
Supplementary Material for “Benchmarking machine-readable vectors

of chemical reactions on computed activation barriers”

Puck van Gerwen, Ksenia R. Briling,
Yannick Calvino Alonso, Malte Franke

and Clemence Corminboeuf∗

Laboratory for Computational Molecular Design,
Institute of Chemical Sciences and Engineering,

Ecole Polytechnique Federale de Lausanne,
1015 Lausanne, Switzerland

March 8, 2024

Contents

S1 Hyperparameters S2
S1.1 Kernel models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2
S1.2 Random Forest models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2
S1.3 Chemprop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3
S1.4 Language models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3
S1.5 EquiReact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3

S2 Data augmentation for language models S4

S3 RXNMapper confidence S4

S4 SMILES for Proparg-21-TS S4
S4.1 Failed conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4
S4.2 Comparison of xyz2mol, fragment-based and stereochemistry-enriched SMILES . . . . . . . . . . S4

∗email: clemence.corminboeuf@epfl.ch

S1

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024



S1 Hyperparameters

S1.1 Kernel models

The best hyperparameters were found in a grid search of kernel function ∈ [Laplacian (laplacian) KL(x,x
′) =

exp (−γ||x− x′||1), Gaussian (rbf) KG(x,x
′) = exp(−||x − x′||2/(2σ2))]; the Laplacian kernel coefficient

γ ∈ [10−5, 10−4, 10−3, 10−2, 0.1, 1]; Gaussian width σ ∈ [1, 10, 100, 103, 104]; and L2-regularization parameter
λ ∈ [10−10, 10−7, 10−4]. The best hyperparameters for the first fold are given for the two representations
SLATMd and B2R2

l in Table S1.

Dataset (geometries)
SLATMd B2R2

l

kernel γ / σ λ kernel γ / σ λ

GDB7-22-TS (DFT) laplacian 10−2 10−10 laplacian 10−4 10−4

GDB7-22-TS (xTB) laplacian 10−2 10−4 laplacian 10−4 10−4

Cyclo-23-TS (DFT) laplacian 10−3 10−10 laplacian 10−4 10−10

Cyclo-23-TS (xTB) rbf 101 10−10 rbf 102 10−4

Proparg-21-TS (DFT) rbf 104 10−10 laplacian 10−5 10−10

Proparg-21-TS (xTB) rbf 103 10−4 rbf 103 10−4

Table S1: Hyperparameters for the SLATMd and B2R2
l representations combined with kernel models, optimized

on the first fold.

Note that in earlier works,S1,S2 only Gaussian kernels were considered for these representations. The inclusion
of Laplacian kernels in the hyperparameter optimization improved the accuracies of the ML models for most of
the datasets studied here.

S1.2 Random Forest models

The best hyperparameters are found in a Bayesian search through the parameter space detailed in Table S2.
The best parameters found for the DRFP and MFP models are given in Table S3.

Parameter Search space

max depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
n estimators [100, 155, 211, 266, 377, 433, 488, 544, 600]
max features [log2, sqrt]

min samples split [2, 5, 10]
min samples leaf [1, 2, 4]

bootstrap [True, False]

Table S2: Search space for the Bayesian optimization of hyperparameters for RF models.

Parameter
MFP DRFP

GDB7-22-TS Cyclo-23-TS Proparg-21-TS GDB7-22-TS Cyclo-23-TS Proparg-21-TS

max depth 90 50 10 70 80 10
n estimators 355 233 477 172 294 50
max features sqrt sqrt sqrt sqrt sqrt sqrt

min samples split 5 2 5 2 2 5
min samples leaf 1 1 1 1 1 1

bootstrap False False False False False False

Table S3: Optimal parameters obtained from a hyperparameter search for the MFP and DRFP representations
used with RF models, for each dataset.
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S1.3 Chemprop

The hyperparameter space to be searched is as implemented in chempropS3 version 1.6.1, and summarized again
in Table S4.

Parameter Search space

ffn hidden size [300, 400, 500, 600, 700, ..., 2400]
depth [2, 3, 4, 5, 6]

dropout [0.0, 0.05, 0.1, ..., 0.4]
ffn num layers [1, 2, 3]

Table S4: Search space for the Bayesian optimization of hyperparameters for the Chemprop model.

The best parameters resulting from the search are summarized in Table S5.

Parameter GDB7-22-TS Cyclo-23-TS Proparg-21-TS

ffn hidden size 2100 1500 400
depth 5 6 5

dropout 0.15 0.05 0.25
ffn num layers 2 3 3

Table S5: Best parameters resulting from the hyperparameter search for each dataset for the Chemprop model.

