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A Model Selection Analysis

Model selection is a pivotal aspect of the proposed methodologies, determining the most suitable model from an array
of generated and optimized models. Consequently, an in-depth analysis on the behavior of four different information
criteria is conducted: Akaike information criterion (AIC), sample corrected Akaike information criterion (AICc),
Hannan-Quinn criterion (HQC) and Bayesian information criterion (BIC). Each criteria value for a given model m is
calculated using the equations presented below:

AICm = 2L(θm | D)m + 2dm (1a)

AICc,m = AICm +
2(dm + 1)(dm + 2)

n− dm − 2
(1b)

HQCm = 2L(θm | D)m + 2cdm log(log(n)) (1c)
BICm = 2L(θm | D)m + dmlog(n), (1d)

where L represents the negative log-likelihood (NLL), θm are the parameters of model m, D represents the data set, n
represents the number of data points within set D, and dm represents the number of parameters contained in θm. For
HQC, c stands for any constant equal to or greater than 1 to ensure model selection consistency (i.e., the best model
within a model set is selected with probability going to one if the number of samples tend to infinity).

The analysis employs the hypothetical isomerization reaction detailed in Section 3.3, mimicking the data generation
protocol as outlined therein.

This study examines seven competing kinetic models, with r5 representing the data-generating kinetic model and the
desired selection target for the information criteria.
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r1 = k1CA (2a)
r2 = k1CA − k2CB (2b)

r3 =
k1CA − k2CB

k3CA
(2c)

r4 =
k1CA − k2CB

k3CA + k4CB
(2d)

r5 =
k1CA − k2CB

k3CA + k4CB + k5
(2e)

r6 =
k1C

2
A − k2CB − k3CA

k4CA + k5CB + k6
(2f)

r7 =
k1C

2
A − k2C

2
B − k3CA − k4CB

k5CA + k6CB + k7
(2g)

The study presented herein aims at analyzing the behavior of the presented information criteria with respect to the noise
and size of a data set.

A.1 Noise Dependency

The initial focus of this study is the exploration of the noise level employed in the generation of the kinetic data set,
how it influences the behavior of the information criteria, and its eventual effect on model selection. For this, the same
five experimental points specified in Section 3.3 are used to create 13 distinct kinetic data sets with varying degrees of
Gaussian noise, dictated by the user-defined variance σ2. The variance range explored is σ2 ∈ [0.04, 0.25], at equally
spaced intervals.

For each of these unique data sets, the data is utilized to re-calibrate the parameters for each of the seven candidate
models, and subsequently the information criteria values are computed. Figure 1 presents a plot that illustrates the
difference of information criteria value between the best kinetic model m1 (chosen from a subset that excludes the
data-generating model) and the data-generating model m2. Within this graph, the horizontal line y = 0 serves as the
threshold at which an information criterion starts to select the incorrect model (i.e., above this line, the criterion selects
the right model, below it, the criterion selects the wrong model).

It is worth noting that for each of the 13 sets of kinetic data, m1 is consistently the 4-parameter model, r4. Upon
examining the graph, the AIC emerges as the most noise-resilient criterion, as its profile line intersects the horizontal
threshold after all the other criteria (i.e., for a certain noise level, all other criteria select the wrong model, except AIC).
Conversely, BIC exhibits the least noise resilience, as it initiates wrong model selection prior to the other criteria (σ2

i ≈
0.06). In general, a robustness hierarchy is preserved across these experiments, where AIC > AICc > HQC > BIC
(from most to least robust).

The proposed hierarchy is a reasonable conclusion which can be deduced from mathematics. Given that the correct
model is known to be r5, that m1 was invariably r4, and that the number of samples remains constant (n = 150), the
difference of the penalty imposed by each information criterion to both models, regardless of the data set, remains
constant. More formally, where dm is the number of parameters of a model:

dmη(dm = 4, n = 150)IC − dmη(dm = 5, n = 150)IC = kIC , (3)

where η(dm, n) is the penalty coefficient, with η(dm, n)AIC = 2, η(dm, n)AICc =
2n

n−dm−1 , η(dm, n)BIC = log n, and
η(dm, n)HQC = 2c log log n. Eq. (3) holds for each of the 13 kinetic data sets, where IC stands for any of the four
examined information criteria, and kIC represents an arbitrary constant.

