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The ten symmetry classes of elasticity tensors

Early approaches take inspiration from crystallography. Out of the 32 distinct crystallographic point groups,
only 11 are centrosymmetric (meaning the point group contains an inversion center as one of its symmetry
elements), each forming a unique diffraction pattern. The diffraction patterns of other noncentrosymmetric
crystals each is the same as one of the 11 centrosymmetric crystals. Based on the diffraction patterns, the
32 distinct point groups can be categorized into 11 classes, called the Laue groups [3]. According to the
Laue groups, Wallace [1] classifies the elasticity tensors into 12 classes (the additional 1 being the isotropic
class that does not apply for single crystals), and they reduce to 10 classes considering the number of in-
dependent components (Fig. S1). The results are widely cited, including the classical book on the subject
by Nye [2] and many recent papers [4–6]. This crystallographic approach seems reasonable; however, the
conclusions are incorrect. The tetragonal and trigonal systems are each divided into two symmetry classes,
but the distinctions can be eliminated by a different choice of the coordinate system [7, 8]. Then each of the
tetragonal and trigonal systems will have 6 independent components.

Harmonic decomposition of the elasticity tensor

In the harmonic decomposition, the elasticity tensor can be written as

C = h1(λ) + h2(η) + h3(A) + h4(B) + h5(H). (1)

The appropriate values for each of the term is as follows:

λ = [2Cppmm − Cpmpm]/15,

η = [−3Cppmm − Cpmpm]/90,
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Figure S1: Symmetry classes and independent components of the stiffness tensor according to the crystal-
lographic Laue group by Wallace [1]. There are 11 classes from Laue group, with two for the monoclinic
system depending on the orientation. Here we only depict the one with the standard orientation. See Ref. 2
for the other case. The conclusion is incorrect for tetragonal and trigonal crystal systems—for each of them,
there are two cases with 6 and 7 independent components. The value in the square brackets is the number
of independent components for the corresponding crystal system. All matrices are symmetric about the
leading diagonal, with the lower left part omitted in the depiction.

Aij = [15Cijmm − 12Cimjm − 5δijCppmm + 4δijCpmpm]/21,

Bij = [−6Cijmm + 9Cimjm + 2δijCppmm − 3δijCpmpm]/21,

Hijkl =(Cijkl + Ciklj + Ciljk)/3

− [(Cijmm + 2Cimjm)δkl + (Cklmm + 2Ckmlm)δij

+ (Cikmm + 2Cimkm)δjl + (Cjlmm + 2Cjmlm)δik

+ (Cilmm + 2Cimlm)δjk + (Cjkmm + 2Cjmkm)δil]/21

+ (Cppmm + 2Cpmpm)(δijδkl + δikδjl + δilδjk)/105,

and
h1(λ) = δijδklλ,

h2(η) = (δikδjl + δilδjk)η,

h3(A) = δijAkl + δklAij ,

h4(B) = δikBjl + δjlBik + δilBjk + δjkBil,

h5(H) = Hijkl,

where δij is the Kronecker delta.
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This decomposition follows Ref. 9, and as mentioned there that “... other forms of harmonic decomposition
are possible: It suffices to use invertible linear combinations of A and B and, analogously, invertible linear
combinations of λ and η.” See Ref. 10, 11 for such examples. Nevertheless, harmonic decomposition is
unique to linear combinations.

This harmonic decomposition can be easily carried out with the e3nn package [12]. It can deal with any ten-
sor of any symmetry, and below is a code snippet to obtain the irreducible representations of the elasticity
tensor from the harmonic decomposition.

>>> from e3nn import o3, io

>>> tp = o3.ReducedTensorProducts("ijkl=jikl=ijlk=klij", i="1o")
>>> tp.irreps_out
2x0e+2x2e+1x4e

# Alternatively
>>> ct = io.CartesianTensor("ijkl=jikl=ijlk=klij")
>>> ct
2x0e+2x2e+1x4e

The 2x0e, 2x2e, and 4e represent the two isotropic terms, the two deviatoric terms, and the harmonic
term, respectively.

Proof of MatTen satisfying material symmetry

The MatTen model C = f(x) is equivariant to SO(3) transformations, satisfying

Dy(g)f(x) = f(Dx(g)x). (2)

This comes from the fact that each layer of MatTen is equivariant, and the composition of such layers is
also equivariant. We refer to Ref. 13 for proof of the equivariance of the layers. The representation Dx(g) in
the space of crystal structures can be written as Dx(g) = Rip, and the representation Dy(g) in the space of
stiffness tensors can be written as Dg(g) = RipRjqRkrRls, where R ∈ SO(3) is a rotation matrix.