S1.4 Language models

Hyperparameters were optimized on the first fold of the datasets, without data augmentation. The learning
rate lr and dropout probability p were optimized over a grid: lr ∈ [10−5, 5× 10−5, 10−4, 5× 10−4, 10−3], p ∈
[0.2, 0.4, 0.6, 0.8]. The best parameters are summarized in Table S6.

Parameter GDB7-22-TS Cyclo-23-TS Proparg-21-TS

lr 10−4 10−4 5× 10−4

p 0.2 0.2 0.2

Table S6: Best parameters resulting from the hyperparameter search for each dataset for the language models.

S1.5 EquiReact

The optimal parameters for the EquiReact models are taken from Ref. S4 and are repeated below.

Parameter GDB7-22-TS Cyclo-23-TS Proparg-21-TS

atom mapping mode True None None
ns 64 64 64
nv 64 48 16
ng 48 48 16

nconv 3 3 3
rmax, Å 2.5 2.5 5
nneigh 50 10 50
pd 0.05 0.05 0.1

sum mode node both node

combine mode diff mlp diff

graph mode vector energy vector

learning rate 10−3 5× 10−4 10−3

weight decay 10−5 10−4 10−5

Table S7: Best model hyperparameters for EquiReact for the three datasets, evaluated on the first set of
random splits, as reported in Ref. S4
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S2 Data augmentation for language models

To verify whether the inclusion of data augmentation was beneficial, models were tested with 10 SMILES
randomizations (rand) and none. No intermediate numbers of randomizations were tested. The optimal set
of hyperparameters listed in Table S6 were used. Models were trained with a batch size of 32. The resulting
MAEs are summarized in Table S8. Since the models showed either improvement or no change with data
augmentation, we used 10x data augmentation for the results in the main text.

Dataset No rand MAE [kcal/mol] 10 rand MAE [kcal/mol]

GDB7-22-TS 10.70 ± 0.40 8.40 ± 0.25
Cyclo-23-TS 3.81 ± 0.14 3.57 ± 0.08

Proparg-21-TS 1.62 ± 0.15 1.63 ± 0.15

Table S8: A comparison of model MAEs for various datasets with and without data augmentation (10-fold),
trained for 1 epoch.

S3 RXNMapper confidence

RXNMapper reported an average confidence indicated in Table S9 for each of the three datasets. The confidence
is especially low for the Proparg-21-TS dataset, due to the foreign nature of the chemistry compared to the
data on which it was pre-trained.

Dataset Confidence

Cyclo-23-TS 0.64
GDB7-22-TS 0.87
Proparg-21-TS 0.28

Table S9: Average reaction mapping confidence as reported by RXNMapper.

S4 SMILES for Proparg-21-TS

S4.1 Failed conversion

The Proparg-21-TS datasetS5 contains 754 structures of intermediates before (2) and after (3) the rate-limiting
stereocontrolling transition state of the catalytic benzaldehyde propargylation reaction (Fig. S1). For one of the
entries in the datasetS5,S6 (labelled as 3jbp3R) the 2 structure corresponds to a non-covalent complex between 1
and benzaldehyde. xyz2mol from cell2mol failed to produce a disconnected molecular graph, thus we excluded
this entry from training.

S4.2 Comparison of xyz2mol, fragment-based and stereochemistry-enriched SMILES

xyz2mol from cell2mol correctly determined atom connectivity from xyz but failed in assigning bond types
and atom charges. For example, for 2 (Fig. S2a) in entry 1abp1R,S5 the SMILES string is

[H][C+]([H])C[C+]([H])[Si+2]1(Cl)(Cl)(O[C-]([H])[C-]2[C+]([H])[C+]([H])[C-]([H])[C-]([H])[C-]2[H])ON2[

C+]([H])[C-]([H])[C-]([H])[C+]([H])[C-]2[c+]2[c+]([H])[c-]([H])[c+]([H])[c-]([H])n2O1

which corresponds to an unreasonable structural formula shown in Fig. S2b. To address this issue, we built an
alternative set of SMILES strings using dataset-specific knowledge. We will refer to these as “fragment-based”
SMILES. They are constructed as follows.

