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Supplementary Material S1: The error accumulation of DFA-NN

Figure S1: The performance of current state-of-the-art models, torchANI and ANI-2x, 

on datasets QM9 and Binding DB as labelled in the graph. The results reveal a 

significant tendency of error accumulation as the number of atoms in the molecule 

increases. 

In this section, we assessed the performance of torchANI and ANI-2x. We use the 

sample from the dataset QM9 and BindingDB, the properties are calculated through 

Gaussian 091 under PBE level functional with basis 6-31G, including K space 

properties and R space properties. In the training of our model, we convert the unit of 

Hartree to the unit of eV and reduce the atomic energy of each atom. We can see a 

significant tendency of error accumulation, especially for model torchANI applied in 

the BindingDB dataset. This observation highlights the limitations of existing models 

in accurately predicting properties or reactions for larger molecules, emphasizing the 



need for more robust and scalable approaches in the field of molecular simulations and 

predictions.

Supplementary Material S2: The Geometry-Enhanced Representation

This section illustrated the detailed description of AFA, which includes the Geometry-

Enhanced Representation2, the construction of the atom's MPS, the construction of the 

bond's MPO, and the contraction of the entire TN structure. 

In the first step, we map the molecules into the Geometry Enhanced Representation. 

This step is necessary since we expect the network to focus on each bond rather than 

their Cartesian coordinates. In the atom-bond graph , the atom  from the entire atom 𝐺 𝑢

set  is treated as the node of , while the bond  between pairs of atoms from the entire 𝑆 𝐺 𝑣

bond set  serves as the edge of . The bond-angle graph  shares a similar structure, 𝑉 𝐺 𝐷

but whose nodes are bond  from the entire bond set , and edges are bond angles  𝑣 𝑉 𝑤

from the entire bond angle set . In traditional GNN structures, the only input is the 𝑊

atom-bond graph, while the lack of a bond-angle graph possibly raises confusion since 

two molecules may have the same topology but different geometries2, 3. A typical 

example comes from the trans-1,2-dichloroethene and cis-1,2-dichloroethene, whose 

two chlorine atoms lie on different sides. Notice that here the element of the graph 

matrix can be either a float representing the bond length or a simple bool value 

representing bond formation. The reason for this treatment is the total computation cost. 

Although the reliable identification of low-energy conformers for simple small 

molecules can be achieved through high-level quantum mechanical calculations, the 

computationally demanding optimized molecule structure may be even more expensive 

than that for property prediction based on this optimized molecular structure4. 

Meanwhile, the bond information is stored in the radical TN states. Thus, the bond 

information is conserved.

Take the methanol (CH3OH) as an example, and the corresponding atom-graph matrix 

G can be:



𝐺𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = [
 𝐶 𝐻1 𝐻2 𝐻3 𝑂 𝐻4
𝐶 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒

𝐻1 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒
𝐻2 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒
𝐻3 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒
𝑂 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒

𝐻4 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒
]

#(𝑆2 ‒ 1)

In this case, we treat all bond lengths as the optimal lengths. This atom-graph matrix 

can also be:

𝐺𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = [
 𝐶 𝐻1 𝐻2 𝐻3 𝑂 𝐻4
𝐶 1𝑒6 1.096 1.096 1.096 1.427 1𝑒6

𝐻1 1.096 1𝑒6 1𝑒6 1𝑒6 1𝑒6 1𝑒6
𝐻2 1.096 1𝑒6 1𝑒6 1𝑒6 1𝑒6 1𝑒6
𝐻3 1.096 1𝑒6 1𝑒6 1𝑒6 1𝑒6 1𝑒6
𝑂 1.427 1𝑒6 1𝑒6 1𝑒6 1𝑒6 0.956

𝐻4 1𝑒6 1𝑒6 1𝑒6 1𝑒6 0.956 1𝑒6
]

#(𝑆2 ‒ 2)

Here  are atoms that connect to the carbon atom, and  is the atom 𝐻1, 𝐻2, 𝑎𝑛𝑑 𝐻3 𝐻4

that binds to the oxygen atom. The element "1e6" will automatically be transformed 

into "False" during the calculation. We set the cut-off radius as "5", and any matrix 

element larger than five will automatically be transformed into false by default. The 

bond-angle graph matrix D can be:

𝐷𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = [  𝐶 ‒ 𝑂 𝐶 ‒ 𝐻1 𝐶 ‒ 𝐻2 𝐶 ‒ 𝐻3 𝑂 ‒ 𝐻4
𝐶 ‒ 𝑂 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒

𝐶 ‒ 𝐻1 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒
𝐶 ‒ 𝐻2 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒
𝐶 ‒ 𝐻3 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒
𝑂 ‒ 𝐻4 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

]
#(𝑆2 ‒ 3)

OR 

𝐷𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = [  𝐶 ‒ 𝑂 𝐶 ‒ 𝐻1 𝐶 ‒ 𝐻2 𝐶 ‒ 𝐻3 𝑂 ‒ 𝐻4
𝐶 ‒ 𝑂 1𝑒6 108.5 108.5 108.5 107

𝐶 ‒ 𝐻1 108.5 1𝑒6 108.6 108.6 1𝑒6
𝐶 ‒ 𝐻2 108.5 108.6 1𝑒6 108.6 1𝑒6
𝐶 ‒ 𝐻3 108.5 108.6 108.6 1𝑒6 1𝑒6
𝑂 ‒ 𝐻4 107 1𝑒6 1𝑒6 1𝑒6 1𝑒6

]
#(𝑆2 ‒ 4)

Any matrix element larger than 360, including the element "1e6", will automatically be 

transformed into "False" during the calculation. The codes for generating Geometry-

Enhanced Representation can be found in ref2,



Supplementary Material S3: Details on TN states representation

We first map each atom into its corresponding TN states in this work. This mapping 

contains two steps, the self-contribution, and the nearest-contribution. The first step 

gives initial TN states for each atom, while the nearest atoms further modify these TN 

states.