Let Q ∈ P , where P denotes the set of rotations in the point group of a crystal, we will have P ⊂ SO(3).
Therefore, for R = Q, Eq. S(2) is satisfied, i.e.,

QipQjqQkrQlsCprqs = f(Qx) (3)

Owning to material symmetry, we have Qx = x, that is, the crystal structure x is indistinguishable before
and after the transformation. Thus, f(Qx) = f(x). Plugging it into Eq. S(2), we have

QipQjqQkrQlsCprqs = f(x) = Cijkl, (4)

which is Eq.(1) in the main text. Once this is satisfied, the material symmetry will be reflected in the stiffness
tensor as discussed in the main text and proved in Ref. 9.
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Dataset statistics
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Figure S2: Histogram of the dataset by crystal system. The dataset consists of a total number of 10276
elasticity tensors for inorganic crystals.
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Figure S3: Histogram of the dataset by the number of chemical elements in the crystals.
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Figure S4: Distribution of the bulk, shear, and Young’s moduli in the dataset.
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Figure S5: Distribution of bulk modulus in the dataset by crystal system.
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Figure S6: Distribution of shear modulus in the dataset by crystal system.
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Figure S7: Distribution of Young’s modulus in the dataset by crystal system.
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Error in strain caused by that in Young’s modulus

σ
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We consider the strain change due to error in Young’s modulus under the same stress σ0. Let E0 =
128.4 GPa (mean of DFT reference values) and E1 = E0 − ∆E, where ∆E = 20.59 GPa is the mean ab-
solute error (MAE) of MatTen predictions. We have

σ0 = E0ϵ0

σ0 = E1ϵ1 = (E0 −∆E)(ϵ0 +∆ϵ).
(5)

Solve Eq. S(5), we have

∆ϵ =

[
E0

E0 −∆E
− 1

]
ϵ0 = 19% ϵ0 (6)

Test errors
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Figure S8: Mean absolute error (MAE) of the elasticity tensor by crystal system. The MAE is computed
using the predicted and reference Voigt matrix of the elasticity tensor.

7



1 2 3 4 5
Number of elements

0

1

2

3

4

5

6

M
A

E
2.14

5.26

3.85 3.73

4.50

Figure S9: Mean absolute error (MAE) of the elasticity tensor by the number of chemical elements in the
crystals. The MAE is computed using the predicted and reference Voigt matrix of the elasticity tensor.
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Figure S10: Learning curve of the MatTen model. The MAE is obtained using the predicted and reference
elasticity tensors in Voigt notation. The MAE is on the test set, and the number of training data is sampled
from the training set.
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Figure S11: Mean absolute error (MAE) of the elasticity tensor in Voigt matrix computed from ten-fold cross
validation. Compare with Fig. S8, where the 9th and 10th fold of the data are used as the validation and
test set, respectively.
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Compare with Fig. 3d in the main text.
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Training on tensor components
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Figure S13: Mean absolute error (MAE) of the elasticity tensor in Voigt matrix. Multiple AutoMatminer
models are trained for each crystal system, each model predicting a separate non-zero component of the
Voigt matrix in Fig. 1 in the main text. For example, for the orthorhombic crystal system, nine AutoMat-
miner models are trained.

It is possible to predict the full elasticity tensor by separately modeling its non-zero independent compo-
nents. Because each crystal system has a different number of non-zero components (Fig. 1 in the main
text), this approach requires the treatment of each crystal system separately. To check how this approach
works, we consider the cubic, tetragonal, and orthorhombic crystal systems. For each of them, we select the
corresponding crystals in the training, validation, and test sets, and then train multiple AutomMatminer
models, each with one non-zero component of the full tensor as the target. The mean absolute error (MAE)
is shown Fig. S13; also plotted are the MatTen results for comparison.

For the “training tensor components” approach, the performance deteriorates quickly with the tensor com-
plexity, i.e., the number of independent components in the tensor, increasing from cubic to tetragonal, and
to orthorhombic. In contrast, the error by MatTen only slightly increases with increased tensor complexity,
demonstrating the advantage of the united MatTen approach. MatTen automatically handles all symmetry
requirements and thus allows the training using all data, irrespective of the crystal systems. This contributes
to the improved performance of MatTen.