Different entries of the dataset vary by: a) substituents in the bipyridine N,N ′-dioxide catalyst; b) ligand
rearrangement around the Si center; c) conformation of the coordinated benzaldehyde leading to different
enantiomers. Since the catalysts were assembled from a library of fragmentsS5,S6 and 2 and 3 core structures
persist across the dataset, the SMILES can be constructed using simple combinatorial rules. The resulting
SMILES string for 2 of entry 1abp1R reads

[Si-2]1([O+]=[C]([c]2[c]([H])[c]([H])[c]([H])[c]([H])[c]2[H])[H])([C](=[C]=[C]([H])[H])[H])([Cl])([Cl

])[O][n+]2[c]([c]([H])[c]([H])[c]([H])[c]2[H])-[c]2[c]([H])[c]([H])[c]([H])[c]([H])[n+]2[O]1
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Figure S1: The catalytic cycle for benzaldehyde propargylation reactions (reused with permission from Laplaza
et al. S7).

and the corresponding structural formula is shown in Fig. S2c. For a fraction (∼ 10%) of dataset entries, in 2
and/or 3 the bipyridine N,N ′-dioxide ligand forms only one bond with Si leaving it penta- or tetracoordinated,
respectively. These cases are automatically detected and alternative SMILES are assigned. These fragment-
based SMILES have correct bond types and reasonable formal atom charges.

We also assigned the formal atom charges to correspond to reasonable Lewis structures. The resulting
SMILES contain a hypervalent Si atom (as if it was in SiF6

2– ) and rdkitS8 cannot read them with default
settings. We suggest to use the following code snippet:

from rdkit import Chem

smiles_string = ...

mol = Chem.MolFromSmiles(smiles_string, sanitize=False)

Chem.SanitizeMol(mol, Chem.SanitizeFlags.SANITIZE_ALL ^ Chem.SanitizeFlags.SANITIZE_PROPERTIES)

mol = Chem.RemoveHs(mol, sanitize = False)

Chem.SanitizeMol(mol, Chem.SanitizeFlags.SANITIZE_ALL ^ Chem.SanitizeFlags.SANITIZE_PROPERTIES)

(b) (c)(a)

Figure S2: (a) 3D structure of 2 of dataset entry 1abp1R and its structure formulae corresponding to SMILES
generated by (b) cell2mol’s xyz2mol and (c) using combinatorial rules. In (b) the allene atom is mistakenly
saturated. Note that in (c) the Si stereo configuration is not reflected.

We constructed a third set of SMILES that partially encode stereochemistry information, which we will
refer to as “stereochemistry-enriched” SMILES. They are constructed as follows. The ligand rearrangement in
2 is indicated with @OH1–@OH30 SMILES stereo tags. The trigonal bipyramidal configuration of 3, as well as
configurations of “alternatively” coordinated Si atoms in 2 and 3, are not specified. Even though the coordinated
benzaldehyde conformation in 2 cannot be encoded with SMILES, it matches the configuration of the bound
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phenyl propargyl ketone product in 3 which is indicated with @ and @@ tags. This resulted in a set of injective
SMILES for the Proparg-21-TS dataset. We note that the procedure we used to atom-map the SMILES (graph
matching with the atom-mapped graphs obtained from xyz) could have switched the two Cl atoms possibly
affecting the Chemprop results.

Performance of the 2D-based methods with the three types of SMILES strings (from xyz2mol, fragment-
based and stereochemistry-enriched) is compared in Table S10. While the SMILES quality improves from
xyz2mol SMILES to combinatorial, only the MFP benefits slightly from the change. Most methods do not
change. Including stereochemistry information again leads to a marginal improvement in most cases, notably
in the Chemprop, but actually reduces the ability of other models including the DRFP. Unfortunately, the
SMILES-based methods are not written to exploit stereochemistry information. The DRFP for example looks
for circular substructures in reactants and products. The presence of stereochemistry flags may confuse the
notion of these substructures.

Model
SMILES source

xyz2mol combinatorial fixarom

MFP+RF 1.50 ± 0.13 1.46 ± 0.12 1.58 ± 0.17
DRFP+RF 1.53 ± 0.12 1.51 ± 0.12 1.45 ± 0.12

BERT+RXNFP 1.62 ± 0.15 1.55 ± 0.13 1.61 ± 0.16
Chemprop True 1.58 ± 0.10 1.59 ± 0.12 1.55 ± 0.10

Chemprop RXNMapper 1.60 ± 0.12 — —
Chemprop None 1.60 ± 0.12 1.59 ± 0.13 1.55 ± 0.13

Table S10: Comparison of 2D models MAEs [kcal/mol] for the Proparg-21-TS dataset on different sets of
SMILES. The BERT+RXNFP results are given for datasets without data augmentation, 10-fold cross-validated,
run for 5 epochs. The hyperparameters are those for the xyz2mol SMILES strings.

These results point to weaknesses in current 2D-structure based methods to handle datasets that vary in
stereochemistry, even when the stereochemistry is explicitly encoded in the SMILES strings.
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