First, the initial TN states for the atom  is estimated using the feature vector of 𝐴0(𝑎)

each atom , here the shape of TN states is a hyper-parameter, but it is the same for 𝑉𝑎

all atoms.

𝐴0(𝑎) = 𝑓𝑒𝑛𝑐𝑜𝑑𝑒(𝑉𝑎)

 #(𝑆3 ‒ 1)

The encoding layer is an MLP, which takes the dimensionality reduction that reduces 

the computation complexity. The feature vector contains the orbital information, the 

atomic weight, and the atomic number:

𝑉𝑎 = [𝑂𝑟𝑏𝑖𝑡𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠
𝑎𝑡𝑜𝑚𝑖𝑐 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠]

 #(𝑆3 ‒ 2)

For the orbital information, we use the orbital points (OPs) to simulate the shape of 

orbitals. Equal-distant points are selected around the centers within a given radius. We 

calculate the wave function value for these points using the hydrogen atom wave 

functions. In the database, we do not have transition metals, so we only consider the s, 

p, and d orbital. The information of the f orbital can be added similarly. Notice that here 

only the outer-most orbitals are taken into consideration. Take the carbon atom as an 

example. The outer-most orbitals are 2s and 2p, whose wavefunction is approximated 

by the hydrogen atom orbitals:

|𝑠(𝑟)⟩ = 𝜁(2 ‒
𝑟

𝑎0
)exp ( ‒

𝑟
2𝑎0

)
|𝑝(𝑟)⟩ = 𝜁

𝑟
𝑎0

𝑒𝑥𝑝( ‒
𝑟

2𝑎0
)𝑐𝑜𝑠⁡(𝜃)



 #(𝑆3 ‒ 3)

where  is the relative distance from the point to the atom centre,  is the angle between 𝑟 𝜃

the  axis and the  orbital. The parameter  is used to ensure normalization. 𝑥 𝑦 𝑧 𝑝𝑥 𝑦 ∕ 𝑧 𝜁

Here we set the value  to be a tunable variable depending on the atom type. By 𝑎0

default, this orbital information takes two s orbital, six p orbital, and ten d orbitals, but 

their values are zero if no electron occupies them.

Besides OPs that represent the orbital shape, the correlation energy is be concerned. In 

Nesbet's theorem5, the correlation energy can be written exactly as a sum of 

contributions from occupied pairs of spin orbitals (I, J),

𝐸𝑐𝑜𝑟𝑟 = ∑
𝐼𝐽

𝜖𝐼𝐽

 #(𝑆3 ‒ 4)

For closed-shell systems, this energy can be specified as:

𝜖𝑖𝑗 = 𝜖𝑖↑𝑗↑ + 𝜖𝑖↑𝑗↓ + 𝜖𝑖↓𝑗↑ + 𝜖𝑖↓𝑗↓

 #(𝑆3 ‒ 5)

However, here we are seeking to construct the map through 

𝜖𝐼𝐽 = ∑
𝐴𝐵

⟨Φ0|𝐻|Φ𝐴𝐵
𝐼𝐽 ⟩⟨Φ𝐴𝐵

𝐼𝐽 |𝜓0⟩

 #(𝑆3 ‒ 6)

where  is the HF ground state,  is the HF excited state by exciting orbital I, J |Φ0⟩ |Φ𝐴𝐵
𝐼𝐽 ⟩

to orbital A, B, and  is the true ground state. However, the computation cost to |𝜓0⟩

calculate all the pairs of energy scales O naively  so we adapted the correlation (𝑁 5
𝑜𝑟𝑏𝑖𝑡𝑎𝑙)

energy and its related values for each atom calculated from ref6.

The atomic information includes the atomic number, the standard atomic weight, the 

reference energy, and the number of outmost electrons. (6, 12.0096, -37.846772,2 for 

carbon). Notice that this mapping step only depends on the atomic type.

The nearest atoms also modify the TN states here we calculate the terms of modification 

from the feature vectors:



𝐶(𝑎) = 𝑓𝑐𝑜𝑛𝑡𝑟𝑖(𝐴0(𝑎))

 #(𝑆3 ‒ 7)

Then we take the matrix product to obtain the final TN states:

𝐴(𝑎) = 𝐴0(𝑎) + 𝐶 ⋅ 𝐷

 #(𝑆3 ‒ 8)

Here only the nearest atoms contribute to the atom’s MPS, but if we want to consider 

the second atoms, we only need to take the matrix product iteratively:

𝐴2𝑛𝑑(𝑎) = 𝐴(𝑎) + 𝑓𝑐𝑜𝑛𝑡𝑟𝑖(𝐴(𝑎)) ⋅ 𝐷

 #(𝑆3 ‒ 9)

Similar cases hold for the third-nearest case.

The construction of MPOs for bonds is similar to constructing MPSs for atoms, but 

here we are utilizing the bond-angle graph matrix. 

Supplementary Material S4: Pseudocodes

Algorithm 1: Estimating properties through atoms

Input: the Geometry-Enhanced Representation of the molecule, including the bond-

angle graph D and the atom-bond graph G

Output: the desired property P, like the atomization energy

1. For each atom a, find the corresponding feature vector . This feature vector 𝑉(𝑎)

includes the orbital information and the atomic number.