Additional results on isotropic properties

Table S1: Prediction of the bulk modulus K, shear modulus G, and Young’s modulus E in logarithmic
space. K, G, and E are in the units of GPa. The results for MatTen are calculated from a single model,
while a separate AutoMatminer model is trained for each property. The value in a pair of parentheses is
the standard deviation from an ensemble of five models trained with different initialization. MAE: mean
absolute error; MAD: mean absolute deviation.

log10(K) log10(G) log10(E)
MAE MAE/MAD MAE MAE/MAD MAE MAE/MAD

MatTen 0.046 (0.002) 0.166 (0.006) 0.094 (0.002) 0.331 (0.010) 0.087 (0.002) 0.309 (0.018)
AutoMatminer 0.050 (0.002) 0.187 (0.009) 0.090 (0.002) 0.307 (0.006) 0.086 (0.002) 0.301 (0.009)
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Failure analysis

We checked the positive definiteness of the predicted elasticity tensors for the crystal in the test set. The
25 cases with at least one negative eigenvalues are listed in Table S2. For the cubic, tetragonal, and or-
thorhombic crystals, the failure happens all because of the incorrect prediction of the relative magnitude
of the diagonal component and off-diagonal components. For example, for the orthorhombic Na4C4S4N4
crystal (mp-6633), the DFT elasticity tensor is:

46.7 18.1 12.2 0.0 0.0 0.0
18.1 30.8 10.3 0.0 0.0 0.0
12.2 10.3 22.0 0.0 0.0 0.0
0.0 0.0 0.0 7.4 0.0 0.0
0.0 0.0 0.0 0.0 8.5 0.0
0.0 0.0 0.0 0.0 0.0 10.2

 ,

while the model predicted is: 
11.4 19.7 9.9 0.0 0.0 0.0
19.7 24.2 3.2 0.0 0.0 0.0
9.9 3.2 18.5 0.0 0.0 0.0
0.0 0.0 0.0 11.8 0.0 0.0
0.0 0.0 0.0 0.0 10.3 0.0
0.0 0.0 0.0 0.0 0.0 11.0

 .

The predicted c11 is substantially smaller than the DFT value. For the more complex (in terms of the number
of independent components) trigonal crystals, we did not observe any pattern. Nor for the two monoclinic
crystals.

Table S2: Number of crystals with negative eigenvalues by crystal system.

Cubic Tetragonal Hexagonal Orthorhombic Trigonal Monoclinic Triclinic
7 7 0 4 5 2 0

Directional Young’s modulus

Here we prove that, for cubic crystals,

ifS1111 − S1122 − 2S2323 < 0, Emax
d is along ⟨100⟩ andEmax

d is along ⟨111⟩, (7)

otherwise,
ifS1111 − S1122 − 2S2323 > 0, Emax

d is along ⟨111⟩ andEmax
d is along ⟨100⟩. (8)

and
ifS1111 − S1122 − 2S2323 = 0, the materials is isotropic regarding Young’s modulus. (9)

The inverse of the directional Young’s modulus is

Ed(n)
−1 = ninjnknlSijlk, (10)

where Sijkl is the compliance tensor and n is an unit direction vector. For a cubic crystal, the 21 non-zero
components can be classified into three groups [2]:
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• S1111 = S2222 = S3333

• S1122 = S2211 = S2233 = S3322 = S3311 = S1133

• S2323 = S2332 = S3223 = S3232 = S1212 = S1221 = S2112 = S2121 = S1313 = S1331 = S3113 = S3131.

Substituting these into Eq. S(10), we have,

Ed(n)
−1 = S1111(n

4
1 + n4

2 + n4
3) + 2S1122(n

2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1) + 4S2323(n

2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1)

= S1111[1− 2(n2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1)] + 2S1122(n

2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1) + 4S2323(n

2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1)

= S1111 − 2(S1111 − S1122 − 2S2323)(n
2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1)

= S1111 − 2(S1111 − S1122 − 2S2323)f.
(11)

In the second equality, we have used n4
1+n4

2+n4
3 = (n2

1+n2
2+n2

3)
2−2(n2

1n
2
2+n2

2n
2
3+n2

3n
2
1) = 1−2(n2

1n
2
2+

n2
2n

2
3 + n2

3n
2
1), in which (n2

1 + n2
2 + n2

3)
2 = 1, because n is a unit vector. In the last equality, we have defined

f := n2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1.

From Eq. S(11), it seen that Eq. S(9) is valid.

In fact, f has its maximum value of 1/3 along the ⟨111⟩ directions, and the minimum of f is 0 along the
⟨100⟩ directions (derived below). As a result, Eq. S(7) and Eq. S(8) are valid. (Note that Eq. S(11) gives the
inverse of the directional Young’s modulus.)

Below, we show that the maximum of f is 1/3 along the ⟨111⟩ directions, and the minimum of f is 0 along
the ⟨100⟩ directions.

Let n2
1 = a, n2

2 = b and n2
3 = c, we have a+ b+ c = 1 because n is a unit vector. Thus,

f = ab+ bc+ ca = ab+ c(b+ a) = ab+ (1− a− b)(b+ a) = a+ b− ab− a2 − b2. (12)

Let
∂f

∂a
= 1− b− 2a = 0

∂f

∂b
= 1− a− 2b = 0,

(13)

and solve the equations, we have a = b = c = 1/3, i.e. n2
1 = n2

2 = n3
3 = 1/3, At these values, f = 1/3 and we

can verify that it is a maximum. This also suggests n is along the ⟨111⟩ family of directions.

