
Generative BigSMILES An Extension for Polymer Informatics
Computer Simulations and ML AI

Ludwig Schneider, Dylan Walsh, Bradley Olsen, Juan de Pablo
October 27, 2023

1 Supporting Information
The following section provides specific examples of generative BigSMILES to demonstrate how
various polymer ensembles might be created. This is an interactive Jupyter notebook that generates
visual representations of polymeric ensembles automatically using the reference implementation of
generative BigSMILES. Visual representations of polymers can become complex for long-chain
molecules, hence we typically restrict ourselves to a manageable length.

1.1 Preliminary Code for Visualization
This section includes Python code that converts generative BigSMILES into visual representations
suitable for a Jupyter notebook. While not essential for understanding the main text, it can serve
as a reference for how to use the reference implementation.

[1]: import numpy as np
from rdkit import Chem
from rdkit.Chem.Draw import IPythonConsole
from IPython.display import SVG
import pydot

from rdkit.Chem import rdDepictor
from rdkit.Chem.Draw import rdMolDraw2D

import bigsmiles_gen
from bigsmiles_gen import System, mol_prob, Molecule, System

Consistent random numbers also across calls
rng = np.random.default_rng(42)

def render_svg(svg):
"""Render SVG images in the Notebook"""
try:

svg_string = svg.decode("utf-8")
except AttributeError:

svg_string = svg
svg_string = svg_string.replace("svg:", "")

1

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2023

https://github.com/InnocentBug/bigSMILESgen

return SVG(svg_string)

def moltosvg(mol, molSize=(450, 150), kekulize=False):
"""Generate a SVG stick representation of molecule."""
mc = Chem.Mol(mol.ToBinary())
if kekulize:

try:
Chem.Kekulize(mc)

except:
mc = Chem.Mol(mol.ToBinary())

if not mc.GetNumConformers():
rdDepictor.Compute2DCoords(mc)

drawer = rdMolDraw2D.MolDraw2DSVG(molSize[0], molSize[1])
drawer.DrawMolecule(mc)
drawer.FinishDrawing()
svg = drawer.GetDrawingText()
return svg

def draw_molecule(molecule_string):
global rng
Generate the abstract python object, parsing bigSMILES
Try it as a system first
bigSMILESmol = System(molecule_string)
mol = bigSMILESmol.generate(rng=rng)
return render_svg(moltosvg(mol.mol))

def draw_generation_graph(molecule_string):
bigSMILESmol = Molecule(molecule_string)
graph = bigSMILESmol.gen_reaction_graph()
graph_dot = bigsmiles_gen.reaction_graph_to_dot_string(graph, bigSMILESmol)
pydot_graph = pydot.graph_from_dot_data(graph_dot)[0]
graph_svg = pydot_graph.create_svg()
return render_svg(graph_svg)

1.2 Case Study: PS and PMMA
Polystyrene (PS) and polymethyl methacrylate (PMMA) are two well-known and widely stud-
ied polymers. We’ll use them as examples to demonstrate different concepts of how generative
BigSMILES can be employed to create various ensembles.

To begin with, let’s consider the standard BigSMILES notation for PS and PMMA repeat units:
CCOC(=O)C(C)(C){[>][<]CC([>])c1ccccc1[<], [>][<]CC([>])C(=O)OC [<]}[Br]

In common terms, this represents the random copolymer PS-r-PMMA. Technically, this BigSMILES
notation covers all subsequent examples, and we’ll show how generative BigSMILES can be used

2

to distinguish between different polymer ensembles.

1.3 PS-r-PMMA with Molecular Weight Distribution
Our first step is to specify the molecular weight distribution. We’ll use the Schulz-Zimm distribution
as an example, with a molecular weight average (Mw) of 1500 and a number average molecular
weight (Mn) of 1400.

[2]: # Define a generative bigSMILES string representing an ensemble of molecules
generative_bigSMILES = "CCOC(=O)C(C)(C){[>][<]CC([>])c1ccccc1,␣

↪[<]CC([>])C(=O)OC [<]}|schulz_zimm(1500, 1400)|[Br].|5e5|"

[3]: # Visualize the generated molecule
draw_molecule(generative_bigSMILES)

[3]:

To better understand the composition of our ensemble, let’s visualize its generative graph:

[4]: # Draw the generative graph of the ensemble
draw_generation_graph(generative_bigSMILES)

[4]:

3

CCOC(=O)C(C)(C)[>|0.0|]{[>][<]CC([>])c1ccccc1, [<]CC([>])C(=O)OC[<]}|schulz_zimm(1500.0, 1400.0)|[<][Br].|500000.0|

CCOC(=O)C(C)(C)[>]

[>] w=0.0

atom = 5

[<] w=1.0

t(suffix) = 0.5

[<] w=1.0

t(suffix) = 0.5

[<]CC([>])c1ccccc1

atom = 0

[>] w=1.0

atom = 1

r = 0.5

[>] w=1.0

r = 0.5

r = 0.5

r = 0.5

[<] w=1.0

t(suffix) = 1.0

[<]CC([>])C(=O)OC

atom = 0

atom = 1

r = 0.5

r = 0.5

r = 0.5

r = 0.5

t(suffix) = 1.0

[<][Br]

atom = 0

In the observed molecule, Polystyrene (PS) and Poly(methyl methacrylate) (PMMA) seem to be
equally distributed. This is anticipated since we use default values, assigning equal weights to all
bond descriptors. To validate this observation, we compute the precise ratio across an ensemble of
molecules.

[5]: import rdkit
from rdkit.Chem import rdMolDescriptors as rdDescriptors
from IPython.display import clear_output
import platform
IS_LINUX = "linux" in platform.system().lower()
import os
TESTING_ENV_str = os.environ.get("TESTING_ENV", "False")

if TESTING_ENV_str in ("true", "True", "ON"):
TESTING_ENV=True

if TESTING_ENV_str in ("false", "False", "OFF"):
TESTING_ENV=False

Just a little helper function to show the progress interactively

4

def update_progress(progress):
bar_length = 20
block = int(round(bar_length * progress))
if not TESTING_ENV:

clear_output(wait = True)
text = "Progress: [{0}] {1:.1f}%".format("#" * block + "-" *␣

↪(bar_length - block), progress * 100)
print(text)

def count_PS_PMMA_monomers(gen_mol):
Since the =O is unique to the PMMA and head group we can count the '=' in␣

↪the smiles string to determine the number of PMMA.
n_PMMA = gen_mol.smiles.count("=")
subtract the head group double bond
n_PMMA -= 1

Only PS has exactly one aromatic ring, so we can determine the number of␣
↪PS monomers

n_PS = rdDescriptors.CalcNumAromaticCarbocycles(gen_mol.mol)

return n_PMMA, n_PS

In testing environments only run on the linux systems:
if IS_LINUX or not TESTING_ENV:

Use a full ensemble system determine the ration of PS to PMMA
system = bigsmiles_gen.System(generative_bigSMILES)
total_PMMA = 0
total_PS = 0
total_weight = 0
Iterate the molecules of a full system
for gen_mol in system.generator:

n_PMMA, n_PS = count_PS_PMMA_monomers(gen_mol)
total_PMMA += n_PMMA
total_PS += n_PS
total_weight += gen_mol.weight
update_progress(total_weight/system.system_mass)

ratio = total_PMMA/(total_PS + total_PMMA)
print(ratio, total_PMMA, total_PS)
expected_ratio = 0.5
print(ratio, expected_ratio)
For automated tests we raise an exception for unexpected deviations
if np.abs(expected_ratio - ratio) > 0.02:

raise RuntimeError(f"Unexpected deviation of the monomer composition by␣
↪more then 2%: {(ratio, expected_ratio)}")

Progress: [####################] 100.1%

5

0.49811470529867036 2510 2529
0.49811470529867036 0.5

We’ve confirmed an equal ratio between the two monomers in the entire ensemble. Our subsequent
task is to modify this composition using bond descriptor weights.

