
1

Supporting Information for

De Novo Molecule Design Towards Biased Properties via a Deep Generative Framework
and Iterative Transfer Learning

Kianoosh Sattari1, Dawei Li1, Bhupalee Kalita4, Yunchao Xie1, Fatemeh Barmaleki Lighvan5,
Olexandr Isayev4, and Jian Lin1, 2, 3*

1Department of Mechanical and Aerospace Engineering,
2Department of Electrical Engineering and Computer Science,
3Department of Physics and Astronomy,
University of Missouri, Columbia, Missouri 65211, United States
4Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
5Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL
62026, United States.
*E-mail: LinJian@missouri.edu (J. L.)

Supplementary Notes

Supplementary Note 1: Molecule representations by SMILES

Molecules can be represented as undirected graphs. Each atom is considered as a node, and

bonds are considered edges connecting the nodes. Introduced by David Weininger in 1988,1

SMILES (Simplified Molecular Input Line Entry System) have been used as a representation

approach in computational chemistry and cheminformatics.2 SMILES is a string-based

representation method. It is based on a molecular graph theory that defines molecular structures

with predefined grammar rules. By following the specific rules, SMILES represents the topology

of a molecule as a standard molecular graph.3 It is true that SMILES only includes 2D molecular

information, but an accurate prediction in the properties of molecules in equilibrium do not need

all conformational degrees of freedom of the molecules.4 In the SMILES representation, atomic

symbols represent heavy atoms (e.g. C, N, F, P, S and O), “=” and “#” represent bond types (double

and triple, respectively), numbers represent rings, and parentheses represent branches within a

molecular structure.1 To reduce the complexity, hydrogen atoms are removed since they can be

deduced from the chemistry valence rules.5

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024

2

There are two sources of non-uniqueness in SMILES. First, there is an ambiguity about which

atom to start the SMILES. Second, the choice of whether to include charge information in the

resonance structure makes the SMILES representations not unique. The canonical SMILES

following the standard rules defines the atoms and bonds of molecules in a defined order. Thus,

there is a unique canonical SMILES. It should be noted that the canonical SMILES is considered

neither a universal nor a global identifier since there are various code rules for generating SMILES

in each system. We used an open-source cheminformatics suite, RDKit6 for both the input dataset

and the generated samples. It represents unique SMILES for a given molecule.

The major challenge of using the SMILES representation is that a large fraction of strings

generated by a probabilistic model do not represent valid molecules.2 The generated sequences are

either syntactically invalid where the strings do not follow the SMILES grammar rule, or

semantically invalid where they do not follow the chemistry rule. For instance, the sequence

“CCCC(OCC” has an open parenthesis but not a closed one. The sequence “c1ccccc” has a starting

point for a ring but no a closing point. They are examples of semantically invalid sequences. The

string “CO(C)C”, on the other hand, does not follow the chemistry rule since number of the explicit

valence state for oxygen is greater than the one permitted. It is semantically invalid.

Researchers have proposed modified SMILES to solve the mentioned validity problems. They

include DeepSMILES7 and SELFIES.2 In the SMILES syntax, branches are represented by balanced

pairs of parentheses, an open parenthesis followed by atoms inside the branch and a close

parenthesis to end the branch. For example, Isobutyric acid with two branches is represented as

“CC(C)C(=O)O”. Moreover, rings are indicated by a pair of digits with the atoms between the two

digits. For example, “c1ccccc1” represents a benzene ring consisting of 6 carbons. Thus, for the

rings and branches, SMILES uses two symbols that must occur in pairs. DeepSMILES, invented by

3

O’Boyle and Dalke,7 solves the unbalanced parentheses problem in SMILES. It defines the

branches by only the close parentheses. Also, it uses only one digit to show the ring. In future, we

plan to investigate DeepSMILES. Krenn et al. very recently solved the problem at a fundamental

level by introducing SELFIES (SELF-referencIng Embedded Strings). It is a string-based

representation method like SMILES but has 100% robustness.2 In SELFIES, all the combinations

of the strings are valid. However, the derivation rules are complicated and take lots of effort to be

designed for a specific dataset. Also, applying such rules on the final generated sequences does

not guarantee that the generator learns the rules and can generate only valid samples. Thus,

SELFIES despite being 100% valid, might not be efficient for generative models capable of on-

target molecule generation.

