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Supplementary Notes

Supplementary Note 1: Molecule representations by SMILES

Molecules can be represented as undirected graphs. Each atom is considered as a node, and 

bonds are considered edges connecting the nodes. Introduced by David Weininger in 1988,1 

SMILES (Simplified Molecular Input Line Entry System) have been used as a representation 

approach in computational chemistry and cheminformatics.2 SMILES is a string-based 

representation method. It is based on a molecular graph theory that defines molecular structures 

with predefined grammar rules. By following the specific rules, SMILES represents the topology 

of a molecule as a standard molecular graph.3 It is true that SMILES only includes 2D molecular 

information, but an accurate prediction in the properties of molecules in equilibrium do not need 

all conformational degrees of freedom of the molecules.4 In the SMILES representation, atomic 

symbols represent heavy atoms (e.g. C, N, F, P, S and O), “=” and “#” represent bond types (double 

and triple, respectively), numbers represent rings, and parentheses represent branches within a 

molecular structure.1 To reduce the complexity, hydrogen atoms are removed since they can be 

deduced from the chemistry valence rules.5 
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There are two sources of non-uniqueness in SMILES. First, there is an ambiguity about which 

atom to start the SMILES. Second, the choice of whether to include charge information in the 

resonance structure makes the SMILES representations not unique. The canonical SMILES 

following the standard rules defines the atoms and bonds of molecules in a defined order. Thus, 

there is a unique canonical SMILES. It should be noted that the canonical SMILES is considered 

neither a universal nor a global identifier since there are various code rules for generating SMILES 

in each system. We used an open-source cheminformatics suite, RDKit6 for both the input dataset 

and the generated samples. It represents unique SMILES for a given molecule.

The major challenge of using the SMILES representation is that a large fraction of strings 

generated by a probabilistic model do not represent valid molecules.2 The generated sequences are 

either syntactically invalid where the strings do not follow the SMILES grammar rule, or 

semantically invalid where they do not follow the chemistry rule. For instance, the sequence 

“CCCC(OCC” has an open parenthesis but not a closed one. The sequence “c1ccccc” has a starting 

point for a ring but no a closing point. They are examples of semantically invalid sequences. The 

string “CO(C)C”, on the other hand, does not follow the chemistry rule since number of the explicit 

valence state for oxygen is greater than the one permitted. It is semantically invalid.  

Researchers have proposed modified SMILES to solve the mentioned validity problems. They 

include DeepSMILES7 and SELFIES.2 In the SMILES syntax, branches are represented by balanced 

pairs of parentheses, an open parenthesis followed by atoms inside the branch and a close 

parenthesis to end the branch. For example, Isobutyric acid with two branches is represented as 

“CC(C)C(=O)O”. Moreover, rings are indicated by a pair of digits with the atoms between the two 

digits. For example, “c1ccccc1” represents a benzene ring consisting of 6 carbons. Thus, for the 

rings and branches, SMILES uses two symbols that must occur in pairs. DeepSMILES, invented by 
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O’Boyle and Dalke,7 solves the unbalanced parentheses problem in SMILES. It defines the 

branches by only the close parentheses. Also, it uses only one digit to show the ring. In future, we 

plan to investigate DeepSMILES. Krenn et al. very recently solved the problem at a fundamental 

level by introducing SELFIES (SELF-referencIng Embedded Strings). It is a string-based 

representation method like SMILES but has 100% robustness.2 In SELFIES, all the combinations 

of the strings are valid. However, the derivation rules are complicated and take lots of effort to be 

designed for a specific dataset. Also, applying such rules on the final generated sequences does 

not guarantee that the generator learns the rules and can generate only valid samples. Thus, 

SELFIES despite being 100% valid, might not be efficient for generative models capable of on-

target molecule generation. 

The choice of using SMILES-based encoding, particularly the one-hot encoding, was made 

based on specific considerations aligned with the objectives of our study. While grammar-based 

VAEs8 have indeed shown remarkable performance in certain cases, we opted for SMILES-based 

encoding for the following reasons: 

1) Interpretability and Simplicity: The one-hot encoding of SMILES allows for 

straightforward interpretability. Each character in the SMILES string corresponds to a specific 

atom or bond, making it easier to trace the encoding process and understand the generated 

representations.