1.4 Adjusting the PS to PMMA Ratio to 80:20
By assigning varied weights to the bond descriptors, we can change the composition of PS and
PMMA.

[6]: # Define a generative bigSMILES string with weighted bond descriptors
generative_bigSMILES = "CCOC(=O)C(C)(C){[>][<|8|]CC([>|8|])c1ccccc1,␣

↪[<|2|]CC([>|2|])C(=O)OC [<]}|schulz_zimm(1500, 1400)|[Br].|5e5|"

[7]: # Visualize the new generated molecule
draw_molecule(generative_bigSMILES)

[7]:

The changes are noticeable, with PS now being the majority monomer and PMMA reduced to
a minority. The generative graph will reflect this change, particularly in the transition rates r
between bond descriptors for the two monomers.

[8]: # Draw the generative graph for the modified ensemble
draw_generation_graph(generative_bigSMILES)

[8]:

6

CCOC(=O)C(C)(C)[>|0.0|]{[>][<|8.0|]CC([>|8.0|])c1ccccc1, [<|2.0|]CC([>|2.0|])C(=O)OC[<]}|schulz_zimm(1500.0, 1400.0)|[<][Br].|500000.0|

CCOC(=O)C(C)(C)[>]

[>] w=0.0

atom = 5

[<] w=8.0

t(suffix) = 0.8

[<] w=2.0

t(suffix) = 0.2

[<]CC([>])c1ccccc1

atom = 0

[>] w=8.0

atom = 1

r = 0.8

[>] w=2.0

r = 0.2

r = 0.8

r = 0.2

[<] w=1.0

t(suffix) = 1.0

[<]CC([>])C(=O)OC

atom = 0

atom = 1

r = 0.8

r = 0.2

r = 0.8

r = 0.2

t(suffix) = 1.0

[<][Br]

atom = 0

[9]: # In testing environments only run on the linux systems:
if IS_LINUX or not TESTING_ENV:

Use a full ensemble system determine the ration of PS to PMMA
system = bigsmiles_gen.System(generative_bigSMILES)
total_PMMA = 0
total_PS = 0
total_weight = 0
Iterate the molecules of a full system
for gen_mol in system.generator:

n_PMMA, n_PS = count_PS_PMMA_monomers(gen_mol)
total_PMMA += n_PMMA
total_PS += n_PS
total_weight += gen_mol.weight
update_progress(total_weight/system.system_mass)

ratio = total_PMMA/(total_PS+total_PMMA)
expected_ratio = 0.2
For automated tests we raise an exception for unexpected deviations
if np.abs(expected_ratio - ratio) > 0.05:

raise RuntimeError(f"Unexpected deviation of the monomer composition by␣
↪more then 5%: {(ratio, expected_ratio)}")

7

Progress: [####################] 100.1%

This confirms that we have achieved the desired monomer composition in the ensemble.

1.5 Modifying PS-r-PMMA blockiness to 70% with a 50:50 ratio
In the previous example, we adjusted the ratio of PS to PMMA but didn’t specify the blockiness, or
the likelihood that a given monomer is followed by the same type. By using list weight notation in
our generative bigSMILES string, we can set the transition probabilities for PS to PS and PMMA
to PMMA.

For instance, let’s set the transition probability for both PS -> PS and PMMA -> PMMA to 70%,
yielding a noticeably blockier random copolymer. We can accomplish this by assigning weights of
7 and 3 to the respective transitions between the monomers.

[10]: # Define a generative bigSMILES string with adjusted blockiness
generative_bigSMILES = "CCOC(=O)C(C)(C){[>][<|0 7 0 3|]CC([>|7 0 3␣

↪0|])c1ccccc1, [<|0 3 0 7|]CC([>|3 0 7 0|])C(=O)OC [<]}|schulz_zimm(1500,␣
↪1400)|[Br].|5e5|"

[11]: # Visualize the blockier molecule
draw_molecule(generative_bigSMILES)

[11]:

[12]: # Draw the generative graph for the blockier ensemble
draw_generation_graph(generative_bigSMILES)

[12]:

8

CCOC(=O)C(C)(C)[>|0.0|]{[>][<|0.0 7.0 0.0 3.0|]CC([>|7.0 0.0 3.0 0.0|])c1ccccc1, [<|0.0 3.0 0.0 7.0|]CC([>|3.0 0.0 7.0 0.0|])C(=O)OC[<]}|schulz_zimm(1500.0, 1400.0)|[<][Br].|500000.0|

CCOC(=O)C(C)(C)[>]

[>] w=0.0

atom = 5

[<] w=10.0

t(suffix) = 0.5

[<] w=10.0

t(suffix) = 0.5

[<]CC([>])c1ccccc1

atom = 0

[>] w=10.0

atom = 1r = 0.0

r = 0.7

r = 0.0

[>] w=10.0

r = 0.3

r = 0.7

r = 0.0

r = 0.3

r = 0.0

[<] w=1.0

t(suffix) = 1.0

[<]CC([>])C(=O)OC

atom = 0

atom = 1

r = 0.0

r = 0.3

r = 0.0

r = 0.7

r = 0.3

r = 0.0

r = 0.7

r = 0.0

t(suffix) = 1.0

[<][Br]

atom = 0

[13]: # In testing environments only run on the linux systems:
if IS_LINUX or not TESTING_ENV:

Use a full ensemble system determine the ration of PS to PMMA
system = bigsmiles_gen.System(generative_bigSMILES)
total_PMMA = 0
total_PS = 0
total_weight = 0
Iterate the molecules of a full system
for gen_mol in system.generator:

n_PMMA, n_PS = count_PS_PMMA_monomers(gen_mol)
total_PMMA += n_PMMA
total_PS += n_PS
total_weight += gen_mol.weight
update_progress(total_weight/system.system_mass)

ratio = total_PMMA/(total_PS + total_PMMA)
expected_ratio = 0.5
print(ratio, expected_ratio)
For automated tests we raise an exception for unexpected deviations
if np.abs(expected_ratio - ratio) > 0.05:

raise RuntimeError(f"Unexpected deviation of the monomer composition by␣
↪more then 5%: {(ratio, expected_ratio)}")

Progress: [####################] 100.3%
0.49662965900079303 0.5

This demonstrates that, despite altering blockiness, we can consistently control the monomer com-

9

position as intended. The generative graph illustrates how transition probabilities now lean more
towards staying within the same block than switching.

1.6 Adjusting Blockiness: 70% for PS and 20% for PMMA
In our prior example, both blocks had a 30% transition probability into the other block, leading
to an even 50% monomer ratio. By modifying the blockiness levels, we can further refine this
composition.

For this iteration, we’ll retain a 70% blockiness for Polystyrene (PS) and decrease the blockiness
of Poly(methyl methacrylate) (PMMA) to 20%.

[14]: # Define a generative bigSMILES string with varied blockiness
generative_bigSMILES = "CCOC(=O)C(C)(C){[>][<|0 7 0 3|]CC([>|7 0 3␣

↪0|])c1ccccc1, [<|0 8 0 2|]CC([>|8 0 2 0|])C(=O)OC [<]}|schulz_zimm(2500,␣
↪2400)|[Br].|5e5|"

[15]: # Visualize the resulting molecule
draw_molecule(generative_bigSMILES)

[15]:

In the generated molecule, you can see that PS remains blocky, but it is now interspersed with less
blocky PMMA monomers. The ratio between the monomers can be estimated by comparing the
probabilities to stay within the same block, which yields approximately 0.286.