The choice of using SMILES-based encoding, particularly the one-hot encoding, was made

based on specific considerations aligned with the objectives of our study. While grammar-based

VAEs8 have indeed shown remarkable performance in certain cases, we opted for SMILES-based

encoding for the following reasons:

1) Interpretability and Simplicity: The one-hot encoding of SMILES allows for

straightforward interpretability. Each character in the SMILES string corresponds to a specific

atom or bond, making it easier to trace the encoding process and understand the generated

representations.

2) Generality Across Molecular Structures: One-hot encoding of SMILES is agnostic to the

complexity of molecular structures and can handle a wide range of chemical compounds, including

those with diverse and intricate arrangements. It can also be used to represent very large molecules

with many heavy atoms.

4

3) Computational Efficiency: One-hot encoding is computationally efficient, making it

suitable for large-scale datasets and generative tasks where rapid processing is essential.

4) Easy Validity Check: Using RDKit package, it is very easy to check the validity of the

generated SMILES.

Supplementary Note 2: Design and training of the reinforced regressional and conditional

GAN (RRCGAN)

Architecture of the encoder. The encoder is a convolutional neural network (CNN) with an

architecture shown in Fig. S2. It outputs fixed-dimensional latent vectors (6×6×2) that have the

most statistically important information from the input discrete one-hot encoded matrices. As

shown in Fig. S2, the encoder has two parallel networks that were fed with the same one-hot

encoded matrices. Each layer has 4 sequential convolutional blocks that gradually reduce the size

of the output of the previous layers that start from 40×27×1 and end with 6×6×1. Each

convolutional block consists of a convolutional layer, a leaky ReLU activation function (AF), and

a batch normalization layer. The four convolutional blocks are the followed by a convolutional

layer and a Tanh AF to output a 6×6×1 vector with continuous number between -1 and 1. The two

output of the parallel networks are then concatenated, resulting in the final latent matrices with

6×6×2 dimensions. We hypothesized that one of the two parallel networks in the encoder

architecture relates to atoms information and the another relates to bonds information.

Architecture of the decoder. The architecture of the decoder was modified from Google

Inception V2, shown in Fig. S3. The decoder converts the latent vectors back to the original

SMILES strings (input to the encoder). The advanced architecture of Inception V2 allows for

increasing the depth and width of the network to convert the continuous vectors back to original

5

discrete SMILES representation. The original Inception V2 model has been used for classification

tasks. Here, the decoder is used for a similar task, as it should come up with a probability for each

possible 27 characters for every 40 different positions.

Architecture of the regressor. The structure of the regressor is shown in Fig. S4. It was

modified from the Google Inception V2 model. The inception modules are activated by a leaky

rectified linear unit (RELU). Some of the modules are followed by an extra max-pooling layer.

The output from each module is flattened and then enters a RELU activated dense layer.

Eventually, after an extra dense layer, the final output layer with 1 node can output normalized

heat capacity.

Architecture of the generator. The architecture of the generator is shown in Fig. S5. To

generate a latent vector with a desired heat capacity, the heat capacity is concatenated to a

randomly generated noise vector z with a dimension of 128×1, which is then fed into the generator.

The first five modules of the network consist of a deconvolutional layer which slides the reshaped

input with a stride of 1. The activation function is a RELU. Two modules follow the first five

modules. Their number of filters is reduced from 512 to 256 and then to 128. Finally, there is a

deconvolutional layer to ensure that only one structure is generated at each iteration. It means that

the generator synthesizes one latent vector (6×6×2) for each target value it receives. The tanh

activation function is applied to the final layer for outputting continuous numbers ranging from -1

to 1.