2) Generality Across Molecular Structures: One-hot encoding of SMILES is agnostic to the 

complexity of molecular structures and can handle a wide range of chemical compounds, including 

those with diverse and intricate arrangements. It can also be used to represent very large molecules 

with many heavy atoms. 
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3) Computational Efficiency: One-hot encoding is computationally efficient, making it 

suitable for large-scale datasets and generative tasks where rapid processing is essential. 

4) Easy Validity Check: Using RDKit package, it is very easy to check the validity of the 

generated SMILES. 

Supplementary Note 2: Design and training of the reinforced regressional and conditional 

GAN (RRCGAN)

Architecture of the encoder. The encoder is a convolutional neural network (CNN) with an 

architecture shown in Fig. S2. It outputs fixed-dimensional latent vectors (6×6×2) that have the 

most statistically important information from the input discrete one-hot encoded matrices. As 

shown in Fig. S2, the encoder has two parallel networks that were fed with the same one-hot 

encoded matrices. Each layer has 4 sequential convolutional blocks that gradually reduce the size 

of the output of the previous layers that start from 40×27×1 and end with 6×6×1. Each 

convolutional block consists of a convolutional layer, a leaky ReLU activation function (AF), and 

a batch normalization layer. The four convolutional blocks are the followed by a convolutional 

layer and a Tanh AF to output a 6×6×1 vector with continuous number between -1 and 1. The two 

output of the parallel networks are then concatenated, resulting in the final latent matrices with 

6×6×2 dimensions. We hypothesized that one of the two parallel networks in the encoder 

architecture relates to atoms information and the another relates to bonds information.

Architecture of the decoder. The architecture of the decoder was modified from Google 

Inception V2, shown in Fig. S3. The decoder converts the latent vectors back to the original 

SMILES strings (input to the encoder). The advanced architecture of Inception V2 allows for 

increasing the depth and width of the network to convert the continuous vectors back to original 
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discrete SMILES representation. The original Inception V2 model has been used for classification 

tasks. Here, the decoder is used for a similar task, as it should come up with a probability for each 

possible 27 characters for every 40 different positions.

Architecture of the regressor. The structure of the regressor is shown in Fig. S4. It was 

modified from the Google Inception V2 model. The inception modules are activated by a leaky 

rectified linear unit (RELU). Some of the modules are followed by an extra max-pooling layer. 

The output from each module is flattened and then enters a RELU activated dense layer. 

Eventually, after an extra dense layer, the final output layer with 1 node can output normalized 

heat capacity.

Architecture of the generator. The architecture of the generator is shown in Fig. S5. To 

generate a latent vector with a desired heat capacity, the heat capacity is concatenated to a 

randomly generated noise vector z with a dimension of 128×1, which is then fed into the generator. 

The first five modules of the network consist of a deconvolutional layer which slides the reshaped 

input with a stride of 1. The activation function is a RELU. Two modules follow the first five 

modules. Their number of filters is reduced from 512 to 256 and then to 128. Finally, there is a 

deconvolutional layer to ensure that only one structure is generated at each iteration. It means that 

the generator synthesizes one latent vector (6×6×2) for each target value it receives. The tanh 

activation function is applied to the final layer for outputting continuous numbers ranging from -1 

to 1.

Architecture of the discriminator. The architecture of the discriminator, shown in Fig. S6, 

has two functions. The first function is to distinguish the synthesized latent vectors from the real 

ones, and the second one is to determine if a generated molecule corresponds to a desired heat 

capacity. By appending the information of the heat capacity, a single vector rather than a high-
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dimension tensor is a desired format of the data as an input to the discriminator. Therefore, instead 

of directly feeding a real or a synthesized latent vector to the discriminator, a latent vector of a 

structure is first concatenated with the corresponding heat capacity. And then the concatenated 

vector is fed as the input to the discriminator. The discriminator is trained to distinguish the real 

latent vectors from the synthesized ones. The discriminator has only one intermediate dense layer 

with 64 nodes, followed by a RELU activation layer. The output layer is a single-node dense layer 

activated by the sigmoid function, which forces 0 or 1 output, indicating fake or real ones, 

respectively.