The generative graph should also accurately represent these transition probabilities.

[16]: # Draw the generative graph for the blockier ensemble
draw_generation_graph(generative_bigSMILES)

[16]:

10

CCOC(=O)C(C)(C)[>|0.0|]{[>][<|0.0 7.0 0.0 3.0|]CC([>|7.0 0.0 3.0 0.0|])c1ccccc1, [<|0.0 8.0 0.0 2.0|]CC([>|8.0 0.0 2.0 0.0|])C(=O)OC[<]}|schulz_zimm(2500.0, 2400.0)|[<][Br].|500000.0|

CCOC(=O)C(C)(C)[>]

[>] w=0.0

atom = 5

[<] w=10.0

t(suffix) = 0.5

[<] w=10.0

t(suffix) = 0.5

[<]CC([>])c1ccccc1

atom = 0

[>] w=10.0

atom = 1r = 0.0

r = 0.7

r = 0.0

[>] w=10.0

r = 0.3

r = 0.7

r = 0.0

r = 0.3

r = 0.0

[<] w=1.0

t(suffix) = 1.0

[<]CC([>])C(=O)OC

atom = 0

atom = 1

r = 0.0

r = 0.8

r = 0.0

r = 0.2

r = 0.8

r = 0.0

r = 0.2

r = 0.0

t(suffix) = 1.0

[<][Br]

atom = 0

1.7 PS-r-PMMA in an alternating sequence (least blocky)
One way to minimize blockiness is by creating an alternating sequence of monomers. This can
be represented with identical bond descriptors in the regular BigSMILES notation. For example,
the string CCOC(=O)C(C)(C){[>2][<1]CC([>2])c1ccccc1, [<2]CC([>1])C(=O)OC ; [<1][Br],
[<2][Br] []} specifies that each monomer can only bond with the other monomer type and not
with itself, resulting in an alternating sequence.

This limitation is represented by using stochastic end groups with both bond descriptors, as the
molecule can end in either PS or PMMA and both need to be terminable. However, this prevents
continuation of the molecule after the stochastic object.

To overcome this limitation in generative BigSMILES, we can use listed bond weights instead.
This allows all bond descriptors to be compatible while defining zero transition probabilities for
unwanted connections.

[17]: # Define a generative bigSMILES string with zero transition probabilities for␣
↪unwanted connections

generative_bigSMILES = "CCOC(=O)C(C)(C){[>][<|0 0 0 1|]CC([>|0 0 1␣
↪0|])c1ccccc1, [<|0 1 0 0|]CC([>|1 0 0 0|])C(=O)OC [<]}|schulz_zimm(1000,␣
↪900)|[Br]"

[18]: # Visualize the resulting molecule
draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

11

warn(
[18]:

[19]: # Draw the generative graph for the alternating ensemble
draw_generation_graph(generative_bigSMILES)

[19]:

CCOC(=O)C(C)(C)[>|0.0|]{[>][<]CC([>])c1ccccc1, [<]CC([>])C(=O)OC[<]}|schulz_zimm(1000.0, 900.0)|[<][Br]

CCOC(=O)C(C)(C)[>]

[>] w=0.0

atom = 5

[<] w=1.0

t(suffix) = 0.5

[<] w=1.0

t(suffix) = 0.5

[<]CC([>])c1ccccc1

atom = 0

[>] w=1.0

atom = 1r = 0.0

r = 0.0

r = 0.0

[>] w=1.0

r = 1.0

r = 0.0

r = 0.0

r = 1.0

r = 0.0

[<] w=1.0

t(suffix) = 1.0

[<]CC([>])C(=O)OC

atom = 0

atom = 1

r = 0.0

r = 1.0

r = 0.0

r = 0.0

r = 1.0

r = 0.0

r = 0.0

r = 0.0

t(suffix) = 1.0

[<][Br]

atom = 0

As seen in the generative graph and the generated molecule, the ensemble now follows an alternating
sequence. Moreover, the use of listed bond weights allows for potential continuation as it does not
require stochastic end groups.

12

1.8 PS-b-PMMA Diblock Copolymer
At the other end of the spectrum is the diblock copolymer. While the original BigSMILES
notation correctly describes diblock copolymers, a more explicit representation employs two
connected stochastic objects, as seen in the string CCOC(=O)C(C)(C){[>][<]CC([>])c1ccccc1
[<]}{[>][<]CC([>])C(=O)OC[<]}[Br].

The same notation can be applied within the generative BigSMILES:

[20]: # Define a generative bigSMILES string for a diblock copolymer
generative_bigSMILES = "CCOC(=O)C(C)(C){[>][<]CC([>])c1ccccc1␣

↪[<]}|schulz_zimm(1000,900)|{[>][<]CC([>])C(=O)OC[<]}|schulz_zimm(1000,␣
↪900)|[Br]"

[21]: # Visualize the resulting molecule
draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[21]:

[22]: # Draw the generative graph for the diblock copolymer
draw_generation_graph(generative_bigSMILES)

[22]:

13

CCOC(=O)C(C)(C)[>|0.0|]{[>][<]CC([>])c1ccccc1[<]}|schulz_zimm(1000.0, 900.0)|{[>][<]CC([>])C(=O)OC[<]}|schulz_zimm(1000.0, 900.0)|[<][Br]

CCOC(=O)C(C)(C)[>]

[>] w=0.0

atom = 5

[<] w=1.0

t(suffix) = 1.0

[<]CC([>])c1ccccc1

atom = 0

[>] w=1.0

atom = 1

r = 1.0 r = 1.0

[<] w=1.0

t(suffix) = 1.0

[<]CC([>])C(=O)OC

atom = 0

[>] w=1.0

atom = 1

r = 1.0 r = 1.0

[<] w=1.0

t(suffix) = 1.0

[<][Br]

atom = 0

In the BigSMILES notation, the ratio between the two blocks remains unspecified. However,
with generative BigSMILES, you can specify the size of the two blocks via the molecular weight
specification for each stochastic object.

1.9 PS and PMMA Homopolymer Mixtures
The original BigSMILES notation also encompasses polymer ensembles of PS and PMMA ho-
mopolymers, and mixtures of the two, although it’s recommended to avoid describing the ho-
mopolymers in this way.

There exists a BigSMILES variant that can depict a mixture of PS and PMMA homopolymers:

{[][<1]CC([>1])c1ccccc1, [<2]CC([>2])C(=O)OC; CC(C)[>1], CC(C)[>2], [<1][Br],
[<2][Br][]}

In this variant, all bond descriptors between PS or PMMA are incompatible, preventing connections
between PS and PMMA monomers or end groups. As a result, this notation uniquely identifies
a mixture of PS and PMMA homopolymers. However, using this notation to depict a mixture is
strongly discouraged.

This characteristic of the notation can be utilized in generative BigSMILES as well:

[23]: # Define a generative bigSMILES string for a mixture of PS and PMMA homopolymers
generative_bigSMILES = "{[][<1]CC([>1])c1ccccc1, [<2]CC([>2])C(=O)OC;␣

↪CC(C)[>1|2|], CC(C)[>2], [<1|2|][Br], [<2][Br][]}|schulz_zimm(700, 600)|"

14

[24]: # Visualize the resulting molecules
draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[24]:

[25]: # Visualize the resulting molecules
draw_molecule(generative_bigSMILES)

[25]:

Note how the various homopolymers are generated from a single BigSMILES string. We’ve used
the weight of the end groups to achieve a 2:1 ratio between PS and PMMA.