Architecture of the discriminator. The architecture of the discriminator, shown in Fig. S6,

has two functions. The first function is to distinguish the synthesized latent vectors from the real

ones, and the second one is to determine if a generated molecule corresponds to a desired heat

capacity. By appending the information of the heat capacity, a single vector rather than a high-

6

dimension tensor is a desired format of the data as an input to the discriminator. Therefore, instead

of directly feeding a real or a synthesized latent vector to the discriminator, a latent vector of a

structure is first concatenated with the corresponding heat capacity. And then the concatenated

vector is fed as the input to the discriminator. The discriminator is trained to distinguish the real

latent vectors from the synthesized ones. The discriminator has only one intermediate dense layer

with 64 nodes, followed by a RELU activation layer. The output layer is a single-node dense layer

activated by the sigmoid function, which forces 0 or 1 output, indicating fake or real ones,

respectively.

Training of RRCGAN. The RRCGAN was designed and trained by Google’s TensorFlow

API. Adam was selected as the optimizer for the encoder, decoder, generator, discriminator, and

regressor. The training was performed on the high-performance computing infrastructure provided

by Research Computing Support Services and in part by the National Science Foundation under

grant number CNS-1429294 at the University of Missouri, Columbia.

Supplementary Note 3. Evaluation metrics

The discrepancies between the DFT calculated ΔEH-L of the generated molecules and the desired

ΔEH-L and predicted ΔEH-L by the regressor, respectively, are evaluated by standard statistical

metrics including the coefficient of determination (R2), mean absolute error (MAE), root mean

squared error (RMSE) mean squared error (MSE), and relative error (RE). These metrics are

provided as follows.

 (S1)

𝑅2 = 1 ‒

𝑁

∑
𝑖= 1

(𝑦𝑖 ‒ �̂�𝑖)2

𝑁

∑
𝑖= 1

(𝑦𝑖 ‒ 𝑦)2

7

 (S2)
𝑀𝐴𝐸=

1
𝑁

𝑁

∑
𝑖= 1

|𝑦𝑖 ‒ �̂�𝑖|

 (S3)
𝑅𝑀𝑆𝐸=

1
𝑁

𝑁

∑
𝑖= 1

(𝑦𝑖 ‒ �̂�𝑖)2

 (S4)
𝑀𝑆𝐸=

1
𝑁

𝑁

∑
𝑖= 1

(𝑦𝑖 ‒ �̂�𝑖)2

 (S5)
𝑅𝐸=

1
𝑁

𝑁

∑
𝑖= 1

|𝑦𝑖 ‒ �̂�𝑖|
𝑦𝑖

where y is the desired ΔEH-L or predicted ΔEH-L by the regressor, ŷ is the DFT calculated ΔEH-L of

the generated molecule, and ȳ is the average for all the samples. N is the total number of evaluated

molecules.

Supplementary Note 4. Predicting the gap values from structural features

To establish a quantitative relationship, we trained an XGBoost model which takes 18 structural

features as input to predict the output ΔEH-L. These features include molecular weight (MW),

number of heavy atoms, MW of heavy atoms, number of hydrogen acceptors, number of Hydrogen

donors, number of hetero atoms, number of rotatable bonds, the sum of valence electrons in heavy

atoms, number of aromatic rings, number of saturated rings, number of aliphatic rings, number of

radical electrons, number of aliphatic carbocycles, number of aliphatic heterocycles, number of

aromatic carbocycles, number of aromatic heterocycles, number of saturated carbocycles, and

number of saturated heterocycles. The hyperparameters of the well-trained model are shown in

Table S4. R2 of the targeted ΔEH-L of the generated samples vs. their predicted values is 0.94 for

training and 0.89 for testing, respectively. Fig. S15 shows the rankings of the input features in

determining ΔEH-L. The result shows that the type (aromatic, saturated, and aliphatic) and the

8

number of rings as well as the number of rotatable bonds and the number of hydrogen-bond

acceptors are the most important features. Following those, molecular weight of the heavy atoms

and the number of valence electrons are ranked as the subsequently important features. This

observation agrees well with the results shown in Fig. 4. For instance, all the rings used in the first

row of generated molecules in Fig. 4a with low ΔEH-L values are unsaturated rings that have some

double bonds.