Training of RRCGAN. The RRCGAN was designed and trained by Google’s TensorFlow 

API. Adam was selected as the optimizer for the encoder, decoder, generator, discriminator, and 

regressor. The training was performed on the high-performance computing infrastructure provided 

by Research Computing Support Services and in part by the National Science Foundation under 

grant number CNS-1429294 at the University of Missouri, Columbia.

Supplementary Note 3. Evaluation metrics

The discrepancies between the DFT calculated ΔEH-L of the generated molecules and the desired 

ΔEH-L and predicted ΔEH-L by the regressor, respectively, are evaluated by standard statistical 

metrics including the coefficient of determination (R2), mean absolute error (MAE), root mean 

squared error (RMSE) mean squared error (MSE), and relative error (RE). These metrics are 

provided as follows.
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where y is the desired ΔEH-L or predicted ΔEH-L by the regressor, ŷ is the DFT calculated ΔEH-L of 

the generated molecule, and ȳ is the average for all the samples. N is the total number of evaluated 

molecules. 

Supplementary Note 4. Predicting the gap values from structural features

To establish a quantitative relationship, we trained an XGBoost model which takes 18 structural 

features as input to predict the output ΔEH-L. These features include molecular weight (MW), 

number of heavy atoms, MW of heavy atoms, number of hydrogen acceptors, number of Hydrogen 

donors, number of hetero atoms, number of rotatable bonds, the sum of valence electrons in heavy 

atoms, number of aromatic rings, number of saturated rings, number of aliphatic rings, number of 

radical electrons, number of aliphatic carbocycles, number of aliphatic heterocycles, number of 

aromatic carbocycles, number of aromatic heterocycles, number of saturated carbocycles, and 

number of saturated heterocycles. The hyperparameters of the well-trained model are shown in 

Table S4. R2 of the targeted ΔEH-L of the generated samples vs. their predicted values is 0.94 for 

training and 0.89 for testing, respectively. Fig. S15 shows the rankings of the input features in 

determining ΔEH-L. The result shows that the type (aromatic, saturated, and aliphatic) and the 
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number of rings as well as the number of rotatable bonds and the number of hydrogen-bond 

acceptors are the most important features. Following those, molecular weight of the heavy atoms 

and the number of valence electrons are ranked as the subsequently important features. This 

observation agrees well with the results shown in Fig. 4. For instance, all the rings used in the first 

row of generated molecules in Fig. 4a with low ΔEH-L values are unsaturated rings that have some 

double bonds. 

The following 4 structural features of the molecules were used as the input to the XGBoost 

model for predicting the gap values. 

a) Number of Aliphatic Rings: The number of aliphatic rings in a molecule refers to the count 

of cyclic carbon structures that are not part of an aromatic system. The aliphatic rings can vary in 

size, e.g., three-membered cyclopropane, five-membered cyclopentane, and six-membered 

cyclohexane rings.

b) Number of Valence Electrons of the Heavy Atoms: The valence electrons of atoms are 

the electrons involved in chemical bonding. Heavy atoms typically refer to atoms other than 

hydrogen (H) in a molecule. The number of valence electrons of the heavy atoms in a molecule 

refers to the sum of the valence electrons contributed by each heavy atom. The valence electrons 

determine the atom's ability to form bonds with other atoms, and the count of these electrons affects 

the chemical properties and reactivity of the molecule.

c) Number of Radical Electrons: A radical electron, also known as an unpaired electron, is an 

electron that exists in an orbital without pairing with other electrons. These unpaired electrons are 

typically highly reactive and can participate in chemical reactions. The number of radical electrons 

in a molecule refers to the count of unpaired electrons present within its structure. Presence of the 

radical electrons can impact the molecule's stability and reactivity.
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d) Number of Heteroatoms: Heteroatoms are atoms other than carbon (C) and hydrogen (H) 

in a molecule. We considered molecules with elements nitrogen (N), oxygen (O), sulfur (S), 

phosphorus (P), and fluorine (F). The number of heteroatoms in a molecule refers to the count of 

these non-carbon, non-hydrogen atoms present. 
𝑆𝐴𝐵=

𝑐
𝑎+ 𝑏 ‒ 𝑐

Supplementary Note 5. Dimension reduction of latent spaces.