The generative graph clearly illustrates how the two types of molecules are separate from one
another:

[26]: # Draw the generative graph for the mixture of homopolymers
draw_generation_graph(generative_bigSMILES)

[26]:

15

{[][<1]CC([>1])c1ccccc1, [<2]CC([>2])C(=O)OC; CC(C)[>1|2.0|], CC(C)[>2], [<1|2.0|][Br], [<2][Br][]}|schulz_zimm(700.0, 600.0)|

[<1]CC([>1])c1ccccc1

[<1] w=1.0

atom = 0

[>1] w=1.0

atom = 1

r = 1.0

[>1] w=2.0

t(stochastic) = 1.0

r = 1.0

[<1] w=2.0

t(stochastic) = 1.0

[<2]CC([>2])C(=O)OC

[<2] w=1.0

atom = 0

[>2] w=1.0

atom = 1

r = 1.0

[>2] w=1.0

t(stochastic) = 1.0

r = 1.0

[<2] w=1.0

t(stochastic) = 1.0

CC(C)[>1]

atom = 1

r = 1.0

t(stochastic) = 1.0

CC(C)[>2]

atom = 1

r = 1.0

t(stochastic) = 1.0

[<1][Br]

atom = 0r = 1.0

t(stochastic) = 1.0

[<2][Br]

atom = 0r = 1.0

t(stochastic) = 1.0

Despite this functionality, using this notation

to describe a mixture of homopolymers remains inadvisable. Instead, use the mixture notation of
generative BigSMILES, which offers finer control over the resulting ensembles and more accurately
conveys the intent:

[27]: # Define a generative bigSMILES string for a more explicit mixture of PS and␣
↪PMMA homopolymers

generative_bigSMILES = "CC(C){[>][<]CC([>])c1ccccc1 [<]}|schulz_zimm(700,␣
↪600)|[Br].|5000|CC(C){[>][<]CC([>])C(=O)OC[<]}|schulz_zimm(700, 600)|[Br].
↪|1500|"

[28]: # Visualize the resulting molecules
draw_molecule(generative_bigSMILES)

[28]:

[29]: draw_molecule(generative_bigSMILES)

[29]:

16

The enhanced notation, strongly recommended for mixtures, leads to the same molecular ensemble
but is more straightforward and doesn’t necessitate single stochastic object notation for mixtures.

This applies universally to mixtures such as polymers in solution, even though we’re showcasing a
mixture of two homopolymers here.

1.10 Polymer Tacticity with Generative BigSMILES
Polymer tacticity is an essential aspect that significantly influences their properties. We’ll delve
into some examples to understand this concept better using generative BigSMILES notation.

1.10.1 Atactic Polypropylene (PP)

For atactic polymers, there is no need to explicitly mention tacticity.

[30]: generative_bigSMILES = "C{[>][<]CC(C)[>][<]}|poisson(900)|[H]"
draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[30]:

1.10.2 Isotactic PP

To define isotactic PP, we have to explicitly mention the tacticity within the repeating monomer
unit as shown:

17

[31]: generative_bigSMILES = "C{[>][<]C[C@H](C)[>][<]}|poisson(900)|[H]"
draw_molecule(generative_bigSMILES)

[31]:

[32]: draw_generation_graph(generative_bigSMILES)

[32]:

C[>|0.0|]{[>][<]C[C@H](C)[>][<]}|poisson(900.0)|[<][H]

C[>]

[>] w=0.0

atom = 0

[<] w=1.0

t(suffix) = 1.0

[<]C[C@H](C)[>]

atom = 0

[>] w=1.0

atom = 1

r = 1.0 r = 1.0

[<] w=1.0

t(suffix) = 1.0

[<][H]

atom = 0

18

1.10.3 Syndiotactic PP

In the case of syndiotactic PP, we establish two distinct repeat units, each with a unique tacticity.
Then, we utilize the same method as with PS-PMMA to achieve alternating repetition of the repeat
units.

[33]: generative_bigSMILES = "C{[>][<|0 0 0 1|]C[C@H](C)[>|0 0 1 0|], [<|0 1 0␣
↪0|]C[C@@H](C)[>|1 0 0 0|] [<]}|poisson(900)|[H]"

draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[33]:

[34]: draw_generation_graph(generative_bigSMILES)

[34]:

19

C[>|0.0|]{[>][<]C[C@H](C)[>], [<]C[C@@H](C)[>][<]}|poisson(900.0)|[<][H]

C[>]

[>] w=0.0

atom = 0

[<] w=1.0

t(suffix) = 0.5

[<] w=1.0

t(suffix) = 0.5

[<]C[C@H](C)[>]

atom = 0

[>] w=1.0

atom = 1r = 0.0

r = 0.0

r = 0.0

[>] w=1.0

r = 1.0

r = 0.0

r = 0.0

r = 1.0

r = 0.0

[<] w=1.0

t(suffix) = 1.0

[<]C[C@@H](C)[>]

atom = 0

atom = 1

r = 0.0

r = 1.0

r = 0.0

r = 0.0

r = 1.0

r = 0.0

r = 0.0

r = 0.0

t(suffix) = 1.0

[<][H]

atom = 0

1.10.4 Stereo Enriched PP

To create an atactic PP, but with enrichment of one of the stereochemistries, we utilize a similar
approach as before. Instead of excluding specific transitions, we merely enhance the weight of the
bond descriptors of the monomer we aim to enrich. In this example, the weight of the C[C@H](C)
monomer is increased by 3.

[35]: generative_bigSMILES = "C{[>][<|3|]C[C@H](C)[>|3|], [<]C[C@@H](C)[>]␣
↪[<]}|poisson(900)|[H]"

draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[35]:

20

[36]: draw_generation_graph(generative_bigSMILES)

[36]:

21

C[>|0.0|]{[>][<|3.0|]C[C@H](C)[>|3.0|], [<]C[C@@H](C)[>][<]}|poisson(900.0)|[<][H]

C[>]

[>] w=0.0

atom = 0

[<] w=3.0

t(suffix) = 0.75

[<] w=1.0

t(suffix) = 0.25

[<]C[C@H](C)[>]

atom = 0

[>] w=3.0

atom = 1

r = 0.75

[>] w=1.0

r = 0.25

r = 0.75

r = 0.25

[<] w=1.0

t(suffix) = 1.0

[<]C[C@@H](C)[>]

atom = 0

atom = 1

r = 0.75

r = 0.25

r = 0.75

r = 0.25

t(suffix) = 1.0

[<][H]

atom = 0

1.11 Radical Polymerization with Recombination (Coupling)
During radical synthesis, a polymer might undergo a recombination process. To describe such
a phenomenon, we typically use two blocks of stochastic objects. The first block represents the
standard synthesis, while the second one, which is the reverse of the first, follows it. The reason
it must be reversed is due to the synthesis process: both halves are synthesized first and then
combined at the active center.

22

Consider the following example:

[37]: generative_bigSMILES =␣
↪"N#CC(C)(C){[$][$]CC(C(=O)OC)[$][$]}|poisson(1000)|{[$][$]CC(C(=O)OC)[$][$]}|poisson(1000)|C(C)(C)C#N"

draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[37]:

In this example, we assign the same molecular weight distribution to both halves. Moreover, note
how the prefix of the first block is the reverse of the suffix of the second block.