2. 𝐴0(𝑎) = 𝑓𝑒𝑛𝑐𝑜𝑑𝑒(𝑉𝑎)

3. 𝐶(𝑎) = 𝑓𝑐𝑜𝑛𝑡𝑟𝑖(𝐴0(𝑎))

4. Update the MPS of each atom, . Here the TN state of each atom 𝐴 = 𝐴0 + 𝐶 ⋅ 𝐷

is modified using the nearest atoms.

5. Repeat steps 1-4 for bond-angle graph D, now we obtain multiple MPOs of bonds 

.𝑂0, 𝑂0, …,𝑂𝐾

6. Contract the entire tensor network, i.e. 𝑇 =  𝐴 ⋅ (𝐷𝑂) ⋅ 𝐴

7. Calculate the final output 𝑃 = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒(𝑇)



The MPS of each atom only depends on itself and its nearest atoms, while this algorithm 

can be extended to second/third/… nearest atoms by extending the feature vectors. 

Algorithm 2: The addition of properties

Input: The contracted result of two fragment  and  without the atom that forms 𝑇1 𝑇2

the bond connecting these two fragments. The feature vector of two atoms that forms 

this bond  and . The feature vector of the nearest atoms for these two 𝑉(𝑎1) 𝑉(𝑎2)

atoms.

Output: the desired property P, like the atomization energy

1. Calculate the MPS of these two atoms using algorithm 1. 

2. Calculate the MPO of the bond that connects these two fragments.

3. Calculate the contracted result addition 𝑇𝑐𝑜𝑛𝑛𝑒𝑐𝑡 = 𝐴(𝐷𝑂)𝐴

4. 𝑇 =  𝑇1 + 𝑇2 +  𝑇𝑐𝑜𝑛𝑛𝑒𝑐𝑡

5. Calculate the final output 𝑃 = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒(𝑇)

Supplementary Material S5: Mathematical interpretation for AFA

In this work, we mainly focus on the prediction of atomic property  with a given 𝑃

configuration  of  atoms. Here the atomic property is atomization energy, which is  𝑓𝑖 𝑁

a scalar, and the features, atom-bond graph together with bond-angle graph has SO(3) 

invariant atomic representations. A natural starting point is to formulate a coarse-

grained model given by the summation of all dependent variables, , 

𝑃 = 𝑝0 + ∑
𝑓𝑖

𝑝(𝑓𝑖)

where  is a fixed constant and  calculates the property contribution from each 𝑝0 𝑝(𝑓𝑖)

feature. This model can be extended by adding the interaction terms between multiple 

dependent features,  The 

𝑃 = 𝑝0 + ∑
𝑓𝑖

𝑝(𝑓𝑖) + ∑
𝑓𝑖,𝑓𝑗

𝑝(𝑓𝑖,𝑓𝑗) + ∑
𝑓𝑖,𝑓𝑗,𝑓𝑘

𝑝(𝑓𝑖,𝑓𝑗,𝑓𝑘) + …

interaction terms can be decomposed by projecting them into some particular basis sets 



, like the STO-3G, 6-31G, and cc-pVDZ basis sets, where
Φ𝑠1,𝑠2,…𝑠𝑛

𝑃(𝑓𝑖,𝑓𝑗,…) =  ∑
{𝑠1,𝑠2,…𝑠𝑛}

𝐶𝑠1,𝑠2,…𝑠𝑛
Φ𝑠1,𝑠2,…,𝑠𝑛

(𝑓1,𝑓2,…𝑓𝑛) 

 #(𝑆5 ‒ 1)

with the general interaction coefficients . 
𝐶𝑠1,𝑠2,…𝑠𝑛

Taking a chain molecule as an example, In this work's framework, each atom inside the 

molecule is transferred to a "node", a matrix containing all necessary information. The 

contraction of the entire tensor network is taking the matrix production. Let us assume 

that the total atomization energy is simply the summation of each atom's energy. The 

matrix of each atom is a 2-by-2 matrix. The identity matrix multiplies its energy. Now 

the network refers to the case:  If we further do a simplification, 

 𝑃 = 𝑝0 + ∑
𝑓𝑖

𝑝(𝑓𝑖)

adding the matrix of the internal atom's tensor by a matrix :𝑀2

𝑀2 = [ 𝐼 0 0
𝐸2𝑡𝑒𝑟𝑚 0 0

0 𝐸2𝑡𝑒𝑟𝑚 𝐼] 

 #(𝑆5 ‒ 2)

Now the contraction of all these tensors gives a two-term summation, like the 

. Also, if the three-body correlation term is also 

𝑃 = 𝑃0 + ∑
𝑓𝑖

𝑝(𝑓𝑖) + ∑
𝑓𝑖,𝑓𝑗

𝑝(𝑓𝑖,𝑓𝑗)

required, like the contribution from bond angles, i.e. three-body correlation or the 

stretching of orbitals, adding the matrix of the internal atom's tensor by a matrix :𝑀3

𝑀3 = [ 𝐼 0 0 0
𝐸3𝑡𝑒𝑟𝑚 0 0 0

0
0

𝐸3𝑡𝑒𝑟𝑚
0

0 0
𝐸3𝑡𝑒𝑟𝑚 𝐼] 

 #(𝑆5 ‒ 3)

Supplementary Material S6: Physically interpretation for radical summation



In this part, we talk about the way to estimate energy from each radical fragment. Here 

we focus on a special case, a molecule  with two radicals  and , like the molecule 𝑀 𝐴 𝐵

CH3OH is made up of radical CH3- and radical -OH. The general assumption is that:

1. The total Hamiltonian  is the summation of two parts plus an extra potential 𝐻𝑡𝑜𝑡𝑎𝑙

term, i.e. 𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝐴 + 𝐻𝐵 + 𝑉

2. The molecular orbital  is the linear combination of all the valence atomic orbitals 𝜙

 from both radicals , i.e. , while these valence atomic orbitals are 𝜒𝑟 𝜒
𝜓 = ∑

𝑖

𝐶𝑖𝜒𝑖

always constant.