The following 4 structural features of the molecules were used as the input to the XGBoost

model for predicting the gap values.

a) Number of Aliphatic Rings: The number of aliphatic rings in a molecule refers to the count

of cyclic carbon structures that are not part of an aromatic system. The aliphatic rings can vary in

size, e.g., three-membered cyclopropane, five-membered cyclopentane, and six-membered

cyclohexane rings.

b) Number of Valence Electrons of the Heavy Atoms: The valence electrons of atoms are

the electrons involved in chemical bonding. Heavy atoms typically refer to atoms other than

hydrogen (H) in a molecule. The number of valence electrons of the heavy atoms in a molecule

refers to the sum of the valence electrons contributed by each heavy atom. The valence electrons

determine the atom's ability to form bonds with other atoms, and the count of these electrons affects

the chemical properties and reactivity of the molecule.

c) Number of Radical Electrons: A radical electron, also known as an unpaired electron, is an

electron that exists in an orbital without pairing with other electrons. These unpaired electrons are

typically highly reactive and can participate in chemical reactions. The number of radical electrons

in a molecule refers to the count of unpaired electrons present within its structure. Presence of the

radical electrons can impact the molecule's stability and reactivity.

9

d) Number of Heteroatoms: Heteroatoms are atoms other than carbon (C) and hydrogen (H)

in a molecule. We considered molecules with elements nitrogen (N), oxygen (O), sulfur (S),

phosphorus (P), and fluorine (F). The number of heteroatoms in a molecule refers to the count of

these non-carbon, non-hydrogen atoms present.
𝑆𝐴𝐵=

𝑐
𝑎+ 𝑏 ‒ 𝑐

Supplementary Note 5. Dimension reduction of latent spaces.

First, projection of the latent features is performed using principal component analysis (PCA).

PCA derives components formed as a linear combination of the original variables that explain the

most variance of the data. The results show that the PCA components of the latent features of the

training and generated structures follow close distributions (Fig. S18a-b). We can observe well-

defined boundaries of molecules in high and low values of heat capacity for mapped latent features.

Second, we performed a non-linear mapping, named Spectral Embedding (SE). SE uses Laplacian

Eigenmaps to find a low dimensional representation of the latent features using a spectral

decomposition of the graph Laplacian. We can test the hypothesis that the latent features can

indeed explain how the model learns the structure-property relationship for catching the physical

and chemical laws. Figure S18c and S18d show the spectral embedding values for the training and

testing samples, respectively. For the training samples, the boundaries of the four ranges of heat

capacity are clear. For the testing molecules, the very high and low values are clustered, but the

middle values are mixed.

Supplementary Note 6. Data collection and curation.

From the published PubChemQC database (http://pccdb.org/), we manually downloaded

~135K molecules. Because there are restrictions on downloading the molecules (up to 2000

10

molecules per file) and we have limited resources to download all the 3 million molecules. Using

RDKit, canonical SMILES were extracted to represent the molecules. We picked 40 as the

maximum number of characters in the extracted canonical SMILES and excluded any molecules

with > 40 characters. We kept molecules with C, O, N, S, P, and F heavy atoms and removed any

molecules with other heavy atoms, e.g, Si, resulting in ~132K molecules with their corresponding

HOMO-LUMO gap values for model development.

Supplementary Tables:

Table S1. Comparison of the regressor accuracy.

Model Descriptors Test MAE
(eV, ↓) Test R2 (↑)

Base (mean) - 1.67 0.00

QMCVNet
(Ref.9)

3D geometry descriptors 0.48 0.65

Our predictor SMILES 0.33 0.95

NNs with
(Ref.10)

PaDEL, CDK, and modified
distance descriptors 0.21 0.91

Table S2. Hyperparameters of RRCGAN.