[38]: draw_generation_graph(generative_bigSMILES)

[38]:

23

N#CC(C)(C)[$|0.0|]{[$][$]CC(C(=O)OC)[$][$]}|poisson(1000.0)|{[$][$]CC(C(=O)OC)[$][$]}|poisson(1000.0)|[$]C(C)(C)C#N

N#CC(C)(C)[$]

[$] w=0.0

atom = 2

[$] w=1.0

t(suffix) = 0.5

[$] w=1.0

t(suffix) = 0.5

[$]CC(C(=O)OC)[$]

atom = 0

atom = 1r = 0.5

r = 0.5

[$] w=1.0

t(suffix) = 0.5

[$] w=1.0

t(suffix) = 0.5

r = 0.5

r = 0.5

t(suffix) = 0.5

t(suffix) = 0.5

[$]CC(C(=O)OC)[$]

atom = 0

atom = 1

r = 0.5

r = 0.5

[$] w=1.0

t(suffix) = 1.0

r = 0.5

r = 0.5

t(suffix) = 1.0 [$]C(C)(C)C#N

atom = 0

A realistic ensemble would comprise both recombined and non-recombined polymers. To depict this,
we describe it as a mixture of both types, utilizing the mixture notation of generative BigSMILES.
This approach also enables us to specify the ratio between the recombined and non-recombined
polymers. For illustration, we’ll use a 2:1 ratio here.

[39]: # Non-recombined polymer
generative_bigSMILES = "N#CC(C)(C){[$][$]CC(C(=O)OC)[$][$]}|poisson(1000)|[H]"
Add the mixture component and specify the total molecular weight of␣

↪non-recombined polymers
generative_bigSMILES += ".|1e4|"
Add the recombined polymer
generative_bigSMILES +=␣

↪"N#CC(C)(C){[$][$]CC(C(=O)OC)[$][$]}|poisson(1000)|{[$][$]CC(C(=O)OC)[$][$]}|poisson(1000)|C(C)(C)C#N"
Add the mixture notation, with half the molecular weight of this type of␣

↪polymers
generative_bigSMILES += ".|5e3|"
print(generative_bigSMILES)

N#CC(C)(C){[$][$]CC(C(=O)OC)[$][$]}|poisson(1000)|[H].|1e4|N#CC(C)(C){[$][$]CC(C

24

(=O)OC)[$][$]}|poisson(1000)|{[$][$]CC(C(=O)OC)[$][$]}|poisson(1000)|C(C)(C)C#N.
|5e3|

[40]: # Upon generating multiple molecules, we find some are recombined (larger with␣
↪two `N#C` end groups), while others are non-recombined polymers with a␣
↪hydrogen end group

draw_molecule(generative_bigSMILES)

[40]:

We can repeat the draw_molecule(generative_bigSMILES) command to visualize different in-
stances of polymer generation:

[41]: draw_molecule(generative_bigSMILES)

[41]:

[42]: draw_molecule(generative_bigSMILES)

[42]:

25

[43]: draw_molecule(generative_bigSMILES)

[43]:

[44]: draw_molecule(generative_bigSMILES)

[44]:

1.12 Homopolymer: AA, BB Nylon 6,6
Nylon 6,6 constitutes two alternating repeat units in an AA,BB sequence. This can be effectively
represented in BigSMILES using directed bond descriptors [<], [>]. Here’s the corresponding
representation:

{[][<]C(=O)CCCCC(=O)[<],[>]NCCCCCCN[>];[>]O, [<][H][]}

The same applies for generative BigSMILES. Once we incorporate a molecular weight distribution
for step-growth polymerization, it enables the generation of realistic polymers.

[45]: generative_bigSMILES = "{[][<]C(=O)CCCCC(=O)[<],[>]NCCCCCCN[>]; [<][H], [>]O␣
↪[]}|flory_schulz(4e-3)|"

draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[45]:

26

[46]: draw_generation_graph(generative_bigSMILES)

[46]:

{[][<]C(=O)CCCCC(=O)[<], [>]NCCCCCCN[>]; [<][H], [>]O[]}|flory_schulz(0.004)|

[<]C(=O)CCCCC(=O)[<]

[<] w=1.0

atom = 0

[<] w=1.0

atom = 6

[>] w=1.0

r = 0.5

[>] w=1.0

r = 0.5

[>] w=1.0

t(stochastic) = 1.0

r = 0.5

r = 0.5

t(stochastic) = 1.0

[>]NCCCCCCN[>]

atom = 0

atom = 7

r = 0.5

r = 0.5

[<] w=1.0

t(stochastic) = 1.0

r = 0.5

r = 0.5

t(stochastic) = 1.0

[<][H]

atom = 0r = 0.5

r = 0.5

t(stochastic) = 1.0

[>]O

atom = 0

r = 0.5

r = 0.5

t(stochastic) = 1.0

This authentic representation of Nylon 6,6 allows the generation to either conclude on an A unit
[<]C(=O)CCCCC(=O)[<], which is stochastically terminated with [>]O, or a B unit [>]NCCCCCCN[>]
that ends with [<][H]. This is a typical scenario, which becomes evident as we generate more
instances of the ensemble. However, to specify the repeat unit with which the generation should
end, we need to delve deeper in the next section.

[47]: draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The

27

system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[47]:

[48]: draw_molecule(generative_bigSMILES)

[48]:

1.13 Terminal Groups
As alluded to earlier, having advanced control over the terminal groups enables the description of
diverse molecules. Transitioning from realistic Nylon 6,6 with two distinct stochastic endgroups to
polyamide necessitates us to define explicitly the desired end group.

1.13.1 Explicit: Polyamide

In BigSMILES, polyamide can be described as follows: [H]O{[>][<]C(=O)CCCCC(=O)[<],[>]NCCCCCCN[>][<]}[H].
With the appropriate terminal bond descriptor [<] oriented towards the left, this molecule must
end with the B group NCCCCCCN.

A direct translation into generative BigSMILES isn’t feasible here, since a stochastic generation
could end with an A group. This situation could result in a missing corresponding end group to
terminate the generation. Instead, we can define two possible end groups, with one adding a B unit
prior to termination.

[H]O{[>][<]C(=O)CCCCC(=O)[<],[>]NCCCCCCN[>]; [<][H], [>]NCCCCCCN[H] []}

28

[49]: generative_bigSMILES = "O{[>][<]C(=O)CCCCC(=O)[<],[>]NCCCCCCN[>]; [<][H],␣
↪[>]NCCCCCCN[H] []}|flory_schulz(1e-3)|"

draw_molecule(generative_bigSMILES)

[49]:

[50]: draw_molecule(generative_bigSMILES)

[50]:

1.13.2 Mixed

Stochastic end groups can also be applied in a mixed setting, where some sections of a stochastic
object are terminated stochastically and others are terminated deterministically.

The bottlebrush from the primary manuscript serves as a perfect example of this scenario. Here,
the arms are terminated with a stochastic end group [H], while the backbone concludes with a
bromine.

[51]: generative_bigSMILES = "N#CC(C)(C){[$] O([<|3|])(C([$])C[$]), [>]CCO[<|0 0 0 1␣
↪0 2|] ; [>][H] [$]}|poisson(900)|Br"

draw_molecule(generative_bigSMILES)

[51]:

29

[52]: draw_generation_graph(generative_bigSMILES)

[52]:

N#CC(C)(C)[$|0.0|]{[$]O([<|3.0|])(C([$])C[$]), [>]CCO[<|0.0 0.0 0.0 1.0 0.0 2.0|]; [>][H][$]}|poisson(900.0)|[$]Br

N#CC(C)(C)[$]

[$] w=0.0

atom = 2

[$] w=1.0

t(suffix) = 0.5

[$] w=1.0

t(suffix) = 0.5

O([<])(C([$])C[$])

[<] w=3.0

atom = 0

atom = 1

atom = 2

[>] w=1.0

r = 1.0

[>] w=1.0

t(stochastic) = 1.0

r = 0.5

r = 0.5

[$] w=1.0

t(suffix) = 1.0

r = 0.5

r = 0.5

t(suffix) = 1.0

[>]CCO[<]

atom = 0

[<] w=3.0

atom = 2

r = 0.5

r = 0.5

r = 0.0

r = 0.0

r = 0.0

r = 0.33

r = 0.0

r = 0.67

[>][H]

atom = 0

r = 0.5

r = 0.5

[$]Br

atom = 0

1.14 Star Polymers
Star polymers are a unique class of polymers characterized by a central hub from which several
arms extend outwards. A BigSMILES representation of a star polymer might look like this:

OC({[$][$]CC[$][$]}[H])({[$][$]CC[$][$]}[H])({[$][$]CC[$][$]}[H])

There are various approaches to represent star polymers in generative BigSMILES, which we will

30

explore in the subsequent sections.