Considering the definitions of AIC, AICc, BIC and HQC: kAIC = −2, kAICc = −2.14, kBIC = −5.01, kHQC = −3.22.
This demonstrates that AIC is the most tolerant criterion towards models of higher complexity (for AIC to favour
r5 over r4, 2(ln=150,m=4 − ln=150,m=5) > 2; for BIC, 2(ln=150,m=4 − ln=150,m=5) > 5.01). Consequently, the
aforementioned hierarchy is not only comprehensible but is also mathematically grounded.

However, the fact that all information criteria begin to choose the incorrect model at a certain noise level offers
interesting insights. As previously explained, the penalty term’s difference between the models r4 and r5 stays fixed
across all data sets, hence the only element potentially influencing a selection shift is the NLL term. As the additive
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Figure 1: Plot of the difference of information criteria value between m1 (the best model chosen from a subset that does
not include the data-generating kinetic mode) and m2 (the data-generating kinetic model) with respect to the variance
of the Gaussian noise, σ2, added to the kinetic data simulated, which was used to estimate the parameters of all rival
models.

noise increases and the number of samples remains unchanged, the NLL values must also increase. Furthermore,
deducing from Figure 1, not only do NLL values increase with noise, but they also increase at different rates for each
model.

It becomes evident that the NLL term for the 5-parameter model rises at a higher rate in relation to the noise variance
than the NLL term for the 4-parameter model (i.e., dln=150,m=5

dσ2 >
dln=120,m=4

dσ2 ) causing the criteria to select the wrong
model more confidently as the noise is increased. It is important to underscore that this insight cannot be generalized to
all 5-parameter and 4-parameter models, as it remains specific to this particular case.

A.2 Quantity of Data Dependency

The next aspect scrutinized is the influence of the number of samples on the values calculated by the information criteria.
To investigate this, 18 data sets with varying numbers of data points are generated (i.e., the same five experiments
detailed in Section 3.3 are simulated, but with different number of samples per experiment). Gaussian noise, with a
variance of σ2 = 0.2, is introduced into the kinetic simulations. The outcomes of these computational experiments are
presented in Figure 2.

A noteworthy feature from the graph deserving of discussion is how some criterion profiles intersect one another at
different points of the plot, a phenomenon not identified in the previously presented graph. In the low-data regime, the
HQC criterion is closest to identifying the correct model, followed closely by AIC, BIC, and AICc, in that order. The
previously proposed hierarchy does not hold here, as the penalty terms now significantly differ, given their dependency
on the number of samples.
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However, with a mere six samples, the first intersection becomes visible in Figure 2 a), where AICc starts selecting
the data-generating kinetic model with greater confidence than the BIC, although both are still selecting the correct
model. With approximately ten data points, a second intersection emerges in Figure 2 b), with AICc now choosing the
data-generating kinetic model with more certainty than the HQC, albeit the HQC is still selecting the right model. After
this point, the original hierarchy reappears and is respected (AIC > AICc > HQC > BIC).

This finding is once again grounded by mathematics. As the number of data points increases, the penalty terms for
HQC and BIC also increase, while the penalty term for AICc decreases and that for AIC remains constant. The penalty
term for AICc asymptotically approaches that of the AIC, and BIC’s penalty term increases at a higher rate than that of
HQC as the number of data points increases.

It is evident that with the collection of more process information, all information criteria are capable of identifying the
correct model (for this model set), underscoring the importance of sufficient data for robust model structure selection. It
is vital to acknowledge the apparent “noise" in Figure 2, which stems from the dynamic definition of m1. While in the
noise effect study m1 is always r4, this phenomenon does not hold in this study, leading to the changing identity of m1.