The term  in assumption 1 has multiple forms. In Semi-Empirical SCF Molecular 𝑉

Orbital Treatment, this term is estimated through a one-centre repulsion integral; this 

term can also be the radical stabilization energy in intermolecular orbital theory.

Therefore, the natural idea is to utilize the perturbation theory for estimation. The total 

Hamiltonian matrix , where  simulates the system 𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝐴 + 𝐻𝐵 + 𝑉 = 𝐻0 + 𝑉 𝐻0

where radical A and radical B are entirely identical. Now the eigenvector of the matrix 

 should be:𝐻0

|𝜓 0
𝑡𝑜𝑡𝑎𝑙⟩ = |𝜓0

𝐴⟩ ⊗ |𝜓0
𝐵⟩

 #(𝑆6 ‒ 1)

Assuming the Hamiltonian  is a  matrix, where the first  terms come from 𝐻𝑡𝑜𝑡𝑎𝑙 𝑁 × 𝑁 𝑚

radical A and the term  to N corresponds to radical B. The elements  of 𝑚 + 1 𝐻𝑖𝑗

 is the same as that for  for  and . The element  are 0 𝐻𝑡𝑜𝑡𝑎𝑙 𝐻0 (𝑖,𝑗) ≤ 𝑚 𝑚 + 1 ≤ (𝑖,𝑗) 𝐻𝑖𝑗

for , but only several terms  are nonzero terms for , for 𝐻0 𝐻𝑖𝑗 𝐻𝑡𝑜𝑡𝑎𝑙

. An assumption is that only close-enough terms are (𝑖 ≤ 𝑚&𝑗 > 𝑚) 𝑂𝑅 (𝑖 > 𝑚&𝑗 ≤ 𝑚)

nonzero, as the carbon atom's orbital from radical CH3- and the oxygen atom's orbital 

from radical -OH.

Here we take the perturbation theory. The first-order derivative term shall be:



𝐸1 = ∫|𝜓0
𝐴⟩𝑉|𝜓0

𝐵⟩

 #(𝑆6 ‒ 1)

Notice that this is a constant only depending on the type of radical A and radical B. The 

second-order derivative term shall be:

𝐸2 = ∑
(𝑚,𝑛) ≠ (𝑖,𝑗)

|𝑉𝑚𝑛�​|2

𝐸0
𝑛 + 𝐸 0

𝑚 ‒ 𝐸0
𝑖 ‒ 𝐸0

𝑗

 #(𝑆6 ‒ 2)

Where the subscript  covers all available orbitals from radical A (B), notice 𝑚,𝑖 (𝑛,𝑗) 

now that the energy term also depends only on the type of radical A and B. Meanwhile, 

all of them are constant.

In the previous demonstration, we have shown that the TN framework can easily 

simulate linear regression, while in this case, the contraction of two connected radicals 

can be treated as the perturbation theory approach for estimating the molecular energy.

Supplementary Material S7: Time complexity for contraction

Here we give the proof of constant complexity for radical contraction. Recall that the 

MPS and MPO are obtained by the surrounding environment, as shown in equations 

(1) and (2). Since the number of atoms/bonds around each atom/radical/bond must have 

an upper limit, the complexity of obtaining MPS state  and the MPO  has an upper 𝐴 𝑂

limit . The revision of obtained MPS and MPO are written in the previous section. 𝐶𝑀

Equation (4) has two parts: the tensor network contraction process and the MLP 

forwarding process. Since the input of MLP is always a vector with a fixed dimension, 

the complexity of this MLP forwarding process is always a constant . Now the only 𝐶𝑁𝑁

problem is the tensor network contraction process. Here we refer to the graph matrix 

 of a molecule C formulated by the contraction of two radicals A and B:𝑀𝐶

𝑀𝐶 = [ 𝑀𝐴 𝑀𝐴𝐵
𝑀𝐴𝐵 𝑀𝐵 ]

 #(𝑆7 ‒ 1)



The contracting result (the element in equation 4) is actually from this graph matrix. 

Recall that in assumption, the graph matrix  and  are already known, and there 𝑀𝐴 𝑀𝐵

only exists one bond that connects radical A with radical B. Therefore, the complexity 

of this bond must be a constant . Aggregating all the above complexities, the total 𝐶𝑏

complexity of radical contraction must not exceed a constant:

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝑛 × 𝐶𝑀 + 𝐶𝑁𝑁 + 𝐶𝑏

 #(𝑆7 ‒ 2)

Here n is the atom that lies near the formulated bond, which is typically two.

