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Supplementary material 
1. Proportional representation algorithm (PT model) – see Abundancy-based model generation system in main 

text 

The algorithm for genera/ng the PT models is given by equa?on (s1) (equaUon (9) in the main text), where ai is the abundance 
of the compound in ques/on, as is the sum of all abundancies and N is the total number of characterized compounds.  
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Equation (s1) results in a dynamic selection rule that is specific to a given in mixture – in our case, Py-GCMS data 
from the pyrolysis of pine-bark- where, the abundancy of each compound is divided by the smallest abundancy in the Py-
GCMS data (normalised). This yields a stoichiometric count of each unique compound in the bio-oil and, to allow the selection 
rule to dynamic between mixtures, the number of selected compounds is equal to the number of unique compounds in the 
mixture (i.e 75, 36 and 48 for the complete bio-oil and phenolic/wax fractions respectively). 
 
The selection process the PT method implements is iterative; where the sum of normalised abundancies is calculated and if 
the sum is less than or equal to the number of unique compounds in the mixture (i.e. 75 in the complete bio-oil), that group 
of compounds. However, if the sum is greater than the number of unique compounds in the mixture, the least abundant 
compound is removed from consideration and the process started all over again. This results in an elimination process akin 
to instant runoff voting, where the lowest ranked candidate is eliminated, and votes recalculated. In the case of pine bark, 
the number of iterations is equal to the number of omitted compounds with a larger sample of molecules requiring more 
iterations fig. s1, in this case the phenolic, wax, and complete models took 20, 36 and 49 iterations respectively. This resulted 
in the definition of a unique selection threshold for each fraction: 1.09% (complete model), 1.57% (wax fraction) and 2.08% 
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(phenolic fraction) with these molecular models being comprised of 17/36 (47%), 12/47 (26%) and 27/75 (36%) compounds 
for the respective PT models of the phenolic fraction, wax fraction, and complete bio-oil respectively. 
Fig. s1 The number of iteraUons required by the PT methodology to select compounds for molecular models. 

This method can be considered a type of stratified sampling where an abstract box is created, and a single molecule of the 
least abundant compound is placed. This is followed by placing an amount of each other compound in this abstract box 
proportional to the least abundant compound. For example, the complete bio-oil contains 75 unique compounds and if 75 
individual compounds were picked out of the box, the most likely combination of selected compounds is given by the PT 
selection algorithm - where multiple instances of each unique compound can be selected for the model – i.e. leaving the 
least abundant compounds in the box.  
 

 

 

 

2. Dispropor?onate influence 

The proportion of each compound in the final models (Pi) was defined using equation (s2) (equations (4) in the main 
text), where ai is the abundancy of a compound in the model and ∑𝑎$%&%'(%)  is the summative abundance of the 
selected compounds. 
 

𝑃* = 𝑎* ∑𝑎$%&%'(%)⁄                                                                                   (s2) 
 
 

Equa?on (s2) was used to calculate values of Pi of all 4 models (FT, PT, AG and SG) and fig. s2 the performance of each of 
these models versus the all-molecule benchmarks for the complete bio-oil and the phenolic/wax frac/ons.  

Fig. s2 Average descriptors for each model (a) complete bio-oil, (b) phenolic fracUon and (c) wax fracUon. The average 
descriptors of each method to generate molecular models are shown in (a-c), the FT (indigo line), the PT method (light blue 
line), the AG method (deep purple line), and the SG method (jade green line) together with the all-molecule model (light green 
line).  

The molecular-classifica/on methods perform the worst versus the all-molecule model in fig. s2 and this is because the AG 
and SG models only select a single compound from a molecular class. This can cause the propor/on of that molecular class 
within a mixture to be misrepresented when Pi is calculated as above with equa?on (s2). This is because the propor/on of 
the selected compound within a mixture is independent of the overall molecular class and as an example, the molecular class 
that consists of mul/-ring structures for 1.87%, 1.11% and 3.40% in the complete bio-oil, phenolic and wax frac/on, but the 
compound selected from this class in the AG model accounts for 4.88%, 6.56% and 8.76% of final model composi/on. In this 
case, the propor/on of this molecular class is overes/mated in each case and is exasperated as the mul/-ring structure group 
doesn’t meet any selec/on threshold in the FT and PT methods. This causes the stoichiometry of compounds selected in the 
molecular-classifica/on models to be inaccurate versus experimental data when the stoichiometry is derived from equa?on 
(s2) and consequently, the molecular-classifica/on models perform inconsistently.  Another example of this dispropor/onate 
influence can be seen in the compound selected from the phenolic molecular class for the AG/SG models of the phenolic 
frac/on as the selected compound has an abundancy (in Py-GCMS data) of 9.89% in the AG model, but only 1.86% in the SG 
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model. When these abundancy values are so different for a compound from the same molecular class between methods, the 
calculated average descriptors are vastly different between models as molecular classes vary differently in their overall 
propor/ons between models. 

As described in the main text, for the molecular-classifica/on system, a different approach to defining the propor/ons of 
compounds in the AG or SG models was required based on this lacklustre performance seen in fig. s2. This approach is shown 
in equa?on (s3) (equaUon (5) in the main text ) where ∑𝑎$+,'&-$$ is the summa/ve abundancy of all the compounds within 
that compounds subclass, ∑𝑎-&&	'/01/+2)$ is the summa/ve abundancy of all compounds in the Py-GCMS data and Pi is the 
calculated propor/on of the compound in ques/on. Essen/ally, each compound is a representa/ve of its molecular class and 
its propor/on equal to propor/on of that molecular class, not the compounds individual propor/on.  

