Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Assembling CeO₂ nanoparticles on ZIF-8 via hydrothermal method to

promote CO₂ photoreduction performances

Yuxin Zhang, Feifan Lang*, Yujie Zhao, Hongwei Hou*

Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China E-mail: houhongw@zzu.edu.cn; <u>flang_cn@foxmail.com</u>

CeO₂ content calculation. The CeO₂ content for the ZIF-8@CeO₂ composites was measured using

thermogravimetric analysis.

For the ZIF-8:

 $\frac{m(ZnO)}{m(ZIF-8)} = 37.54\%$

m(ZnO)=0.3754×m(ZIF-8)

For the ZIF-8@CeO₂:

 $\frac{m(ZnO) + m(CeO2)}{m(ZIF-8) + m(CeO2)} = 59.81\%$ $0.3754 \times m(ZIF-8) + m(CeO2)$

m(ZIF-8) + m(CeO2) = 59.81%

0.3754×m(ZIF-8) + m(CeO₂) = 0.5981×(m(ZIF-8) + m(CeO₂))

 $0.4019 \times m(CeO_2) = 0.2227 \times m(ZIF-8)$

 $m(CeO_2) = 0.55 \times m(ZIF-8)$

 $\frac{m(CeO2)}{m(ZIF-8@CeO2)} = \frac{m(CeO2)}{m(ZIF-8) + m(CeO2)} = \frac{0.55 \times m(ZIF-8)}{m(ZIF-8) + 0.55 \times m(ZIF-8)} = \frac{0.55}{1 + 0.55} = 35\%$

Fig. S1 XRD patterns of the sample ZIF-8@CeO₂ in water with varied pH, or common solvents.

Fig. S2 High-resolution XPS spectra of (a) C 1s and (b) N 1s for samples respectively.

Fig. S3 The long-time performance test of the ZIF-8@CeO₂.

Fig. S4 The error bar of ZIF-8@CeO₂ performance test.

Fig. S5 XRD patterns of the sample pristine ZIF-8@CeO₂, ZIF-8@CeO₂ after storing without protecting from natural light and ZIF-8@CeO₂ after catalysis.

Fig. S6 (a) and (b) The TEM image of the used ZIF-8@CeO₂ composite, (c) and (d) High-magnification TEM image of the used ZIF-8@CeO₂, (e) Scanning TEM image and EDS mapping analysis of (f) Zn (blue), (g) Ce (purple) and (h) O (yellow) of the used ZIF-8@CeO₂.

Fig.S7 XPS spectra of ZIF-8@CeO₂ before and after photocatalytic CO₂ reduction reactions.

Fig.S8 The mass spectra of ${}^{13}CH_4$ and ${}^{13}CO$ generated under ${}^{13}CO_2$ atmosphere.

Table S1 Ce 3d XPS data CeO₂ and ZIF-8@CeO₂.

Sample	Ce ³⁺ / (Ce ³⁺ + Ce ⁴⁺)	Ce ⁴⁺ / (Ce ³⁺ +Ce ⁴⁺)
CeO2	18.96%	81.04%
ZIF-8@CeO ₂	22.76%	77.24%

			-			
Catalyst	Solvent	Sacrificial agent	Source of radiation	Reaction	CO/µmol g ⁻¹ h ⁻¹	CH ₄ /µmol g ⁻¹ h ⁻¹
ZIF-8	H ₂ O	TEOA	200nm<λ<800nm	CO ₂	378.86	138.64
ZIF-8	H ₂ O	TEOA	in the dark	CO ₂	n.d ^[a]	n.d
ZIF-8	H ₂ O	TEOA	200nm<λ<800nm	Ar	n.d	n.d
ZIF-8	H ₂ O	—	200nm<λ<800nm	CO ₂	11.80	n.d
ZIF-8	H ₂ O	TEA	200nm<λ<800nm	CO ₂	10.78	n.d
ZIF-8	CH₃CN	TEOA	200nm<λ<800nm	CO ₂	9.48	n.d
—	H ₂ O	TEOA	200nm<λ<800nm	CO ₂	122.73	38.39
MOF-808	H ₂ O	TEOA	200nm<λ<800nm	CO ₂	275.68	109.05
MIL-101(Cr)	H ₂ O	TEOA	200nm<λ<800nm	CO ₂	427.52	137.20
ZIF-67	H ₂ O	TEOA	200nm<λ<800nm	CO ₂	378.63	136.89

Table S2 A series of control experiments based on reaction conditions^[a]

[a]Not detectable.