Figure 2: Plot of the difference between m1 (the best model chosen from a subset that does not include the data-
generating kinetic mode) and m2 (the data-generating kinetic model) with respect to the number of data points available,
which were used to estimate the parameters of all rival models. a): shows a more detailed version of the graph in the
low-data regime. b): provides a more holistic perspective regarding the trends of the criteria in the high-data regime.

A.3 Summary

In this investigation, utilizing a simple isomerization case study, the behavior of several information criteria was
dissected. Comprehensive analyses of how various factors, including inherent noise in the data set and the size of the
data set, influence the performance of these criteria were provided. Every conclusion was explained and rooted in the
corresponding mathematical form of these criteria. All findings seem to suggest a specific ranking for the information
criteria, with the best criterion listed first:

• Akaike Information Criterion,

• Sample Corrected Akaike Information Criterion,

• Hannan-Quinn Criterion,

• Bayesian Information Criterion.

It is crucial, however, to acknowledge that these findings are context-specific and may not universally apply across
different case studies. Furthermore, it is worth noting (and remembering) that the choice of a model selection criterion
can transcend into a philosophical discussion as different information criteria bring diverse philosophical assumptions
to their derivation, and all address slightly different questions. Thus, while the presented ranking can serve as a helpful
guide – and it is in fact used in the methodological frameworks proposed – it should not be misconstrued as an absolute
measure of the performance of the discussed information criteria across all disciplines.
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B Model Discrimination

Model-based design of experiments (MBDoE) is critical in model discrimination, especially when the experimental
budget has not yet been spent. For the methodological frameworks proposed herein, the Hunter-Reiner criterion has
been adopted primarily because the evaluation of parameter uncertainty falls beyond the scope of this study, thus
excluding any criteria necessitating the estimation of model response uncertainty at any given experimental point.
Furthermore, the interpretability of Akaike weights design criterion is not of particular interest at this stage. The primary
function of the Hunter-Reiner criterion is to identify the optimal experiment that maximizes the difference between the
responses of two models.

In an ideal world, the primary goal of model discovery – the central objective of this research – is to pinpoint the
optimal experiment that yields the largest discrepancy between a proposed model’s and the data-generating model’s
response. Nevertheless, the actual underlying model is unknown, thus necessitating an approximation. This study
examines two modeling approaches geared towards approximating the behavior of the data-generating kinetic model:
Gaussian process state space model (GPSSM) and the second-best model generated from ADoK-S, hereinafter referred
to as ADoK2.

A GPSSM describes a nonlinear dynamical system, in which Gaussian processes are used to predict the state space
dynamical transitions of a system (e.g., a reactive system) 1,2. This model comprises of a non-parametric representation
of the system’s dynamics rooted in Bayesian principles, complemented by hyperparameters that control the behavior of
this non-parametric representation 1. GPSSMs have been chosen as one of the modeling approaches owing to their
non-parametric nature, rendering them proficient in learning from small data sets (commonly found in kinetic studies),
thereby outperforming parametric alternatives like recurrent neural networks 2. Even though GPSSMs are generally
favored due to their probabilistic attributes (i.e., their ability to account for prediction uncertainty), this feature is not of
particular relevance in this context, given that the Hunter-Reiner criterion does not factor in uncertainty.