First, projection of the latent features is performed using principal component analysis (PCA). 

PCA derives components formed as a linear combination of the original variables that explain the 

most variance of the data. The results show that the PCA components of the latent features of the 

training and generated structures follow close distributions (Fig. S18a-b). We can observe well-

defined boundaries of molecules in high and low values of heat capacity for mapped latent features. 

Second, we performed a non-linear mapping, named Spectral Embedding (SE). SE uses Laplacian 

Eigenmaps to find a low dimensional representation of the latent features using a spectral 

decomposition of the graph Laplacian. We can test the hypothesis that the latent features can 

indeed explain how the model learns the structure-property relationship for catching the physical 

and chemical laws. Figure S18c and S18d show the spectral embedding values for the training and 

testing samples, respectively. For the training samples, the boundaries of the four ranges of heat 

capacity are clear. For the testing molecules, the very high and low values are clustered, but the 

middle values are mixed.

Supplementary Note 6. Data collection and curation.

From the published PubChemQC database (http://pccdb.org/), we manually downloaded 

~135K molecules. Because there are restrictions on downloading the molecules (up to 2000 
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molecules per file) and we have limited resources to download all the 3 million molecules. Using 

RDKit, canonical SMILES were extracted to represent the molecules. We picked 40 as the 

maximum number of characters in the extracted canonical SMILES and excluded any molecules 

with > 40 characters. We kept molecules with C, O, N, S, P, and F heavy atoms and removed any 

molecules with other heavy atoms, e.g, Si, resulting in ~132K molecules with their corresponding 

HOMO-LUMO gap values for model development. 

Supplementary Tables:

Table S1. Comparison of the regressor accuracy.

Model Descriptors Test MAE 
(eV, ↓) Test R2 (↑)

Base (mean) - 1.67 0.00

QMCVNet 
(Ref.9)

3D geometry descriptors 0.48 0.65

Our predictor SMILES 0.33 0.95

NNs with 
(Ref.10)

PaDEL, CDK, and modified 
distance descriptors 0.21 0.91

Table S2. Hyperparameters of RRCGAN.

Models Hyperparameters Values
Batch size 32
Epochs 1000
Adam learning rate 1×10-5Encoder-Decoder

Adam regularization term (β1) 0.9
Batch size 64
Epochs 150
Adam learning rate 5×10-7Regressor

Adam regularization term (β1) 0.9
Batch size 256

Discriminator
Epochs 150
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Adam learning rate 2×10-5

Adam regularization term (β1) 0.5
Batch size 256
Epochs 150
Adam learning rate 2×10-5Generator

Adam regularization term (β1) 0.5

Table S3. Comparison of the existing generative models for targeted molecule design.

Model Architecture Targeted 
property

Accuracy 
evaluation on 
new generated 

molecules?

One-to-one 
comparison of 

targeted vs. 
reached 
values?

Extrapolate 
the training 

dataset?

Experimental
ly validated? Ref.

RRCGAN

GAN (CNN) + 
Predictor 
(CNN)+ 

AE(CNN) + TL

QC 
property: 

ΔEH-L

Yes Yes Yes No Ours

ReLeaSE GAN(RNN) + 
predictor + RL MT No No Yes No [11]

Targeted 
generation 

model

GAN(RNN) + 
predictor + RL

logP: 
calculated 

from 
structure

No No Yes No [10]

Specialized 
RNN RNN + TL

QC 
property: 

ΔEH-L

No No No No [12]

ORGAN GAN + RL

Druglikenes
s: calculated 

from 
structure

No No No No [13]

ORGANIC GAN + RL MT No No Yes No [14]

Note: CNN: convolutional neural network, RNN: recurrent neural network, GAN: 

generative adversarial network, AE: autoencoder, RL: reinforcement learning, TL: 

transfer learning, QC: quantum chemical, MT: melting temperature. 

Table S4. Statistics of 132626 samples from PubChemQC database.
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Min. ΔEH-L Ave. ΔEH-L Max. ΔEH-L
# of samples 

> 10
% of 

samples > 10
# of samples 

> 10.5

1.05 5.94 10.99 461 0.35 % 23

Note: The unit for all the tabulated numbers is (eV).