In this work, we are dealing with the connecting graph for each molecule. Here we use 

the calculation of methanol CH3OH as an example by adding two radicals, methyl –CH3 

and hydroxyl –OH. The connecting matrix  for the entire methanol is:𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

= [
 𝐶 𝐻1 𝐻2 𝐻3 𝑂 𝐻4
𝐶 0 𝑇𝑁(𝐶,𝐻1) 𝑇𝑁(𝐶,𝐻2) 𝑇𝑁(𝐶,𝐻3) 𝑇𝑁(𝐶,𝑂) 0

𝐻1 𝑇𝑁(𝐶,𝐻1) 0 0 0 0 0
𝐻2 𝑇𝑁(𝐶,𝐻2) 0 0 0 0 0
𝐻3 𝑇𝑁(𝐶,𝐻3) 0 0 0 0 0
𝑂 𝑇𝑁(𝐶,𝑂) 0 0 0 0 𝑇𝑁(𝑂,𝐻)

𝐻4 0 0 0 0 𝑇𝑁(𝑂,𝐻) 0
]

 #(𝑆7 ‒ 3)

Where the function  corresponds to the tensor network output, like  𝑇𝑁 𝑇𝑁(𝐶𝐻1)

corresponds to the TN output from the carbon C and hydrogen atom H1. This matrix is 

decomposed into  with:𝑀𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = 𝑀𝐶𝐻3 + 𝑀𝑂𝐻 + 𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡

𝑀𝑚𝑒𝑡ℎ𝑦𝑙 = [
 𝐶 𝐻1 𝐻2 𝐻3 𝑂 𝐻4
𝐶 0 𝑇𝑁(𝐶,𝐻1) 𝑇𝑁(𝐶,𝐻2) 𝑇𝑁(𝐶,𝐻3) 0 0

𝐻1 𝑇𝑁(𝐶,𝐻1) 0 0 0 0 0
𝐻2 𝑇𝑁(𝐶,𝐻2) 0 0 0 0 0
𝐻3 𝑇𝑁(𝐶,𝐻3) 0 0 0 0 0
𝑂 0 0 0 0 0 0

𝐻4 0 0 0 0 0 0
]

𝑀𝑂𝐻 = [
 𝐶 𝐻1 𝐻2 𝐻3 𝑂 𝐻4
𝐶 0 0 0 0 0 0

𝐻1 0 0 0 0 0 0
𝐻2 0 0 0 0 0 0
𝐻3 0 0 0 0 0 0
𝑂 0 0 0 0 0 𝑇𝑁(𝑂,𝐻)

𝐻4 0 0 0 0 𝑇𝑁(𝑂,𝐻) 0
]



𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡 = [
 𝐶 𝐻1 𝐻2 𝐻3 𝑂 𝐻4
𝐶 0 0 0 0 𝑇𝑁(𝐶,𝑂) 0

𝐻1 0 0 0 0 0 0
𝐻2 0 0 0 0 0 0
𝐻3 0 0 0 0 0 0
𝑂 𝑇𝑁(𝐶,𝑂) 0 0 0 0 0

𝐻4 0 0 0 0 0 0
]

 #(𝑆7 ‒ 4)

It should be noted that  only depends on radical methyl and  only depends on 𝑀𝐶𝐻3 𝑀𝑂𝐻

the radical hydroxyl. Notice that the connection graph has only one or few elements 

since they correspond to the bond formatted through the "adding" of these two radicals. 

Therefore,  has a fixed complexity O(1). Although we use the example of a 𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡

molecule formed through two radicals, this fixed complexity consequence also holds 

for other similar cases, like the radical formed from two radicals.

Supplementary Material S8: Description of assisting chemical reaction prediction

Our method for assisting chemical reaction prediction using AFA consists of the 

following steps:

1. Calculate the energy of reactants and products using AFA, storing intermediate 

fragment results.

2. Identify all bonds among reactants and products and calculate bond-breaking 

energies, excluding those involved in ring breaking or formation. Store bond 

energies for those that can be broken but not for those changing types due to ring 

breaking or formation.

3. Find all possible combinations of bond breaking, assuming that intermediates are 

formed only through bond breaking without bond formation.

4. Calculate the bond-breaking energy for all possible combinations, using a 

summation of energies calculated in Step 2. Exclude alternatives with excessively 

high energy or reactions that involve ring breaking or formation; recalculate energy 

for these fragments as bond types change.

5. Determine the resulting molecules for both reactants and products by breaking 

chosen bonds and identifying the resulting molecular structures. Generate two 



alternative choice lists of intermediates for reactants and products.

6. Compare the alternative choice lists of intermediates for reactants and products, 

selecting intermediates that appear in both sets.

7. Calculate the energy of all selected intermediate molecules using the summation of 

fragments stored in Step 1. Choose the intermediate with the lowest transition 

energy as the predicted intermediate.

This comprehensive method accounts for various bond-breaking scenarios, allowing 

for accurate predictions of intermediates in chemical reactions. Generally speaking, 

small effects may affect the possible reaction pathways, so further validation and 

refinement are required to clearly identify the reaction pathway.

Supplementary Material S9: Dataset Information

In this work, we create a molecule dataset that contains one million molecules. The 

topology of molecules is obtained from QM97, bindingDB8, Chembl9, and BDE10. The 

unstable structures that failed the consistency check are removed. Molecules with the 

number of atoms larger than 100 are removed. Properties are calculated through 

Gaussian 091 under PBE level functional with basis 6-31G, including K space 

properties and R space properties. These properties include:

1. SMILES

2. The atom positions (x, y, z)

3. The self-consistent field energy

4. The orbital energies, including HOMO, HOMO-1, HOMO-2, HOMO-3, HOMO-4, 

HOMO-5

5. The orbital energies, including LUMO, LUMO+1, LUMO+2, LUMO+3, 

LUMO+4, LUMO+5

We transformed the SCF energy into the atomization energy in units of eV, which can 

be calculated using “Atomref” of the QM9 dataset7, that is, , 
𝐸 =  𝑈0 ‒ ∑

𝑖 ∈ 𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝐸𝑖

and 1 Hartree = 27.2114 eV. The “Atomref” of the QM9 dataset can be found from: 



https://figshare.com/articles/dataset/Atomref_Reference_thermochemical_energies_of