This self-contained study aims to comparatively evaluate the worst-case performance of the two models in approximating
the data-generating model within a specified experimental space. The following procedure is employed for each of the
three case studies used in this work (the hypothetical isomerization reaction, the decomposition of nitrous oxide, and
the hydrodealkylation of toluene):

1. Generate data corresponding to a given case study following the methodology detailed in the respective section;

2. Normalize data to construct the training set for the GPSSM. The input training data set comprises of the
concentrations of all observable species at t ∈ [t0, · · · , tn−1], while the output training data set consists of the
concentrations of species X at t ∈ [t1, · · · , tn]; one GP is dedicated to each species observable in the reaction
system;

3. Train each GP using the compiled training data set and GPJax (a Python package which implements GPs using
Jax) 3;

4. Execute one iteration of ADoK-S using the data sourced from the case studies and capture the second-best
model generated, denoted as ADoK2;

5. Implement the Hunter-Reiner criterion to identify the experiment that maximizes the discrepancy between
the data-generating model and the trained models (GPSSM and ADoK2). This elucidates which model more
accurately represents the real system in the worst-case scenario.

Table 1 summarizes the sum of squared errors (SSE) between the response of the trained models and the data-generating
model for the worst-case experiment. For the sake of completeness, we also compared a few naive parametric models
with the trained ones for the hydrodelalkylation of toluene; Table 2 summarizes these results. Based on these outcomes,
it appears appropriate to choose the second-best kinetic model suggested by ADoK for implementing MBDoE alongside
the best model. This approach enables further experiment generation when the modeler is not satisfied with the choices
output by either ADoK-S or ADoK-W.

Table 1: The worst-case scenario performance of the trained GPSSM and ADoK2 with respect to the data-generating
kinetic model for each case study.

Case Study SSE for GPSSM (M2) SSE for ADoK2 (M2)
Hypothetical isomerization reaction 0.27 0.11
Decomposition of nitrous oxide 90.69 0.42
Hydrodealkylation of toluene 49.20 0.14
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Table 2: The worst-case scenario performance of the trained GPSSM, ADoK2 and a few naive parametric models with
respect to the data-generating kinetic model for the hydrodealkylation of toluene.

Model SSE (M2)
GPSSM 49.20
ADoK2 0.14
kCT 104.712
kCH 408.179
kC2

T 156.259
kC2

H 498.939
kCTCH 19.503
k1CT + k2CH 145.104
k1C

2
T + k2C

2
H + k3CTCH 50.046

C Benchmark Study of Derivative Estimation Methods

In our pursuit of refining and validating the adaptability and flexibility of our GP-based rate estimation framework, we
recognized the importance of a comprehensive evaluation against current state-of-the-art derivative estimation methods.
To this end, we performed a benchmarking study to compare the performance of our GP-based approach with leading
methodologies mentioned in relevant literature 4. Details into each of the methodologies can be found in Van Breugel
et al. 4.

This comparative analysis was designed to assess the effectiveness of each method in accurately estimating reaction
rates within the context of chemical kinetics. Our findings indicate that our GP-based method, even in the absence of
mathematical constraints, exhibits competitive performance. It achieved a squared error of 26.528 (M h−1)2, which is
marginally higher than the 25.951 (M h−1)2 squared error associated with the Iterative Total Variation Regularization
approach. The detailed results are presented in Table 3 These metrics were derived from an evaluation involving the
calculation of squared errors between estimated and actual reaction rates across various chemical species in all seven
experiments conducted as part of the hydrodealkylation of toluene case study presented in the main manuscript.

Table 3: Results from benchmarking state-of-the-art derivative-estimation methods against our GP-based approach.
Rate Estimation Method SSE ((M h−1)2)
Finite Difference: First Order 41.648
Finite Difference: Second Order 88.637
Finite Difference: Iterated First Order 37.697
Smooth Finite Difference: Median smoothing 130.883
Smooth Finite Difference: Mean smoothing 79.449
Smooth Finite Difference: Gaussian smoothing 30.174
Smooth Finite Difference: Friedrichs smoothing 32.586
Smooth Finite Difference: Butterworth smoothing 176.221
Smooth Finite Difference: Spline smoothing 41.711
Iterative Total Variation Regularization (regularized velocity) 25.951
Linear Models: Spectral derivative 142.249
Linear Models: Sliding polynomial fit 145.857
Linear Models: Savitzky-Golay filter 676.194
Kalman smoothing: constant velocity (forward-backward) 53.044
Kalman smoothing: constant acceleration (forward-backward) 70.167
Kalman smoothing: constant jerk (forward-backward) 70.167
GP-Based Approach 26.528