𝑃* = 	∑ 𝑎$+,'&-$$/∑ 𝑎-&&	'/01/+2)$                                                                     (s3) 
 

 

 

The idea in defining propor/ons this way mi/gates any dispropor/onate influence when calcula/ng the weighted averages 
of DFT descriptors. The results of using both equa?ons (s2) and (s3) for the AG model are shown in table s1 and the results 
of using these equa/ons for the SG model are shown in table s2. These tables include the benchmark values as calculated 
from the all-molecules model and then the subsequent values of average descriptors calculated using equa?on (s2) – where 
there is dispropor/onate influence - and equa?on (s3) – where any dispropor/onate influence has been mi/gated and 
weighted averages more closely match the benchmark values of the all-molecule model. 

Table s1 Average descriptors from each complete model for the enUre bio-oil and both the phenolic and wax fracUons. Ph./Wx. 
and Cp. denote the phenolic/wax fracUons, and complete bio-oil. Fixed corresponds to the average descriptors calculated 
a_er any disproporUonate influence has been miUgated using equaUon (s3) and Disp. Inf. Corresponds to average descriptors 
before this effect was accounted for and these were calculated using equaUon (s2). 

 

 

 

 

 

Table s2 Average descriptors from each complete model for the enUre bio-oil and both the phenolic and wax fracUons. Ph./Wx. 
and Cp. denote the phenolic/wax fracUons, and complete bio-oil. Fixed corresponds to the average descriptors calculated 
a_er any disproporUonate influence has been miUgated and Disp. Inf. Corresponds to average descriptors before this was 
calculated. 

 

 

 

 

 

3. Other distribu?ons of descriptors in the models 

 Model Mw (g/mol) η (eV) Polarizability Dipole moment Total energy (eV) Oxygen content (%) 
Cp. Benchmark 197.55 4.13 152.81 1.43 -16426.84 11.30 

Fixed (AG) 210.43 4.23 165.15 1.51 -17157.38 8.36 
Disp. Inf. (AG) 244.89 4.35 191.86 1.59 -17157.38 8.37 

Ph. Benchmark 138.38 3.74 102.27 1.60 -12165.78 17.93 
Fixed (AG) 123.88 3.85 93.16 1.77 -10681.57 13.39 

Disp. Inf. (AG) 149.87 3.89 113.74 1.87 -127542.36 13.39 
Wx. Benchmark 304.07 4.82 243.85 1.15 -24098.27 5.86 

Fixed (AG) 347.94 4.81 280.68 1.06 -27439.l75 6.12 
Disp. Inf. (AG) 353.57 4.82 281.68 1.19 -28093.74 6.12 

 Model Mw (g/mol) η (eV) Polarizability Dipole moment Total energy (eV) Oxygen content (%) 
Cp. Benchmark 197.55 4.13 152.81 1.43 -16426.84 11.30 

Fixed (SG) 193.40 4.15 151.78 1.54 -15860.83 9.50 
Disp. Inf. (SG) 215.27 4.35 166.10 1.92 -17723.87 9.50 

Ph. Benchmark 138.38 3.74 102.27 1.60 -12165.78 17.93 
Fixed (SG) 136.06 3.76 104.47 1.78 -11608.90 12.45 

Disp. Inf. (SG) 190.51 3.93 146.31 2.0 -15989.32 12.45 
Wx. Benchmark 304.07 4.82 243.85 1.15 -24098.27 5.86 

Fixed (SG) 296.58 4.82 237.53 1.07 -23562.46 7.31 
Disp. Inf. (SG) 326.49 4.87 256.03 1.31 -26184.28 7.31 



The distribu/on of reac/vity for all 3 mixtures, complete bio-oil and the phenolic/wax frac/ons was included in the main 
text and is the most important for our uses in describing the reac/vity of a mixture. However, the distribu/ons of other DFT 
descriptors were also generated for each mixture – excluding the total energy as this distribu/on is propor/onal to the 
distribu/on of the molecular weight. Figs. s3-s5 show histograms with the distribu/on of values for molecular weight in the 
all-molecule model and the phenolic/wax frac/ons. 

 

Fig. s3 DistribuUon of molecular weight in molecular models for (a) complete bio-oil, (b) the phenolic fracUon and (c) the 
wax fracUon of pine bark-derived bio-oil. 

Fig. s4 shows histograms with the distribu/on of values for dipole moment in the all-molecule model and the phenolic/wax 
frac/ons. 

Fig. s4 DistribuUon of molecular weight in dipole moment models for (a) complete bio-oil, (b) the phenolic fracUon and (c) 
the wax fracUon of pine bark-derived bio-oil. 

Fig. s5 shows histograms with the distribu/on of values for polarizability in the all-molecule model and the phenolic/wax 
frac/ons. 

Fig. s5 DistribuUon of polarizability in dipole moment models for (a) complete bio-oil, (b) the phenolic fracUon and (c) the 
wax fracUon of pine bark-derived bio-oil. 
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