_H_C_N_O_F_atoms_/1057643?backTo=/collections/Quantum_chemistry_structures

_and_properties_of_134_kilo_molecules/978904

https://figshare.com/articles/dataset/Atomref_Reference_thermochemical_energies_of_H_C_N_O_F_atoms_/1057643?backTo=/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
https://figshare.com/articles/dataset/Atomref_Reference_thermochemical_energies_of_H_C_N_O_F_atoms_/1057643?backTo=/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
https://figshare.com/articles/dataset/Atomref_Reference_thermochemical_energies_of_H_C_N_O_F_atoms_/1057643?backTo=/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904


Supplementary Material S10: List of Selected drugs

The SMILES and names of selected drugs are listed below, these data are achieved 

from BindingDB8 and ChEMBL9:

Name SMILES

1 8-phenyl-octanecarboxamide 

peptidomimetic, 49

COCCCOc1cc(C[C@@H](C[C@H](N)[C@@H

](O)C[C@@H](C)C(=O)NCCN2CCCCC2)C(C)

C)ccc1OC

2 17-Hydroxywortmannin COC[C@H]1OC(=O)C(=CN(CCCN(C)C)CCC

N(C)C)C2C(=O)C(=O)C3=C([C@@H](C[C@]4

(C)[C@@H](O)CCC34)OC(C)=O)[C@@]12C

3 Dipyridamole Analogue, 15 OCCN(CCO)c1nc(N2CCCCCCCC2)c2nc(nc(N3

CCCCCCCC3)c2n1)N(CCO)CCO

4 (3S,6S,9S,12R)-3-[(2R)-butan-2-yl]-

6-[(1-methoxyindol-3-yl)methyl]-9-

(6-oxooctyl)-1,4,7,10-

tetrazabicyclo[10.4.0]hexadecane-

2,5,8,11-tetrone

CC[C@@H](C)[C@@H]1NC(=O)[C@H](Cc2c

n(OC)c3ccccc23)NC(=O)[C@H](CCCCCC(=O)

CC)NC(=O)[C@H]2CCCCN2C1=O

5 3-(2,4-Difluoro-phenyl)-1-heptyl-1-

[5-(1,4,5-triphenyl-1H-imidazol-2-

ylsulfanyl)-pentyl]-urea

CCCCCCCN(CCCCCSc1nc(c(-c2ccccc2)n1-

c1ccccc1)-c1ccccc1)C(=O)Nc1ccc(F)cc1F

6 Aliskiren COCCCOc1cc(CC(CC(N)C(O)CC(C(=O)NCC(

C)(C)C(N)=O)C(C)C)C(C)C)ccc1OC

7 (S)-5-Guanidino-2-{(S)-2-[(S)-3-

(3H-imidazol-4-yl)-2-(3,3,3-trifluoro-

propionylamino)-propionylamino]-3-

phenyl-propionylamino}-pentanoic 

acid [(S)-1-carbamoyl-2-(1H-indol-3-

yl)-ethyl]-amide

NC(=N)NCCC[C@H](NC(=O)[C@H](Cc1ccccc

1)NC(=O)[C@H](Cc1cnc[nH]1)NC(=O)CC(F)(

F)F)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(N)

=O

8 Ac-YFR-AMOK 10b CC(=O)NC(Cc1ccc(O)cc1)C(=O)NC(Cc1ccccc1



)C(=O)NC(CCCN=C(N)N)C(=O)COC(=O)c1c(

C)cccc1C

9 Gly-Ala-Val-Val-Asn-Asp-Leu CC(C)C[C@H](NC(=O)[C@H](CC(O)=O)NC(

=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O

)[C@@H](NC(=O)[C@H](C)NC(=O)CN)C(C)

C)C(C)C)C(O)=O

10 hentriacont-12-ynoic acid CCCCCCCCCCCCCCCCCCC#CCCCCCCCCC

CC(=O)O

11 N-[(1-Cyclohexylmethyl-2,3-

dihydroxy-5-methyl-

hexylcarbamoyl)-ethylsulfanyl-

methyl]-2-(morpholine-4-

sulfonylamino)-3-phenyl-

propionamide

CCSC(NC(=O)[C@H](Cc1ccccc1)NS(=O)(=O)

N1CCOCC1)C(=O)N[C@@H](CC1CCCCC1)[

C@@H](O)[C@@H](O)CC(C)C

12 N-[(1-Cyclohexylmethyl-2,3-

dihydroxy-5-methyl-

hexylcarbamoyl)-ethylsulfanyl-

methyl]-2-(morpholine-4-

sulfonylamino)-3-phenyl-

propionamide

CCSC(NC(=O)C(Cc1ccccc1)NS(=O)(=O)N1CC

OCC1)C(=O)NC(CC1CCCCC1)C(O)C(O)CC(C

)C

13 (2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-3-

amino-2-hydroxy-1-oxodecyl]-

methylamino]-4-methylsulfinyl-1-

oxobutyl]amino]-3-(4-

hydroxyphenyl)-1-oxopropyl]amino]-

3-(4-hydroxyphenyl)propanoic acid

CCCCCCC[C@H](N)[C@H](O)C(=O)N(C)[C

@@H](CCS(C)=O)C(=O)N[C@@H](Cc1ccc(O

)cc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O

14 Beta-carotene C\C(\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)

=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C1=C(C)