Table S5. Hyperparameters of the XGBoost model.

Models Hyperparameters Values
max_depth 3
n_estimators 340
min_child_weight 31
learning_rate 0.13
gamma 0.01

XGBoost

subsample 0.8
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Supplementary Figures:

Figure S1. One-hot encoding a representative molecule with SMILES 

“CCN(C=O)C(C)(C(=O)O)c1ccccc1C” to a 40×27 matrix. The yellow pixels show value of “1” 

and the rest are “0”. 
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Figure S2. Schematic of the encoder. It takes one-hot encoded SMILES strings (40×27) as input 

and outputs latent vectors with dimension of (6×6×2). 
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Figure S3. A schematic of the decoder. It takes the latent vectors (6×6×2) as input and outputs 

one-hot encoded SMILES (40×27).
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Figure S4. Architecture of the regressor. It takes the latent vectors (6×6×2) as input and outputs 

the ΔEH-L values. 
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Figure S5. Architecture of the generator. It takes a random noise Z and a desired ΔEH-L as inputs 

and generates the latent vectors of the molecules in response to the targeted ΔEH-L.
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Figure S6. Architecture of the discriminator. It takes a real or fake (synthesized) latent feature 

which is concatenated with the corresponding ΔEH-L as inputs to output a probability of being real 

(closer to 0 means fake and to “1” means real).
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Figure S7. Loss evolution of the autoencoder during the training process. It shows that after 1000 

epochs training, the loss is stabilized, indicating a success of the training.
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Figure S8. Comparison of true versus converted one-hot encoded SMILES using the AE.. 

Ideally, they should be the same. Left figures show 3 training molecules, and the right figure are 

from 3 testing molecules. The lighter the color is, the closer probability of that string to 1 is.



21

Figure S9. Comparison of the targeted and predicted gap values for two randomly generated 

batches for a) (6×6×2) with an R2 of 0.70 and MAE of 0.91, and b) (8×8×2) with an R2 of 0.30 

and MAE of 1.7.
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Figure S10. Loss evolution of the regressor during the training process. It shows that after 100 

epochs training, the loss is stabilized, indicating a success of the training.
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Figure S11. Distribution of the regressor predicted ΔEH-L (in eV) and the true values of the 

molecules from the PubChemQC database.
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Figure S12. Loss evolution of the generator and discriminator during the training process. 

After 150 epochs, the losses of generator and discriminator were stabilized, showing a success of 

training. 
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Figure S13. Loss evolution of the generator and discriminator during the training process 

without reinforcement section. Even with 200 epochs, the losses of the generator and 

discriminator did not converge.  
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Figure S14. Distribution of the predicted values for ~2500 generated molecules 

corresponding to a targeted ΔEH-L value of 8.29 eV. Among the generated molecules, 85% of 

them have a predicted ΔEH-L value within 20% RE of the targeted one.
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Figure S15. Feature importance values of the 18 input features extracted from the well-

trained XGBoost model. The R2 score for predicting the heat capacity using XGBoost model was 

0.95 for training and 0.91 for testing. The hyperparameters of the XGBoost model are listed in 

Table S4. XGBoost is a prediction model that consists of assembling some weak decision trees. 
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Figure S16. Density distribution of the four selected features for the generated versus 

training samples: (a) number of aliphatic rings; (b) number of valence electrons of the heavy 

atoms; (c) number of radical electrons; (d) number of heteroatoms. 
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Figure S17. Dimension reduction of the latent features output from the encoder and the 

generator. The mapped space from (a) non-linear t-SNE and (b) PCA.
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Figure S18. Dimension reduction of the latent features output from the encoder and the 

generator. PCA of the training (a) and generated molecules (b). Non-linear spectral embedding 

of the training (c) and generated molecules (d). 
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Figure S19. Distribution of ΔEH-L for training (in red) and testing (in blue) in the PubChemQC 

database. 
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Figure S20. Comparison of the DFT calculated and the listed ΔEH-L values of 46 randomly selected 

molecules from the PubChemQC database. They show an MAE of 0.14 (eV).
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