Models Hyperparameters Values
Batch size 32
Epochs 1000
Adam learning rate 1×10-5Encoder-Decoder

Adam regularization term (β1) 0.9
Batch size 64
Epochs 150
Adam learning rate 5×10-7Regressor

Adam regularization term (β1) 0.9
Batch size 256

Discriminator
Epochs 150

11

Adam learning rate 2×10-5

Adam regularization term (β1) 0.5
Batch size 256
Epochs 150
Adam learning rate 2×10-5Generator

Adam regularization term (β1) 0.5

Table S3. Comparison of the existing generative models for targeted molecule design.

Model Architecture Targeted
property

Accuracy
evaluation on
new generated

molecules?

One-to-one
comparison of

targeted vs.
reached
values?

Extrapolate
the training

dataset?

Experimental
ly validated? Ref.

RRCGAN

GAN (CNN) +
Predictor
(CNN)+

AE(CNN) + TL

QC
property:

ΔEH-L

Yes Yes Yes No Ours

ReLeaSE GAN(RNN) +
predictor + RL MT No No Yes No [11]

Targeted
generation

model

GAN(RNN) +
predictor + RL

logP:
calculated

from
structure

No No Yes No [10]

Specialized
RNN RNN + TL

QC
property:

ΔEH-L

No No No No [12]

ORGAN GAN + RL

Druglikenes
s: calculated

from
structure

No No No No [13]

ORGANIC GAN + RL MT No No Yes No [14]

Note: CNN: convolutional neural network, RNN: recurrent neural network, GAN:

generative adversarial network, AE: autoencoder, RL: reinforcement learning, TL:

transfer learning, QC: quantum chemical, MT: melting temperature.

Table S4. Statistics of 132626 samples from PubChemQC database.

12

Min. ΔEH-L Ave. ΔEH-L Max. ΔEH-L
of samples

> 10
% of

samples > 10
of samples

> 10.5

1.05 5.94 10.99 461 0.35 % 23

Note: The unit for all the tabulated numbers is (eV).

Table S5. Hyperparameters of the XGBoost model.

Models Hyperparameters Values
max_depth 3
n_estimators 340
min_child_weight 31
learning_rate 0.13
gamma 0.01

XGBoost

subsample 0.8

13

Supplementary Figures:

Figure S1. One-hot encoding a representative molecule with SMILES

“CCN(C=O)C(C)(C(=O)O)c1ccccc1C” to a 40×27 matrix. The yellow pixels show value of “1”

and the rest are “0”.

14

Figure S2. Schematic of the encoder. It takes one-hot encoded SMILES strings (40×27) as input

and outputs latent vectors with dimension of (6×6×2).

15

Figure S3. A schematic of the decoder. It takes the latent vectors (6×6×2) as input and outputs

one-hot encoded SMILES (40×27).

16

Figure S4. Architecture of the regressor. It takes the latent vectors (6×6×2) as input and outputs

the ΔEH-L values.

17

Figure S5. Architecture of the generator. It takes a random noise Z and a desired ΔEH-L as inputs

and generates the latent vectors of the molecules in response to the targeted ΔEH-L.

18

Figure S6. Architecture of the discriminator. It takes a real or fake (synthesized) latent feature

which is concatenated with the corresponding ΔEH-L as inputs to output a probability of being real

(closer to 0 means fake and to “1” means real).

19

Figure S7. Loss evolution of the autoencoder during the training process. It shows that after 1000

epochs training, the loss is stabilized, indicating a success of the training.

20

Figure S8. Comparison of true versus converted one-hot encoded SMILES using the AE..

Ideally, they should be the same. Left figures show 3 training molecules, and the right figure are

from 3 testing molecules. The lighter the color is, the closer probability of that string to 1 is.

21

Figure S9. Comparison of the targeted and predicted gap values for two randomly generated

batches for a) (6×6×2) with an R2 of 0.70 and MAE of 0.91, and b) (8×8×2) with an R2 of 0.30

and MAE of 1.7.

22

Figure S10. Loss evolution of the regressor during the training process. It shows that after 100

epochs training, the loss is stabilized, indicating a success of the training.

23

Figure S11. Distribution of the regressor predicted ΔEH-L (in eV) and the true values of the

molecules from the PubChemQC database.