CCCC1(C)C



15 N-[4-[(4-ethyl-1-piperazinyl)methyl]-

3-(trifluoromethyl)phenyl]-4-methyl-

3-[(E)-2-[5-[[2-methyl-6-(1-

piperazinyl)-4-pyrimidinyl]amino]-2-

pyrazinyl]ethenyl]benzamide

CCN1CCN(Cc2ccc(NC(=O)c3ccc(C)c(\C=C\c4c

nc(Nc5cc(nc(C)n5)N5CCNCC5)cn4)c3)cc2C(F)(

F)F)CC1

16 (2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-3-

amino-2-hydroxy-1-oxodecyl]-

methylamino]-4-methylsulfinyl-1-

oxobutyl]amino]-3-(4-

hydroxyphenyl)-1-oxopropyl]amino]-

3-(4-hydroxyphenyl)propanoic acid

CCCCCCC[C@H](N)[C@H](O)C(=O)N(C)[C

@@H](CCS(C)=O)C(=O)N[C@@H](Cc1ccc(O

)cc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O

17 (5R)-1-[[(2S)-1-[(2S)-2-[(4R)-2-
azanylidene-3-[2-(3,4-
dichlorophenyl)ethyl]-4-
(phenylmethyl)imidazolidin-1-
yl]pentyl]pyrrolidin-2-yl]methyl]-5-
(2-methylpropyl)-4,5-
dihydroimidazol-2-amine

CCC[C@@H](CN1CCC[C@H]1CN1[C@H](C

C(C)C)CN=C1N)N1C[C@@H](Cc2ccccc2)N(C

Cc2ccc(Cl)c(Cl)c2)C1=N

Supplementary Material S11: Calculation details for QDF

In this work, we use QDF as an example for DFA-simulating NN. We use the model 

published online, one may access it through:

https://github.com/masashitsubaki/QuantumDeepField_molecule

The adapted parameter is the same as the published example. Specifically, the training 

dataset is the subset of QM9, whose number of atoms is smaller than or equal to 14. 

The test dataset is another subset of QM9, whose number of atoms is larger than 15. 

The grid radius is set as 0.75 Å, and the grid interval is set as 0.3 Å. The training basis 

is 6-31G. The decoding neural network has an intermediate dimension of 250, with a 

depth of 3 layers. The operation is set as ‘sum’ for the R space property, while it is set 

as ‘mean’ for HOMO and LUMO. The batch size for training is set as 4, the learning 

rate is set as 1e-4, and the learning rate decay is set as 0.4. The step size for learning 

rate decay is 200. The total number of iterations is set as 2000.

https://github.com/masashitsubaki/QuantumDeepField_molecule


Even though the parameter might not be optimal, the tendency of error accumulation 

always holds for DFA-simulating NN. 

Supplementary Material S12: More experiment results for AFA

We first talk about the experiment result for the QM9 dataset. In this experiment, we 

do not optimal the intermediate radical TN basis. The results are obtained directly from 

the contraction of atoms. The entire dataset is divided into two parts, the small molecule 

dataset for training and the large molecule dataset for testing. Here the training (testing) 

datasets only contain molecules whose total number of atoms is smaller (larger) than 

16. This division is conducted since the DFT calculation can easily deal with small 

molecules with an acceptable time-costing and spatial costing, but such complexity 

quickly increases exponentially with molecule size. We set the separation to be 16 since 

we want to include the methylbenzene inside training sets. Therefore the geometry of 

aromatic molecules can be learned. 

 
Figure S12-1: The convergence graph. This learning curve is performed on the QM9 

dataset, whose training (testing) datasets only contain molecules whose total number of 

atoms is smaller (larger) than 16. This curve converges at approximately 500 epochs, 

while finally, the mean absolute error (MAE) is approximately 0.18 eV for the training 

dataset and 0.25eV for the testing dataset.



Figure S12-1 shows the convergence graph while the error is the mean absolute error 

for each molecule. For the first 100 epochs, the training error and the testing error drop 

down exponentially since the initial guess is approximately 0 eV for each molecule. 

During the first several epochs, the model learned some knowledge from it. After 500 

epochs, the learning curve is still fluctuating significantly, but it shows a tendency to 

be flattened. 

Figure S12-2: Error and number of samples, using only the QM9 database. The 

histogram represents the data distribution of training and testing samples. Here the 

training (testing) datasets only contain molecules whose total number of atoms is 

smaller (larger) than 16. The black curve is the average mean absolute error (MAE) for 

each atom. The error does not increase a lot despite different datasets.

The dataset information is shown in Figure S12-2, the histogram. We can see that the 

testing dataset is approximately ten times larger than the training set. The black curve 

in Figure S12-2 shows the mean absolute error for each atom with a different subset. 

The error of molecules whose number of atoms is smaller than 8 is large, a possible 

reason is the lack of input samples. The model may hardly obtain the features. However, 

a fortune is that the DFT algorithm can easily deal with these molecules without the 

insistence of deep learning models. For the subsets whose number of samples is larger 



than 1000, the average error quickly dropped down. A noticeable feature is that the 

error does not increase even for the testing sets. Now features of molecules in testing 

sets are distinct from those in the training set, in the aspect of the number of atoms. 

However, no significant error is observed. 

Figure S12-3: the error convergence with bond dimension. Here the bond dimension 

refers to the dimension of the TN tensor (equation 2 in the manuscript). We can see that 

with an increment of bond dimension, the error is quickly reduced. It is expected that 

with sufficient computation conditions, better accuracy can be obtained.