1.14.1 Starting with a Central Hub to Grow Arms

A suitable starting point for generative BigSMILES of star polymers is the central connection point
for the arms. In the given example, I am using a 3-arm polymer, so the central connecting element
may appear as: C(C[<])(C[<])(C[<]). The three arms of the polymer can sprout from the three
[<] bond descriptors.

We use a trick to ensure that the generation begins with this element by separating one atom (in
this case [H]) from the initial carbon of the stochastic element and placing it as the prefix:

[H]{[$] [$]C(C[<])(C[<])(C[<]) ...

Here, the [$] bond descriptor is the right terminal bond descriptor and is only compatible with
our initial central element.

Equal Length Arms Next, we append the growth repeat units for the arms and add the terminal
group for the arms to the stochastic element, ensuring each is only compatible with the other.

[H]{[$] [$]C(C[<])(C[<])(C[<]), [>]CC[<]; [>][H] []}

Now, we just need to add a molecular weight distribution. This distribution encompasses the length
of the combined arms as they grow stochastically. The Gaussian distribution is a good fit for this
task due to its linearity. By adding up the means and variances of the separate arms, we can
achieve a Gaussian distribution for them. For example, let’s assume we desire arms with an Mw of
200 and a variance of 50. Note that the arm length growth is entirely stochastic in this case.

[H]{[$] [$]C(C[<])(C[<])(C[<]), [>]CC[<]; [>][H] []}|gauss(600, 150)|

[53]: generative_bigSMILES = "[H]{[$] [$]C(C[<])(C[<])(C[<]), [>]CC[<]; [>][H]␣
↪[]}|gauss(600, 150)|"

[54]: draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[54]:

31

[55]: draw_generation_graph(generative_bigSMILES)

[55]:

[H][$|0.0|]{[$][$]C(C[<])(C[<])(C[<]), [>]CC[<]; [>][H][]}|gauss(600.0, 150.0)|

[H][$]

[$] w=0.0

atom = 0

[$] w=1.0

t(suffix) = 1.0

[$]C(C[<])(C[<])(C[<])

atom = 0

[<] w=1.0

atom = 1

[<] w=1.0

atom = 2

[<] w=1.0

atom = 3

r = 1.0

[>] w=1.0

r = 1.0

[>] w=1.0

t(stochastic) = 1.0

r = 1.0

t(stochastic) = 1.0

r = 1.0

t(stochastic) = 1.0

[>]CC[<]

atom = 0

[<] w=1.0

atom = 1

r = 0.25

r = 0.25 r = 0.25

r = 0.25r = 1.0

t(stochastic) = 1.0

[>][H]

atom = 0

r = 0.25

r = 0.25 r = 0.25

r = 0.25

Non-equal Length Arms In the case where the arms are not of equal length, we can describe
this similarly to random copolymers by assigning different weights to different growth repeat units.

[H]{[$] [$]C(C[<])(C[<])(C[<2]), [>]CC[<], [>2]CCO[<2]; [>][H], [>2][Si](C)(C)C
[]}|gauss(600, 150)|

Here we utilize the third attachment point to affix a separate arm with a unique chemistry
[>2]OCO[<2] and a unique end group for it [>2]O. It is noteworthy that it isn’t necessary to
have separate chemistries here, just different bond descriptors suffice.

[56]: generative_bigSMILES = "[H]{[$][$]C(C[<])(C[<])(C[<2]), [>]CC[<], [>2]OCO[<2];␣
↪[>][H], [>2]O []}|gauss(600, 150)|"

draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[56]:

32

Next, we can assign different weights to this special arm, making it shorter or longer relative to
the other arms. Here we increase the weight from the default |1| to |2|, thus making it twice as
likely to grow the second arm.

[57]: generative_bigSMILES = "[H]{[$] [$]C(C[<])(C[<])(C[<2|2|]), [>]CC[<],␣
↪[>2|2|]OCO[<2|2|]; [>][H], [>2]O []}|gauss(800, 200)|"

draw_molecule(generative_bigSMILES)

[57]:

[58]: draw_generation_graph(generative_bigSMILES)

[58]:

33

[H][$|0.0|]{[$][$]C(C[<])(C[<])(C[<2|2.0|]), [>]CC[<], [>2|2.0|]OCO[<2|2.0|]; [>][H], [>2]O[]}|gauss(800.0, 200.0)|

[H][$]

[$] w=0.0

atom = 0

[$] w=1.0

t(suffix) = 1.0

[$]C(C[<])(C[<])(C[<2])

atom = 0

[<] w=1.0

atom = 1

[<] w=1.0

atom = 2

[<2] w=2.0

atom = 3

r = 1.0

[>] w=1.0

r = 1.0

[>] w=1.0

t(stochastic) = 1.0

r = 1.0

t(stochastic) = 1.0

[>2] w=2.0

r = 1.0

[>2] w=1.0

t(stochastic) = 1.0

[>]CC[<]

atom = 0

[<] w=1.0

atom = 1

r = 0.33

r = 0.33

r = 0.33 r = 1.0

t(stochastic) = 1.0

[>2]OCO[<2]

atom = 0

[<2] w=2.0

atom = 2

r = 0.5

r = 0.5 r = 1.0

t(stochastic) = 1.0

[>][H]

atom = 0

r = 0.33

r = 0.33

r = 0.33

[>2]O

atom = 0

r = 0.5

r = 0.5

1.14.2 Regulating Arm Molecular Weight

There may be situations where it’s necessary to control the molecular weight of each individual arm
in a polymer. While this can be accomplished with nested stochastic objects, such functionality
isn’t supported by this reference implementation. Nevertheless, generative BigSMILES can still
perform this task as long as the arms originate from separate atoms.

Consider the following BigSMILES example, where each stochastic object describes a separate arm:

C{[$] [$]C(CC[<])C[$], [>]CC[<]; [>][H] [$]}CC{[$] [$]C(CC[<])C[$], [>]CC[<];
[>][H] [$]}CC{[$] [$]C(CC[<])C[$], [>]CC[<]; [>][H] [$]}[H]

To ensure smooth generation with generative BigSMILES, we need to make a few modifications:

1. We assign a molecular weight distribution to each stochastic object, representing an arm.
2. The bond descriptors connecting the arms (and stochastic objects) are distinct from the arms,

denoted here by [$] and [>].
3. These bond descriptors are also assigned zero weight, preventing the element from being

repeated and ensuring only one arm per stochastic element.
4. We illustrate two variations to achieve this; both work equally well.
5. Finally, we ensure that terminal bond descriptors propagate to the next arm stochastic ele-

ment.

This approach allows for the independent control of the molecular weight of each arm.