The other extreme values of f are located at the boundaries of a (or b or c). Since n1 is a component of the
unit vector, then n1 ∈ [−1, 1], i.e. a ∈ [0, 1]. So, the extreme value is obtained when

• n1 = 0, n2 = ±1, n3 = 0

• n1 = 0, n2 = 0, n3 = ±1

• n1 = ±1, n2 = 0, n3 = 0.

These are the ⟨100⟩ directions, at which the minimum is f = 0.
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Figure S14: Directional Young’s modulus Ed for CaS. (a) DFT reference values. (b) Prediction error between
MatTen prediction and DFT reference values.
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Figure S15: Distribution of the prediction error for shear modulus. The directional shear modulus can be
computed as Gd(n,m) = (nimjnkmlSijkl)

−1, where n and m are two direction unit vectors, and S is the
compliance tensor [6]. The data of Gd is obtained by sampling in a way similar to Ed discussed in the main
text. The prediction error is the difference between MatTen prediction and DFT reference.
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Figure S16: Scaled error in directional shear modulus Gd and Young’s modulus Ed. The bulk modulus has
no directional dependency, and thus no such plot is presented.

Materials Screening

ba

Figure S17: Maximum directional Young’s modulus Emax
d obtained from DFT and the MatTen model. Each

material has two MatTen predictions, one using the crystal structure directly queried from the Materials
Project (“Predicted Emax

d with initial structure”), and the other using the crystal structure with further ge-
ometry optimization (“Predicted Emax

d after further relaxation”). The latter has tighter geometry optimiza-
tion criteria. The DFT reference Emax

d is obtained using the latter further optimized geometry.

Fig. S17 shows the Emax
d for the 100 new crystals. The MAE between predicted Emax

d with initial structure
and predicted Emax

d with further relaxed structure is 6.55 GPa. It is much smaller than the MAE (22.36 GPa)
between MatTen prediction and DFT reference for the test set. This demonstrates the robustness of MatTen
with respect to the structure of the input crystal as discussed in the main text. As shown in Fig. S17 b, if we
consider the 100 new crystals instead of the test set, the MAE between MatTen prediction and DFT is much
higher, with a value of 48.69 GPa. This is expected, since, for the 100 new crystals, we are probing extreme

14



values at the edge of the training data distribution, while the test set follows the same distribution of the
training data. This signifies the importance of further confirmation with more accurate computation (DFT
in this case) and even experiments once the search space has been narrowed down via the screening using
the model.

Table S3: Polymorphs of elemental cubic metal with Emax
d along ⟨100⟩ directions and Emin

d along ⟨111⟩
directions. ∆S = S1111 − S1122 − 2S2323. Among the crystal structures with the same composition, the one
having the lowest energy is called the ground-state polymorph and is stable with respect to phase transition
into other structures [14]. The crystal structures and the elasticity tensors of these metals are provided as
well. See Data Availability in the main text.

Materials Project ID Formula ∆SDFT ∆SMatTen Experimentally observed Ground-state polymorph
mp-129 Mo -0.00150 -0.00191 Yes Yes
mp-146 V -0.00994 -0.01006 Yes Yes
mp-17 Cr -0.00267 -0.00253 Yes No
mp-90 Cr -0.00369 0.00055 Yes Yes
mp-91 W -0.00056 -0.00042 Yes Yes

mp-11334 W -0.00285 -0.00331 No No
mp-35 Mn -0.00222 -0.00277 Yes Yes

mp-1186040 Na -0.15435 -0.32852 No No
mp-1184808 K -0.34397 -0.12334 No No
mp-949029 Cs -0.53668 -4.79427 No No
mp-1239193 Rh -0.03371 -0.06590 No No
mp-1187790 Tl -0.09708 -0.05340 No No

Model hyperparameters

Table S4: Hyperparameter values obtained by grid search. “fixed” indicates no search, and the value is
obtained based on previous work [13, 15]. Full set of the optimal hyperparameters is available in the “pre-
trained /20230627” directory of the GitHub repo at: https://github.com/wengroup/matten.

Value Hyperparameter Searched values
5Å cutoff radius to construct crystal graph, rcut 4, 5, 6
16 size of one-hot embedding vector for atomic species, c fixed
8 number of radial basis functions, n fixed
3 number of interaction blocks 2, 3, 4, 5
32x0o+32x0e+16x1o+16x1e
+4x2o+4x2e+2x3o+2x3e+2x4e

irreducible representation of atom features in interaction blocks fixed

0e+1o+2e+3o+4e irreducible representation of unit bond vector fixed
2 number of MLP layers for embedding bond length as in Rc 2, 3, 4
32 number of nodes in the MLP for embedding bond length as in Rc 32, 64

15
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