24

Figure S12. Loss evolution of the generator and discriminator during the training process.

After 150 epochs, the losses of generator and discriminator were stabilized, showing a success of

training.

25

Figure S13. Loss evolution of the generator and discriminator during the training process

without reinforcement section. Even with 200 epochs, the losses of the generator and

discriminator did not converge.

26

Figure S14. Distribution of the predicted values for ~2500 generated molecules

corresponding to a targeted ΔEH-L value of 8.29 eV. Among the generated molecules, 85% of

them have a predicted ΔEH-L value within 20% RE of the targeted one.

27

.

Figure S15. Feature importance values of the 18 input features extracted from the well-

trained XGBoost model. The R2 score for predicting the heat capacity using XGBoost model was

0.95 for training and 0.91 for testing. The hyperparameters of the XGBoost model are listed in

Table S4. XGBoost is a prediction model that consists of assembling some weak decision trees.

28

Figure S16. Density distribution of the four selected features for the generated versus

training samples: (a) number of aliphatic rings; (b) number of valence electrons of the heavy

atoms; (c) number of radical electrons; (d) number of heteroatoms.

29

.

Figure S17. Dimension reduction of the latent features output from the encoder and the

generator. The mapped space from (a) non-linear t-SNE and (b) PCA.

30

.

Figure S18. Dimension reduction of the latent features output from the encoder and the

generator. PCA of the training (a) and generated molecules (b). Non-linear spectral embedding

of the training (c) and generated molecules (d).

31

Figure S19. Distribution of ΔEH-L for training (in red) and testing (in blue) in the PubChemQC

database.

32

Figure S20. Comparison of the DFT calculated and the listed ΔEH-L values of 46 randomly selected

molecules from the PubChemQC database. They show an MAE of 0.14 (eV).

Supplementary References

1 Weininger, D. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of Chemical Information and Computer Sciences
28, 31-36 (1988).

2 Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing
embedded strings (SELFIES): A 100% robust molecular string representation. Machine
Learning: Science and Technology 1, 045024 (2020).

3 Bjerrum, E. J. SMILES enumeration as data augmentation for neural network modeling of
molecules. Preprint at (2017).

4 Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and Accurate
Modeling of Molecular Atomization Energies with Machine Learning. Physical Review
Letters 108, 058301 (2012).

5 Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine
learning: Generative models for matter engineering. Science 361, 360-365 (2018).

6 Landrum, G. Open-source Cheminformatics Software, (2006); https://www.rdkit.org
7 O'Boyle, N. & Dalke, A. DeepSMILES: an adaptation of SMILES for use in machine-

learning of chemical structures. (2018).

https://www.rdkit.org/

33

8 Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar variational autoencoder. In
Proc. International conference on machine learning. 1945-1954 (PMLR).

9 Maser, M. R. & Reisman, S. E. 3D Computer Vision Models Predict DFT-Level HOMO-
LUMO Gap Energies from Force-Field-Optimized Geometries. (2021).

10 Pereira, F. et al. Machine Learning Methods to Predict Density Functional Theory B3LYP
Energies of HOMO and LUMO Orbitals. Journal of Chemical Information and Modeling
57, 11-21 (2017).

11 Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design.
Science Advances 4, eaap7885 (2018).

12 Yuan, Q., Santana-Bonilla, A., Zwijnenburg, M. A. & Jelfs, K. E. Molecular generation
targeting desired electronic properties via deep generative models. Nanoscale 12, 6744-
6758 (2020).

13 Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C. & Aspuru-Guzik, A.
Objective-reinforced generative adversarial networks (ORGAN) for sequence generation
models. Preprint at https://arxiv.org/abs/1705.10843 (2017).

14 Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L. & Aspuru-Guzik, A. Optimizing
distributions over molecular space. An objective-reinforced generative adversarial network
for inverse-design chemistry (ORGANIC). Preprint at
https://doi.org/10.26434/chemrxiv.5309668.v3 (2017).

https://arxiv.org/abs/1705.10843
https://doi.org/10.26434/chemrxiv.5309668.v3