[59]: generative_bigSMILES = "C{[$] [$]C(CC[<])C[$2|0|], [>]CC[<]; [>][H]␣
↪[$2]}|uniform(100,101)|"

34

generative_bigSMILES += "C{[$] [$]C(CC[<])C[$2|0|], [>]CC[<]; [>]O␣
↪[$2]}|schulz_zimm(200,150)|"

generative_bigSMILES += "C{[$] [$|0|]C(CC[<])C[$|0|], [>]CC[<]; [>]C(=O)␣
↪[$]}|gauss(300,30)|[Br]"

draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[59]:

[60]: draw_generation_graph(generative_bigSMILES)

[60]:

C[$|0.0|]{[$][$]C(CC[<])C[$2|0.0|], [>]CC[<]; [>][H][$2]}|uniform(100, 101)|[$2]C[$|0.0|]{[$][$]C(CC[<])C[$2|0.0|], [>]CC[<]; [>]O[$2]}|schulz_zimm(200.0, 150.0)|[$2]C[$|0.0|]{[$][$|0.0|]C(CC[<])C[$|0.0|], [>]CC[<]; [>]C(=O)[$]}|gauss(300.0, 30.0)|[$][Br]

C[$]

[$] w=0.0

atom = 0

[$] w=1.0

t(suffix) = 1.0

[$]C(CC[<])C[$2]

atom = 0

[<] w=1.0

atom = 2

[$2] w=0.0

atom = 3

r = 1.0

[>] w=1.0

r = 1.0

[>] w=1.0

t(stochastic) = 1.0

[$2] w=1.0

t(suffix) = 1.0

[>]CC[<]

atom = 0

[<] w=1.0

atom = 1

r = 0.5

r = 0.5r = 1.0

t(stochastic) = 1.0

[>][H]

atom = 0

r = 0.5

r = 0.5

[$2]C[$]

atom = 0

[$] w=0.0

atom = 0

[$] w=1.0

t(suffix) = 1.0

[$]C(CC[<])C[$2]

atom = 0

[<] w=1.0

atom = 2

[$2] w=0.0

atom = 3

r = 1.0

[>] w=1.0

r = 1.0

[>] w=1.0

t(stochastic) = 1.0

[$2] w=1.0

t(suffix) = 1.0

[>]CC[<]

atom = 0

[<] w=1.0

atom = 1

r = 0.5

r = 0.5r = 1.0

t(stochastic) = 1.0

[>]O

atom = 0

r = 0.5

r = 0.5

[$2]C[$]

atom = 0

[$] w=0.0

atom = 0

[$] w=0.0

t(suffix) = 0.0

[$] w=0.0

t(suffix) = 0.0

[$]C(CC[<])C[$]

atom = 0

[<] w=1.0

atom = 2atom = 3

[$] w=1.0

t(suffix) = 1.0

[>] w=1.0

r = 1.0

[>] w=1.0

t(stochastic) = 1.0

t(suffix) = 1.0

[>]CC[<]

atom = 0

[<] w=1.0

atom = 1

r = 0.5

r = 0.5r = 1.0

t(stochastic) = 1.0

[>]C(=O)

atom = 0

r = 0.5

r = 0.5

[$][Br]

atom = 0

1.15 Ring Polymer
A stochastic ring polymer can be represented in BigSMILES using connection notation 1 across
a stochastic object, like so: C1{[>][<]CCO[>][<]}CO1. Here, the first carbon atom and the last
oxygen atom complete the ring with a covalent bond, each labeled with 1.

This can be replicated in generative BigSMILES: C1{[>][<]CCO[>][<]}|poisson(1000)|CO1.

35

However, the current reference implementation doesn’t support connection across a stochastic ob-
ject.

Note: The reasoning behind this lack of support is that every SMILES token must be a valid
SMILES string for a molecule. Neither the prefix C1 nor the suffix CO1 are valid SMILES strings
for molecule generation.

1.16 Hyper-Branched Polymer: Poly-Ethylene
The BigSMILES for branched poly-ethylene can be defined as: C{[$][$]CC([$])[$],[$]CC[$];
[$][H][$]}[H].

Generative BigSMILES provides more control. Firstly, a molecular weight distribution, Flory-
Schulz in this case, is added:

[61]: generative_bigSMILES = "C{[$][$]CC(CC[$])(CC[$]),[$]CC[$];␣
↪[$][H][$]}|flory_schulz(1e-3)|[H]"

draw_molecule(generative_bigSMILES)

/home/ludwig/git/bigSMILESgen/bigsmiles_gen/system.py:70: UserWarning: The
system cannot be fully generated, since the total system molecular weight cannot
be estimated.

warn(
[61]:

Furthermore, the branch point density can be stochastically controlled via the weights of bond
descriptors. In this example, all bond descriptors in a branch point repeat unit are assigned a
weight of 1/10. The resulting transition probabilities can be interpreted from the generation graph:

[62]: generative_bigSMILES = "C{[$][$|.1|]CC(CC[$|.1|])(CC[$|.1|]),[$]CC[$];␣
↪[$][H][$]}|flory_schulz(5e-3)|[H]"

draw_molecule(generative_bigSMILES)

[62]:

36

[63]: draw_generation_graph(generative_bigSMILES)

[63]:

C[$|0.0|]{[$][$|0.1|]CC(CC[$|0.1|])(CC[$|0.1|]), [$]CC[$]; [$][H][$]}|flory_schulz(0.005)|[$][H]

C[$]

[$] w=0.0

atom = 0

[$] w=0.1

t(suffix) = 0.04

[$] w=0.1

t(suffix) = 0.04

[$] w=0.1

t(suffix) = 0.04

[$] w=1.0

t(suffix) = 0.43

[$] w=1.0

t(suffix) = 0.43

[$]CC(CC[$])(CC[$])

atom = 0

atom = 3

atom = 5

r = 0.04

r = 0.04

r = 0.04

r = 0.43

r = 0.43

[$] w=1.0

t(stochastic) = 1.0

[$] w=1.0

t(suffix) = 1.0

r = 0.04

r = 0.04

r = 0.04

r = 0.43

r = 0.43

t(stochastic) = 1.0

t(suffix) = 1.0

r = 0.04

r = 0.04

r = 0.04

r = 0.43

r = 0.43

t(stochastic) = 1.0

t(suffix) = 1.0

[$]CC[$]

atom = 0

atom = 1

r = 0.04

r = 0.04

r = 0.04

r = 0.43

r = 0.43

t(stochastic) = 1.0

t(suffix) = 1.0

r = 0.04

r = 0.04

r = 0.04

r = 0.43

r = 0.43

t(stochastic) = 1.0

t(suffix) = 1.0

[$][H]

atom = 0

r = 0.04

r = 0.04

r = 0.04

r = 0.43

r = 0.43

t(stochastic) = 1.0

[$][H]

atom = 0

1.17 Excluding Internal Loops: Low-Density Polyethylene
Low-density polyethylene can form loops during synthesis. That is, high branching can lead to rings
within a single molecule. However, Generative BigSMILES currently doesn’t support this. Like
cross-linked networks, we believe that spatial considerations should be incorporated into molecule
generation, a function beyond the capacity of line notations. In the future, we might consider an
extension to the Generative BigSMILES notation to cover this situation. For now, if a polymer
ensemble is more restrictively defined with Generative BigSMILES, molecules with loops are always
excluded.

37

1.18 Bond Descriptor ID for Reaction probabilities
The advanced notation allows for a reaction probability to be specified between each of the bond
descriptors. This is how the ID and weights are assigned:

So in this bottle brush scenario, we have a zero weight for the bond descriptors: 1: [<|3|], 2:[$],
3: [$], and 5: [<|0 0 0 1 0 2|]. A weight of 1 for the 4th bond descriptor [>] and a weight
of 2 for the bond descriptor of the end group 6: [>].

Note how terminal bond descriptors do not have an ID and IDs for bond descriptors are always
only assigned within one stochastic object.

1.19 Validating Molecular Weight
In prior sections, we focused on single molecule examples. Now, we’ll ensure that the properties
of entire ensembles are also consistent with our expectations. Our starting point is the targeted
molecular weight of stochastic entities.

We begin by crafting a function to analyze and visualize the distribution of G-BigSMILES
strings. Remember, we’re considering full ensembles in this context, necessitating the
bigsmiles_gen.System specification along with a molecular weight descriptor. While we showcase
the Gaussian distribution for its appealing linear characteristics, the approach—aside from merging
two stochastic entities—remains unchanged. Other distributions undergo separate unit testing.