D ADoK-S Performance in Multi-Reaction Systems

To demonstrate the versatility of the ADoK-S methodology in the discovery of kinetic models in a multi-reaction system
setting, we have applied ADoK-S on a specific part of a metabolic pathway, particularly the phospholipid cycle, more
details can be found in Iba 5. The portion of the network that is of importance in this case study, involves two key
reactions facilitated by enzymes glycerol kinase and glycerol-1-phosphatase. ATP, which is referred to as “A", serves
as the external input for the network. The reactions within this subnetwork result in the production and utilization of
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sn-glycerol-3phosphate (“B") and glycerol (“C"). The dynamics of this metabolic subnetwork are described using the
Michaelis-Menten law and can be approximated to:

dCA

dt
=

−kACACC

1 +KBCACB
(4a)

dCB

dt
=

kACACC

1 +KBCACB
− kCCB (4b)

dCC

dt
=

−kACACC

1 +KBCACB
+ kCCB (4c)

The kinetic parameters were arbitrarily defined as: kA = 9 M−1 h−1, KB = 5 M−2 and KC = 2 h−1. From
Eq. (4), we generated five datasets by integrating the ODE system under five different initial conditions, col-
lecting 50 datapoints per dataset and adding Gaussian noise (i.e.; zero mean and a standard deviation of 0.01
for A, B and C) to mimic the response from a real chemical system. Due to the complexity of the system,
we increased the sampling frequency that we have used in the main manuscript. The initial conditions were:
(CA(t = 0), CB(t = 0), CC(t = 0)) ∈ (2.0, 1.0, 2.0), (2.0, 1.0, 0.2), (0.2, 1.0, 0.2), (2.0, 0.0, 2.0), (0.2, 0.0, 0.2)
M. The initial conditions were randomly selected from a 2k factorial design of experiments. Our findings show
that ADoK-S an almost identical version of the data-generating kinetic model after five iterations (i.e., four extra
experiments proposed by MBDoE). The extra MBDoE experiments were: (CA(t = 0), CB(t = 0), CC(t = 0)) ∈
(1.101, 0.0, 0.298), (2.0, 0.177, 0.667), (2.0, 1.0, 0.2), (1.136, 0.0, 2.2) M. The generated model by ADoK-S is shown
below:

dCA

dt
=

−9.126CACC

1 + 5.036CACB + 0.018CA
(5a)

dCB

dt
=

9.144CACC

1 + 5.082CACB
− 2.015CB (5b)

dCC

dt
=

−9.150CACC

1 + 5.084CACB
+ 2.016CB (5c)

We see that only the first rate equation is different from the data-generating model, and that is by a single parameter
that is considerably less significant than the rest. Below, we show in Fig. 3 a summary of the results of this case study,
similar to the ones we presented in the manuscript.
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Figure 3: The conditions for the second and fourth computational experiment (CA(t = 0), CB(t = 0), CC(t = 0)) ∈
(2.0, 1.0, 2.0), (2.0, 0.0, 2.0) M, respectively, where A, B and C denote ATP, sn-glycerol-3phosphate and glycerol,
respectively. a) and e): the measured concentration data for the second and fourth experiments which are used in the
execution of ADoK-S. b) and f): the concentration profiles selected by AIC that model the dynamic trajectories of the
observable species’ concentrations in the second and fourth experiments as a function of time. These models are used
to approximate the rate measurements. c) and g): numerical derivatives of the selected concentration profiles and the
true rate measurements (which realistically are inaccessible). d) and h): response of the selected rate model after the
fifth iteration of the ADoK-S with the initial set of experiments and four additional MBDoE-proposed experiments for
the second and fourth experiments.
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