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Residual neural networks 

In this work, we used three-dimensional convolutional neural networks (Conv3d) as building 

blocks to encode the electron density in three-dimensional space and utilized a residual neural 

network (ResNet) architecture. ResNet is a type of neural network architecture that has been 

widely used in image recognition. With deeper and deeper neural networks, effective learning 

becomes more challenging due to the gradient vanishing or exploding problem,1, 2 which makes 

traditional models using convolutional neural network layers reach a limit of performance when 

the number of layers increases. In 2016, He et al.3 proposed using skip-connection that allows 

direct connection from the input layer to the output. By skipping intermediate layers, the model is 

able to learn the identity map even if there is a gradient issue within these layers. Instead of learning 

the mapping 𝐻 between input 𝑥 and target 𝑦, residual networks aim to learn the residual 𝐹: 

𝐹(𝑥) ∶= 𝐻(𝑥) − 𝑥 

In the worst case, a trivial result is learned such that 𝐹(𝑥) = 0, the mapping 𝐻 is the identity 

mapping 𝐻(𝑥) = 𝑥 . This skip-connection architecture enables the learning ability of neural 

networks that are extremely deep, which is critical for large-scale three-dimensional electron 

densities.  

Derivation of NT-Xent loss 

 
The normalized temperature-scaled cross entropy loss (NT-Xent) loss is defined as:  

𝑙!" = −log
exp	(𝑧! ∙ 𝑧"/𝜏)

∑ exp	(𝑧! ∙ 𝑧#/𝜏)$%
#&',#)!

, 

We would like to prove that when 𝑧! ∙ 𝑧" = 1 and 𝑧! ∙ 𝑧# = −1	(𝑘 ≠ 𝑗), the loss will converge to 

0.  Indeed, for 𝜏 → 0*, 𝑧! ∙ 𝑧" = 1, 𝑧! ∙ 𝑧# = −1	(𝑘 ≠ 𝑗), 
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𝑙!" = log >1 +
∑ exp(𝑧! ∙ 𝑧#/𝜏)$%
#&',#)!,"

exp@𝑧! ∙ 𝑧"/𝜏A
B = log	[1 + (2N − 2) exp F−

2
τH] → 0 

For a batch of 𝑁 molecules, each molecule has a pair of unscaled and scaled data. 𝑧$#+' and 𝑧$# 

are the corresponding projected representations of unscaled and scaled densities of the same 

molecule. Notice that the loss function is asymmetric (𝑙!" ≠ 𝑙"!). To make it symmetric, the total 

loss is chosen as: 

𝐿 =
1
2𝑁L(𝑙$#+',$# + 𝑙$#,$#+')

%

#&'

 

The loss is zero when the projected representations of different molecules are antiparallel to each 

other while that of the same molecule are parallel to each other, which ensures that dissimilar 

samples are pushed far apart from each other.  

The down-sampling of electron densities 

We implemented a down-sampling technique for the (129, 129, 129) shape of grids by applying a 

simple multi-layer perceptron (MLP) consisting of two linear layers and a ReLU activation 

function in between. The input shape is changed from (129, 129, 129) to (65, 65, 65) after applying 

the down-sampling. We compare the MAE of ResNet(16, 32, 64, 128) trained, evaluated and tested 

on these two datasets with 80%, 10%, and 10% train-evaluate-test split, with and without down-

sampling. The testing MAE of the model reduces from 0.565 eV to 0.461 eV. The result shows 

that although the model performance is restricted to the grid size, it can be partially improved by 

applying down-sampling on larger grids.  

Comparison of ResNet and DoubleConv 
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We compare the results of ResNet with feature maps (16, 32, 64, 128) and DoubleConv with 

feature maps (32, 64, 128). The models were trained, evaluated, and tested on different 

train/validate/test split. As shown in Table S1, ResNet generally performs better than DoubleConv 

in predicting the exchange energies of electron densities for the same datasets.  

 

Table S1. The MAE of ResNet and DoubleConv trained, evaluated, and tested on different splits. 

Train/validate/test split MAE on test set (eV) 

ResNet 

(16, 32, 64, 128) 

DoubleConv 

(32, 64, 128) 

Supervised learning   

40k/5k/5k 0.696 1.182 

Contrastive + transfer learning 

40k/5k/5k 0.565 1.008 

32k/5k/5k 0.652 0.997 

24k/5k/5k 0.777 1.080 

16k/5k/5k 0.996 1.263 

8k/5k/5k 1.262 1.811 

 

Effect of translational symmetry 

We investigate the impact of translational symmetry on the model performance by introducing a 

random translation for the grid-base electron densities during the supervised learning, contrastive 

learning, and transfer learning stages. As shown in Table S2, additional translational symmetry 
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generally improves the performance of contrastive and transfer learning, while make the 

performance of ResNet trained in a supervised manner slightly better. 

Table S2. The MAE of ResNet trained evaluated and tested on the dataset without and with translation. 

Train/validate/test split MAE on test set (eV) 

ResNet 

(16, 32, 64, 128) 

ResNet 

(16, 32, 64, 128)  

+ translation 

Supervised learning   

40k/5k/5k 0.696 0.711 

Contrastive + transfer learning 

40k/5k/5k 0.565 0.547 

32k/5k/5k 0.652 0.609 

24k/5k/5k 0.777 0.681 

16k/5k/5k 0.996 0.819 

8k/5k/5k 1.262 1.163 

 

Interpolatability of the model 

We investigate the interpolatability of the model trained using our proposed approach. The model 

was pre-trained by contrastive learning and fine-tuned by supervised learning using all the scaled 

data. Then another dataset (~5000 data) containing electron densities with scales randomly chosen 

from 0 to 3 was used to test the interpolatability of the trained model. As shown in Figure S1 for 

the 500 selected molecules, although those randomly chosen scales were not in the training data, 
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the model still gives reasonable predictions of exchange energies. This demonstrates the potential 

of our contrastive learning approach for the generalization to other random scales following the 

uniform scaling constraint. 

 

Figure S1. The target vs predicted exchange energies for the scaled densities of 500 molecules with 
random scales that are not present in the training set.  
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