Note: Creating complete ensembles significantly extends the execution time compared to single
molecule generation. Anticipate each test to span several minutes.

[64]: import matplotlib.pyplot as plt

from IPython.display import clear_output

def plot_distribution(bigsmiles, expected_mu, expected_sigma, bins=25):
Generate the ensemble of molecules
bigsmiles_system = bigsmiles_gen.System(bigsmiles)
generated_weights = []
total_weight = 0
for gen_mol in bigsmiles_system.generator:

mol_weight = gen_mol.weight
generated_weights += [mol_weight]
total_weight += mol_weight
update_progress(total_weight/bigsmiles_system.system_mass)

hist, bin_edges = np.histogram(generated_weights, bins=bins, density=True)
mw = bin_edges[:-1] + (bin_edges[1]-bin_edges[0])/2

Generate the expected mw distribution data

38

def gaussian(x, mu, sigma):
return 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-1/2* (x-mu)**2/sigma**2)

expected = gaussian(mw, expected_mu, expected_sigma)

Plot the result
fig, ax = plt.subplots()
ax.set_xlabel("Mw")
ax.set_ylabel("p(Mw)")

ax.plot(mw, expected, label="expected distribution")
ax.plot(mw, hist, label="generated distribution")
ax.legend(loc="best")

plt.show()
plt.close(fig)

Return the mean squared difference between the expected and actual␣
↪distribution distributions

return np.sqrt(np.mean((expected-hist)**2)) * expected_mu

1.19.1 Simple Linear Polymer

[65]: # In testing environments only run on the linux systems:
if IS_LINUX or not TESTING_ENV:

mu = 5e3
sigma = 1e3
generative_bigSMILES = "[H]{[>] [<]CC([>])c1ccccc1 [<]}|gauss("+str(mu)+",␣

↪"+str(sigma)+")|[H].|5e6|"
normalized_deviation = plot_distribution(generative_bigSMILES, mu, sigma)
Let's make sure our expectations are fulfilled (important for automated␣

↪tests)
if normalized_deviation > 0.5:

raise RuntimeError(f"The actual distribution deviates from the expected␣
↪distribution {normalized_deviation}")

Progress: [####################] 100.0%

39

The produced ensemble closely aligns with the anticipated distribution.

1.19.2 Bottlebrush Structure

[66]: # In testing environments only run on the linux systems:
if IS_LINUX or not TESTING_ENV:

mu = 5e3
sigma = 1e3
generative_bigSMILES = "N#CC(C)(C){[$] O([<|3|])(C([$])C[$]), [>]CCO[<|0 0␣

↪0 1 0 2|] ; [>][H] [$]}|gauss("+str(mu)+", "+str(sigma)+")|[Br].|1e6|"
normalized_deviation = plot_distribution(generative_bigSMILES, mu, sigma)
Let's make sure our expectations are fulfilled (important for automated␣

↪tests)
if normalized_deviation > 0.5:

raise RuntimeError(f"The actual distribution deviates from the expected␣
↪distribution {normalized_deviation}")

Progress: [####################] 100.2%

40

For this intricate scenario with numerous end groups, the resulting distribution aligns closely with
the anticipated one, as foreseen. We utilize a smaller ensemble in this instance due to its elevated
computational demand, leading to increased fluctuations.

1.19.3 Diblock Copolymer: PS-PMMA

Given the linearity of the Gaussian distribution, the combined molecular weight of the two blocks
is Gaussian-distributed. Both the mean and variance are sums of their respective blocks’ mean and
variance.

[67]: # In testing environments only run on the linux systems:
if IS_LINUX or not TESTING_ENV:

mu_ps = 2e3
mu_pmma = 3e3
sigma_ps = 1e3
sigma_pmma = 2e3
generative_bigSMILES = "CCOC(=O)C(C)(C){[>][<]CC([>])c1ccccc1␣

↪[<]}|gauss("+str(mu_ps)+",␣
↪"+str(sigma_pmma)+")|{[>][<]CC([>])C(=O)OC[<]}|gauss("+str(mu_pmma)+",␣
↪"+str(sigma_pmma)+")|[Br].|1e6|"

41

normalized_deviation = plot_distribution(generative_bigSMILES,␣
↪mu_ps+mu_pmma, sigma_ps+sigma_pmma)

Let's make sure our expectations are fulfilled (important for automated␣
↪tests)

if normalized_deviation > 0.5:
raise RuntimeError(f"The actual distribution deviates from the expected␣

↪distribution {normalized_deviation}")

Progress: [####################] 100.1%

Owing to its linear nature, the total molecular weight distribution of the diblock copolymer adheres
to the expected distribution derived from combining the molecular weights of the individual blocks.

1.19.4 Limitation: Self-Terminating Generation

Using list weights, one can dictate a premature termination of generation by assigning a non-zero
probability to an end group. In such instances, the resultant molecular weight distribution might
not align with the specified distribution in the string. This discrepancy is a recognized limitation,
and this example serves as a cautionary note for users.

In our demonstration, there’s a 1 in 40 probability that the polymer generation halts prematurely.

42

[68]: # In testing environments only run on the linux systems:
if IS_LINUX or not TESTING_ENV:

mu = 5e3
sigma = 1e3
generative_bigSMILES = "[H]{[>] [<]CC([>|40 0 1|])c1ccccc1 ; [<][H]␣

↪[]}|gauss("+str(mu)+", "+str(sigma)+")|.|1e6|"
normalized_deviation = plot_distribution(generative_bigSMILES, mu, sigma)
Let's make sure our expectations are fulfilled (important for automated␣

↪tests)
if normalized_deviation < 0.5:

raise RuntimeError(f"We expect the distributions to clearly deviate,␣
↪which is not the case. {normalized_deviation}")

Progress: [####################] 100.3%

Upon juxtaposing the distributions, a noticeable divergence is evident. The molecular weight dis-
tribution that’s generated skews significantly towards lower molecular weights. This is anticipated
since the generation can halt prematurely. While the resultant distribution bears resemblance to
a geometric distribution, it isn’t a precise match. The inherent Gaussian distribution can also
interrupt the generation. Consequently, we detect a peak in higher molecular weights, proximate
to the expected mean of the Gaussian distribution.

43

	Supporting Information
	Preliminary Code for Visualization
	Case Study: PS and PMMA
	PS-r-PMMA with Molecular Weight Distribution
	Adjusting the PS to PMMA Ratio to 80:20
	Modifying PS-r-PMMA blockiness to 70% with a 50:50 ratio
	Adjusting Blockiness: 70% for PS and 20% for PMMA
	PS-r-PMMA in an alternating sequence (least blocky)
	PS-b-PMMA Diblock Copolymer
	PS and PMMA Homopolymer Mixtures
	Polymer Tacticity with Generative BigSMILES
	Atactic Polypropylene (PP)
	Isotactic PP
	Syndiotactic PP
	Stereo Enriched PP

	Radical Polymerization with Recombination (Coupling)
	Homopolymer: AA, BB Nylon 6,6
	Terminal Groups
	Explicit: Polyamide
	Mixed

	Star Polymers
	Starting with a Central Hub to Grow Arms
	Regulating Arm Molecular Weight

	Ring Polymer
	Hyper-Branched Polymer: Poly-Ethylene
	Excluding Internal Loops: Low-Density Polyethylene
	Bond Descriptor ID for Reaction probabilities
	Validating Molecular Weight
	Simple Linear Polymer
	Bottlebrush Structure
	Diblock Copolymer: PS-PMMA
	Limitation: Self-Terminating Generation

