Supporting Information

Functionalized nickel(II)-iron(II) dithiolates as biomimetic

models of [NiFe]-H₂ases

Li-Cheng Song,* Yin-Peng Wang, Yi-Xiong Dong and Xi-Yue Yang

Contents:

- 1. IR and ¹H (¹³C, ³¹P) NMR spectra of [1](PF₆)₂ (Fig. S1–Fig. S4)
- In situ IR spectra showing the terminal CO changes of starting material [C](BF₄)₂, intermediate m₂ and product [3]BF₄ during reaction of [C](BF₄)₂ with Me₃NO in pyridine (Fig. S5).
- 3. IR and ¹H (¹³C, ³¹P) NMR spectra of [2]PF₆ (Fig. S6– Fig. S9)
- 4. IR and ¹H (¹³C, ³¹P) NMR spectra of [**3**]BF₄ (Fig. S10–Fig. S13)
- 5. Bulk electrolysis for the two-electron reduction of [CpFe(CO)₂]₂ and the oneelectron reduction of [2]PF₆ (Fig. S14)
- 6. Plots of i_p versus $v^{1/2}$ for the reduction peaks of [2]PF₆ (Fig. S15)
- 7. In situ IR spectra showing the terminal CO changes of starting material $[1](PF_6)_2$, intermediate \mathbf{m}_3 and product $[4]PF_6$ during reaction of $[1](PF_6)_2$ with Me₃NO and HCO₂H in acetone (Fig. S16)
- 8. In situ IR spectra showing the terminal CO changes of starting material [1](PF₆)₂, intermediate **m**₃ and product [6]PF₆ during reaction of [1](PF₆)₂ with Me₃NO and PhCO₂H in acetone (Fig. S17)
- 9. IR and ¹H (¹³C, ³¹P) NMR spectra of [4]PF₆ (Fig. S18–Fig. S21)
- 10. IR and ¹H (¹³C, ³¹P) NMR spectra of [**5**]PF₆ (Fig. S22– Fig. S25)
- 11. IR and ¹H (¹³C, ³¹P) NMR spectra of [6]PF₆ (Fig. S26– Fig. S29)
- 12. IR and ¹H (¹³C, ³¹P) NMR spectra of [7]PF₆ (Fig. S30– Fig. S33)
- 13. IR and ¹H (¹³C, ³¹P) NMR spectra of [**8**]PF₆ (Fig. S34– Fig. S37)
- 14. IR and ¹H (¹³C, ³¹P) NMR spectra of [**9**](PF₆)₂ (Fig. S38– Fig. S41)
- 15. IR and ¹H (¹³C, ³¹P) NMR spectra of [9](BF₄)₂ (Fig. S42–Fig. S45)
- 16. References

1. IR and ¹H (^{13}C , ^{31}P) NMR spectra of [1](PF₆)₂

Fig. S3 13 C NMR spectrum of [1](PF₆)₂

Fig. S4 31 P NMR spectrum of [1](PF₆)₂

In situ IR spectra showing the terminal CO changes of starting material [C](BF₄)₂, intermediate m₂ and product [3]BF₄ during reaction of [C](BF₄)₂ with Me₃NO in pyridine.

Fig. S5 In situ IR spectra showing the terminal CO changes of starting material $[C](BF_4)_2$, intermediate m_2 and product $[3]BF_4$ during reaction of $[C](BF_4)_2$ with Me₃NO in pyridine.

3. IR and ¹H (^{13}C , ^{31}P) NMR spectra of [2]PF₆

Fig. S7 ¹H NMR spectrum of $[2]PF_6$

Fig. S8 13 C NMR spectrum of [2]PF₆

4. IR and ¹H (^{13}C , ^{31}P) NMR spectra of [**3**]BF₄

Fig. S10 IR spectrum of [3]BF₄

Fig. S11 ¹H NMR spectrum of [3]BF₄

Fig. S13 ³¹P NMR spectrum of [3]BF₄

5. Bulk electrolysis for the two-electron reduction of $[CpFe(CO)_2]_2$ and the oneelectron reduction of $[2]PF_6$

The reduction event for [2]PF₆ is a one-electron process since their final Q values determined by bulk electrolysis are close to half that of the known two-electron reduction process of dimer $[CpFe(CO)_2]_2$.^{1,2}

Fig. S14 Bulk electrolysis for the two-electron reduction of $[CpFe(CO)_2]_2$ and the one-electron reductions for the first reduction event of [2]PF₆.

6. Plots of i_p versus $v^{1/2}$ for the reduction peaks of [2]PF₆

Fig. S15 Plots of i_p versus $v^{1/2}$ for the first and second reduction peaks of [2]PF₆ with their correlation coefficient R values.

7. In situ IR spectra showing the terminal CO changes of starting material $[1](PF_6)_2$, intermediate \mathbf{m}_3 and product $[4]PF_6$ during reaction of $[1](PF_6)_2$ with Me₃NO and HCO₂H in acetone.

Fig. S16 In situ IR spectra showing the terminal CO changes of starting material $[1](PF_6)_2$, intermediate m_3 and product $[4]PF_6$ during reaction of $[1](PF_6)_2$ with Me₃NO and HCO₂H in acetone.

8. In situ IR spectra showing the terminal CO changes of starting material $[1](PF_6)_2$, intermediate \mathbf{m}_3 and product $[6]PF_6$ during reaction of $[1](PF_6)_2$ with Me₃NO and PhCO₂H in acetone.

Fig. S17 In situ IR spectra showing the terminal CO changes of starting material $[1](PF_6)_2$, intermediate m_3 and product $[6]PF_6$ during reaction of $[1](PF_6)_2$ with Me₃NO and PhCO₂H in acetone.

Fig. S19 ¹H NMR spectrum of [4]PF₆

Fig. S20 13 C NMR spectrum of [4]PF₆

Fig. S21 31 P NMR spectrum of [4]PF₆

10. IR and ¹H (13 C, 31 P) NMR spectra of [5]PF₆

Fig. S25 ³¹P NMR spectrum of [5]PF₆

11. IR and ¹H (13 C, 31 P) NMR spectra of [6]PF₆

Fig. S26 IR spectrum of [6]PF₆

Fig. S29 ³¹P NMR spectrum of [6]PF $_6$

12. IR and ¹H (13 C, 31 P) NMR spectra of [7]PF₆

Fig. S30 IR spectrum of [7]PF₆

Fig. S33 31 P NMR spectrum of [7]PF₆

13. IR and ¹H (13 C, 31 P) NMR spectra of [8]PF₆

14. IR and ¹H (13 C, 31 P) NMR spectra of [9](PF₆)₂

15. IR and ¹H (¹³C, ³¹P) NMR spectra of [9](BF₄)₂

Fig. S42 IR spectrum of $[9](BF_4)_2$

Fig. S45 31 P NMR spectrum of [9](BF₄)₂

16. References

- L.-C. Song, X.-F. Han, W. Chen, J.-P. Li and X.-Y. Wang, *Dalton Trans.*, 2017, 46, 10003-10013.
- L.-C. Song, Y.-X. Wang, X.-K. Xing, S.-D. Ding, L.-D. Zhang, X.-Y. Wang and H.-T. Zhang, *Chem. Eur. J.*, 2016, **22**, 16304-16314.