Table S3 A series of control experiments of ZIF-8@CeO_2 based on reaction conditions.

Catalyst	Solvent	Sacrificial agent	Source of radiation	Reaction	CO/µmol g ⁻¹ h ⁻¹	CH₄/µmol g⁻¹ h⁻¹
7IE-8@CaO	H.O	TEOA	200nm<2<800nm	0.	465.01	181 27
211-8@0002	1120	ILOA	2001111=/(<80011111		405.01	101.27
ZIF-8@CeO ₂	H ₂ O	TEOA	in the dark	CO ₂	n.d ^[a]	n.d
ZIF-8@CeO ₂	H ₂ O	TEOA	200nm<λ<800nm	Ar	n.d	n.d
Physical mixture of ZIF-8		D TEOA	200nm<λ<800nm	22	306.04	114.79
and CeO ₂	H ₂ O			CO_2		

[a]Not detectable.

Photocatalyst	Light source/ Solvent/	Major products	Reference	
Filotocatalyst	Sacrificial agent	evolution rate	Reference	
CeO ₂ @ZIF-8	H ₂ O/TEOA=5:1	CO 465.01 µmol g ⁻¹ h ⁻¹	This study	
		CH ₄ 181.27 µmol g ⁻¹ h ⁻¹		
	H ₂ O	CO 82 99µmol g ⁻¹ h ⁻¹	Nano Eneray 62	
TiO ₂ /AuCu/ZIF-8		CH 3.91 μ mol σ^{-1} h ⁻¹	(2010) 426-433	
			(2013) 420-433	
			Applied Catalysis B:	
7IF-8@TiOa	H ₂ O(g)	CO 10.512 µmol g ⁻¹ h ⁻¹	Environmental 270	
211 0(2110)2	1120(6)	H_2 7.2 µmol g ⁻¹ h ⁻¹	(2020) 119956	
			(2020) 118850	
	NaOH solution	CO 309 44 umol g ⁻¹ h ⁻¹	Catal. Sci. Technol.,	
CeO ₂ /ATP		CH. 184 33 μ mol σ^{-1} h ⁻¹	2019, 9, 3788–3799	
	/CH3CN	CH4 184.55 µmorg m	3795	
	H ₂ O(g)	CO 17.58 µmol g ⁻¹ h ⁻¹	J. Mater. Chem. A,	
Co-ZIF-9/TiO ₂		CH ₄ 1.98 µmol g ⁻¹ h ⁻¹	2016, 4, 15126–	
		$H_2 2.6 \ \mu mol \ g^{-1} \ h^{-1}$	15133	
	H ₂ O(g)	CO 1 9 umol σ ⁻¹ h ⁻¹	Applied Catalysis B:	
TiO ₂ /UiO-66		CH 17.9 μ mol g ⁻¹ h ⁻¹	Environmental 270	
			(2020) 118856	
ZnO/ZIF-8	H ₂ O		Journal of CO2	
		СН ₃ ОН 6843 µmol g ⁻¹ h ⁻¹	Utilization 43 (2021)	
			101373	
Ni@CdS⊂Zn/Co-ZIF-8	H ₂ O/TEOA	$CO 207.0 \text{ umol} \text{ s}^{-1} \text{ h}^{-1}$	ACS Appl. Mater.	
		$H = 1721 A \text{umol} \text{g}^{-1} \text{h}^{-1}$	Interfaces 2022, 14,	
		Π2 1/ 51.4 μποι g 11-	28123-28132	

Table S4 The CO_2 photoreduction performance compared with reported works.