Figure S12-3 shows the MSE error with dependence on bond dimension. One of the 

hyper-parameters is the bond dimension of MPO and MPS. The bond dimension 

represents the number of parameters included in the calculation. A higher bond 

dimension means a higher number of parameters included during the calculation 

process. We can see that the error quickly drops with the increment of bond dimension. 

However, our device does not support a large bond dimension, but better performance 

is expected with the development of devices.



Figure S12-4: The calculation of bond dissociation energy. Here the brown, blue, and green arrows 

refer to the bond dissociation energy for the target C-N, C-C, and C-O bonds. We notice that the 

predicted bond dissociation energy has a great agreement with DFA results.

Thanks to the ability to predict the energy of radicals, AFA can calculate the bond 

dissociation energy. The bond dissociation energy is calculated from the difference 

between two separated radicals and the entire molecules. Figure S12-4 shows an 

example of a molecule. We can see that the predicted dissociation energy is close to the 

DFA results. It is common that for a colossal structure, researchers simply focus on a 

few local bonds. DFA must calculate the whole electron density of each molecule, as 

well as all radicals separated from this molecule. This process leads to redundant 

calculation, which can be improved through AFA.

We train the model with the following hyper-parameters: The embedding layer maps 

each atom into an MPS with bond dimension 10. The contracted results of the TN 

structure go through a deep neural network with four hidden layers, while each hidden 

layer has 250 neurons, their activation functions are set as the ReLU function. We use 

the PyTorch framework to build the models and use a batch stochastic gradient descent 

optimizer using the Adam method with batch size 64 to optimize the model. The 

learning rate is set to 1e-4 initially, and the learning rate will be halved after every 200 

iterations, the overall training procedure contains 2000 epochs. These parameters are 

the same for both real space property estimation and reciprocal space property 

estimation.



Supplementary Material S13: the memory requirement of AFA

Figure S13-1: The memory usage comparison of the TorchANI, ANI-2x, and AFA. The 

red curve with dots represents the TorchANI model, the black curve is for ANI-2x, and 

the blue curve is for the AFA model. It can be observed that the memory requirement 

of AFA remains relatively flat in comparison to the increasing memory requirements 

of both the TorchANI and ANI-2x models.

Figure S13-1 presents a comparison of memory usage for TorchANI, ANI-2x, and 

AFA. We first divided the entire dataset into several sub-datasets, each containing 

samples with a fixed number of atoms. From each subset, we randomly selected 30 

samples. We then employed TorchANI, ANI-2x, and AFA models to estimate the 

properties of these samples and recorded their respective memory usage. The memory 

requirement of AFA remains relatively flat compared to the increasing memory 

requirements of both TorchANI and ANI-2x models. This is because the memory 

requirement of AFA generally grows with respect to radicals, rather than atoms, while 

the memory requirements of TorchANI and ANI-2x models primarily increase with 

respect to the number of atoms.



Figure S13-2: The memory requirement of AFA as a function of bond dimension. As 

depicted, the memory occupation exhibits exponential growth with respect to the bond 

dimension.

Figure S13-2 illustrates the memory requirement of AFA in relation to bond dimension, 

a parameter associated with the storage of correlations between radicals. Our current 

device has a maximum memory capacity of 10GB, which allows for a bond dimension 

of up to 10. We believe that AFA's performance could be further enhanced with a more 

advanced device offering greater memory capacity.

Supplementary Material S14: Extension of AFA in intermolecular interaction

While AFA was originally designed to predict the properties of individual molecules, 

we are able to modify it to predict intermolecular interaction energies by incorporating 

hydrogen-bond interactions and non-rigid bonding interactions. The calculation of 

these interactions is obtained from ref11. We set the intra-molecular energy calculator 

to be AFA and then conducted the experiment. Here we define the resulting model as 



AFA-hydrogen. The method is similar to that in ref 12.

Figure S14-1: the performance of AFA-hydrogen on intermolecular interaction 

energies. We use the water systems with less than 400 atoms for training, while we test 

the performance of the water systems with more than 400 atoms. We can see that the 

error does not increase a lot, AFA-hydrogen still performs well.

We have tested the modified AFA model, referred to as AFA-hydrogen on the water 

system, which includes a typical intermolecular hydrogen bond interaction. We trained 

the model using water systems with fewer than 400 and tested it on water systems 

between 400 and 768. Our results, as shown in Figure S14-1, indicate that AFA still 

performs well in predicting the intermolecular interaction energies, as the error does 

not increase significantly as the size of the system increases.



Figure S14-2: the phase diagram of AFA-meta compared to the experiment results.

Figure S14-2 shows the phase diagram comparison between AFA-hydrogen and the 

experiment results. Here the blue curve refers to the prediction result of AFA-hydrogen, 

and the red curve represents the experimental result. The Gibbs-Duhem integration 

method was used to compute the phase diagram of water using the AFA-hydrogen force 

field. This method requires the prediction of not only energy but also other properties 

like pressure, which can be estimated by AFA-hydrogen. Our model has these 

advantages compared with other models:

1. Our model can effectively capture a variety of water phases, such as Ice III, which 

some water models13 are unable to capture.

2. Our model predicts ice Ih to be the most stable phase under ambient conditions, 

aligning well with experimental findings. However, the TIP3P model14 does not 

support this result.

3. Our model accurately estimates the melting point at 1 bar to be around 250K, 

whereas the TIP4P model15 predicts a value of 232K. The experimental result stands 

at 273K.

However, capturing long-range interactions presents a challenge for tensor network 



methods, and without incorporating hydrogen-bond and non-rigid bonding interactions, 

it would be very difficult to achieve.
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