_up_multi = -2 

max_epochs=300 

n_labeled = 163 

n_samples = 2729 



Table S9. General information on selected hyperparameters for each labeling process. n_neighbors, 

n_components, min_dist, random_state are the hyperparameters of UMAP; min_cluster_size, min_samples, 

cluster_selection_epsilon are the hyperparameters of HDBSCAN; max_evals is the hyperparameter of Fmin 

function from hyperopt packages. label_count is the hyperparameter of label cost function. Following 

hyperparameters were set as default along the tunning: n_components = 3; min_cluster_size = 2; min_samples 

= None; random_state = 42; max_evals = 100.  

Stage 
Range for hyperparameters bayesian 

optimization 
Optimized hyperparameters 

Initial Class label 

to Class label A 

n_neighbors = [20, 50], step = 1 n_neighbors = 46 

min_dist = [0.1, 1], step = 0.1 min_dist = 1 

cluster_selection_epsilon = [1, 2], step = 0.2 cluster_selection_epsilon = 1.6 

label_count = 3 cluster_count = 3 

Class label A to 

Class label B 

n_neighbors = [20, 46], step = 1 n_neighbors = 35 

min_dist = [0.1, 1], step = 0.1 min_dist = 0.3 

cluster_selection_epsilon = [0.8, 1.6], step = 0.2 cluster_selection_epsilon = 0.8 

label_count = 4 cluster_count = 4 

Class label B to 

Class label C 

n_neighbors = [20, 35], step = 1 n_neighbors = 20 

min_dist = [0.02, 0.3], step = 0.01 min_dist = 0.05 

cluster_selection_epsilon = [0.6, 1.4], step = 0.2 cluster_selection_epsilon = 0.8 

label_count = 5 cluster_count = 5 

Class label C to 

Class label D 

n_neighbors = [10, 20], step = 1 n_neighbors = 14 

min_dist = [0.02, 0.1], step = 0.01 min_dist = 0.02 

cluster_selection_epsilon = [0.2, 1], step = 0.2 cluster_selection_epsilon = 0.4 

label_count = 6 cluster_count = 6 

Class label D to 

Class label E 

n_neighbors = [5, 14], step = 1 n_neighbors = 12 

min_dist = [0.02, 0.1], step = 0.01 min_dist =0.02 

cluster_selection_epsilon = [0.2, 1], step = 0.2 cluster_selection_epsilon = 0.6 

label_count = 7 cluster_count = 7 

Class label E to 

Class label F 

n_neighbors = [5, 14], step = 1 n_neighbors = 9 

min_dist = [0.0, 0.05], step = 0.01 min_dist =0.03 

cluster_selection_epsilon = [0.2, 0.8], step = 0.2 cluster_selection_epsilon = 0.4 

label_count = 8 cluster_count = 8 

Class label F to  

Final Class label 

n_neighbors = [3, 15], step = 1 n_neighbors = 7 

min_dist = [0.0, 0.05], step = 0.01 min_dist = 0.0 

cluster_selection_epsilon = [0.0, 0.8], step = 0.2 cluster_selection_epsilon = 0.6 

label_count = 9 cluster_count = 9 
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