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Supplementary Note 1

We tested the effect of the data augmentation by adding random noise to the coordinates of atoms in 
the sampled configurations. The inherited data selection strategy with seven models shows the best 
performance regarding the activation energy’s accuracy and convergence. We utilized the same 
conditions but without data augmentation. Figure S8 shows the result. As expected, the error of the 
activation energy does not go below 1 kcal/mol. Also, the convergence is not good. There is an effect 
from the absolute number of the newly added data number. However, NNP has no chance to learn 
whether the newly sampled configuration is energetically stable. The snapshot in Figure S8c (iv) 
shows that the broken parts have an unphysical configuration, e.g., a cluster of hydrogen and isolated 
carbons without any bonds. The results may imply that the challenge in training SchNet may come 
from the sparse configurations to reconstruct continuous PES. 

Supplementary Note 2

We tested them and investigated the behaviors of the SchNet. First, we checked whether TorchANI 
shows similar behaviors with the configurations sampled from the SchNet and vice versa. 
Interestingly, SchNet does not show such unphysical behaviors with the configurations sampled from 
SMD through NNPTorchANI as shown in Figure S9. Also, TorchANI works fine. Then, we double-
checked whether the training conditions of SchNet can train such deformed configurations. We 
utilized combinations of training and validation sets that allow high accuracy of the activation energy 
to train SchNet. One is from the 9th AL iteration of the random selection strategy with 3 models, and 
the other is from the 22nd AL iteration of the inherited selection strategy with 7 models. Both datasets 
are working well, as shown in Figure S10. Therefore, we hypothesized that configurations sampled 
through SchNet cause the challenge of training during the AL iterations. We closely checked the 
configurations sampled from SMD simulation through NNPSchNet and found a unique difference from 
DFTB and TorchANI. Two carbons (CH3) at the edge rotate just before the bond breaks with SchNet, 
which does not occur with DFTB and TorchANI. This was consistently observed when the SchNet 
was trained from datasets not sampled from the SchNet (Figure 4 and Figure S9). The exact 
mechanism of how SchNet produces such configurations needs to be explored further in future studies. 
However, this finding may provide an opportunity to improve the performance of the SchNet. 
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Figure S1 The examples of UQ values (TorchANI model) obtained from different active learning 
stages: AL0 (a), AL1 (b), AL2 (c), and AL9 (d) of random selection with 3 models. The graded area 
(blue) is where we gather 1000 UQ values from the ensemble model. Then we estimated the mean 
(μUQ) and standard deviation (σUQ). As observed in the examples, UQ values can vary even in the 
same sampling region (0~1x103 steps). Therefore, we consider the value of μUQ + 3σUQ as a criterion 
to decide whether the sampled configurations are new or not. 
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Figure S2 Active learning (AL) results from 9th to 19th iteration based on the TorchANI models: (a) 
the work function of the best model from three models with the random selection strategy. (b) 
Absolute error (|EaNNP – EaDFTB|) of the best model trained and selected at each AL iteration (c) MAE 
of the relative energy during the active learning based on the train/validation data at each iteration (d) 
MAE of the relative energy during the active learning based on the unseen SMD data (6,500 points). 
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Figure S3 Active learning (AL) results based on the TorchANI models: (a) the work function of the 
best model from three models with the inherited selection strategy. (b) Absolute error (|EaNNP – EaDFTB|) 
of the best model trained and selected at each AL iteration (c) MAE of the relative energy during the 
active learning based on the train/validation data at each iteration (d) MAE of the relative energy 
during the active learning based on the unseen SMD data (6,500 points). 
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Figure S4 Active learning (AL) results based on the TorchANI models: (a) the work function of the 
best model from five models with the inherited selection strategy. (b) Absolute error (|EaNNP – EaDFTB|) 
of the best model trained and selected at each AL iteration (c) MAE of the relative energy during the 
active learning based on the train/validation data at each iteration (d) MAE of the relative energy 
during the active learning based on the unseen SMD data (6,500 points).
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Figure S5 Active learning (AL) results based on the TorchANI models: (a) the work function of the 
best model from seven models with the inherited selection strategy. (b) Absolute error (|EaNNP – 
EaDFTB|) of the best model trained and selected at each AL iteration (c) MAE of the relative energy 
during the active learning based on the train/validation data at each iteration (d) MAE of the relative 
energy during the active learning based on the unseen SMD data (6,500 points). 
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Figure S6 (left) Activation energy obtained from trained TorchANI-based SMD simulations during 
the active learning. (right) Scattering plots of unseen data points (6,500 points) from DFTB-based 
SMD simulation. The results from inherited data selection strategy. (a) three models, (b) five models.
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Figure S7 Loading rate effects on the estimation of activation energy based on the TorchANI models 
(a) 2 Å/ps, (b) 4 Å/ps, (c) 0.5 Å/ps, and (d) 0.25 Å/ps. In all cases, the error becomes larger than 
1kcal/mol. However, the NNP still could capture the trend of strain rate effects, e.g., higher energy 
and longer breaking distance for a higher strain rate.
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Figure S8 Active learning (AL) results based on the TorchANI models without data augmentation 
(seven models in the ensemble and the inherited strategy). (a) Absolute error (|EaNNP – EaDFTB|) of the 
best model at each AL iteration. (b) Activation energy obtained from the TorchANI-based SMD 
simulations during the active learning. (c) SMD simulation from the model trained and selected from 
the 2nd active learning with ANI model. Since there is no augmentation from newly sampled 
configurations, training structures of broken parts is challenging. As a result, the unphysical 
configuration is sampled as the snapshot (iv) in pane c. 
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Figure S9 (a) Results of SMD simulation from the SchNet model trained from the configuration 
sampled by TorchANI model at the first AL iteration (AL1) (b) Results of SMD simulation from the 
TorchANI model trained from the configuration sampled by SchNet model at the first AL iteration 
(AL1). SchNet does not show unphysical configurations like Figure 4b. However, we still observed 
the rotation of carbons at the edge near the failure point. 

Figure S10 (a) Results of SMD simulation from the SchNet model trained from the configuration 
sampled by TorchANI model at the 9th AL iteration (AL9) with the random selection (b) Results of 
SMD simulation from the SchNet model trained from the configuration sampled by TorchANI model 
at the 22th AL iteration (AL22) with the inherited selection. 


