Electronic Supporting information

Synthesis and reactivity of 9,10-bis(4trimethylsilylethynylbuta-1,3diynyl)anthracene derived chromophores

Benjamin J. Frogley and Anthony F. Hill

GeneralExperimentalConditionsandInstrumentation-Unless otherwise stated, experimentalwork was carried out at room temperature under a dry andoxygen-free nitrogen atmosphere using standard Schlenktechniques with dried and degassed solvents.

NMR spectra were obtained on a Bruker Avance 400 (1H at 400.1 MHz, ¹³C at 100.6 MHz, ³¹P at 162.0 or a Bruker Avance 700 (1H at 700.0 MHz, 13C at 176.1 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the proteo-impurity (¹H), the deuterated solvent itself (13C), or externally referenced (CFCl₃ for $^{19}F{^{1}H}$, 85% H₃PO₄ in H₂O for $^{31}P{^{1}H}$). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. In some cases, distinct peaks were observed in the ¹H and $^{13}C{^{1}H}$ NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. The abbreviation 'pz' is used to refer to the pyrazolyl rings on the hydrotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) ligand. Spectra provided generally correspond to samples obtained directly from chromatography and may contain residual solvent as recrystallised samples often display reduced solubility.

Infrared spectra were obtained using a Shimadzu FTIR-8400 spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). UV/Vis data were collected from solutions in 1 cm quartz cells using a PerkinElmer Lambda 465 spectrophotometer. Fluorescence data were collected on a Varian Cary Eclipse fluorescence spectrophotometer. Elemental microanalytical data were provided the London Metropolitan University or Macquarie University microanalytical services. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix.

Data for X-ray crystallography were collected with an Agilent SuperNova CCD diffractometer using $Cu-K\alpha$

radiation ($\lambda = 1.54184$ Å) and the CrysAlis PRO software.¹ The structures were solved by intrinsic phasing methods and refined by full-matrix least-squares on F^2 using the SHELXT and SHELXL programs.² Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.³ Structural data for 9,10-bis(phenylbut-1,3-diyn-1yl)anthracene (5) were collected at the Australian Synchrotron using the MX1 beamline using silicon double crystal monochromated synchrotron radiation at 100 K. Raw frame data were collected using BluIce⁴ and data reduction, interframe scaling, unit cell refinement and absorption corrections were processed using XDS.⁵ Crystallographic data for complexes described herein may be obtained from the Cambridge Crystallographic Data Centre CCDC 2231630-2231635.

Computational studies were performed by using the *SPARTAN20*® suite of programs.⁶ Geometry optimisation (gas phase) was performed at the DFT level of theory using the ω B97X-D exchange functionals of Head-Gordon.⁷ The Los Alamos effective core potential type basis set (LANL2D) of Hay and Wadt⁴ was used for Au while Pople 6-31G* basis sets⁶ were used for all other atoms. Frequency calculations were performed for all compounds to confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest. Cartesian atomic coordinates are provided below.

References

1 Agilent, *CrysAlis PRO*, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.

2 (a) G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, **64**, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, **71**, 3-8.

3 (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457; (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466-470.

⁴ T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis and P. Kuhn, *J. Synchrotron Rad.*, 2002, **9**, 401-406.

5 W. Kabsch, J. Appl. Crystallogr., 1993, 26, 795-800.

6 Spartan 20® (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.

7 (a) J. D. Chai and M. Head-Gordon, *J Chem Phys.*, 2008, **128**, 084106. (b) J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, 10, 6615-6620.

(a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, 82, 270-283.
(b) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, 82, 299-310.
(c) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, 82, 284-298.

9 W. J. Hehre, R. Ditchfeld and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.

Dalton Transactions

Figure S2.¹³C{¹H} NMR (75 MHz, CDCl₃, 25°C, δ) of trans-9,10-dimethoxy-9,10-bis(trimethylsilylbut-1,3-diyn-1-yl)dihydroanthracene (2).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, **00**, 1-3 | **3**

ARTICLE

Dalton Transactions

 $\label{eq:Figure S3.1} Figure S3.1 H NMR (400 \mbox{ MHz, CDCl}_3, 25 \mbox{`C}, \ensuremath{\delta}) of 10-hydroxy-10-(trimethylsilylbuta-1, 3-diyn-1-yl) anthracen-9(10H)-one (3).$

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

ARTICLE

ARTICLE

Dalton Transactions

Dalton Transactions

ARTICLE

Dalton Transactions

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, **00**, 1-3 | **9**

Please do not adjust margins

ARTICLE

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 11

ARTICLE

ARTICLE

Dalton Transactions

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 13

Please do not adjust margins

ARTICLE

Dalton Transactions

Please do not adjust margins

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 15

Please do not adjust margins

ARTICLE

Please do not adjust margins

ARTICLE

Dalton Transactions

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 17

ARTICLE

Dalton Transactions

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 19

Please do not adjust margins

ARTICLE

ARTICLE

Dalton Transactions

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, **00**, 1-3 | **21**

Please do not adjust margins

ARTICLE

ARTICLE

Dalton Transactions

ARTICLE

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 23

ARTICLE

Dalton Transactions

Figure S23. Infrared spectrum (CH_2Cl_2 , cm^{-1}) of the tetracobalt complex 5.

Dalton Transactions

Figure S24. Infrared spectrum (CH₂Cl₂, cm⁻¹) of $[9,10-{(Tp^*)(CO)_2Mo\equiv CC\equiv CC\equiv C}C_{14}H_8]$ (11).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, **00**, 1-3 | **25**

ARTICLE

Dalton Transactions

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

ARTICLE

Dalton Transactions

Dalton Transactions

ARTICLE

Dalton Transactions

Figure S29. Electronic spectrum (CH₂Cl₂) of 9,10-bis((4-bromophenyl)but-1,3-diyn-1-yl)anthracene (6).

Dalton Transactions

Figure S30. Electronic spectrum (CH₂Cl₂) of tetracobalt complex (7).

This journal is © The Royal Society of Chemistry 2023

ARTICLE

ARTICLE

Dalton Transactions

Dalton Transactions

ARTICLE

Dalton Transactions

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, **00**, 1-3 | **35**

ARTICLE

Dalton Transactions

Figure S36. Emission spectrum (CH₂Cl₂) of 9,10-bis((4-bromophenyl)but-1,3-diyn-1-yl)anthracene (6) with 278 nm excitation.

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, **00**, 1-3 | **37**

ARTICLE

ARTICLE

Dalton Transactions

Dalton Transactions

Figure S38. Emission spectrum (CH₂Cl₂) of 9,10-bis(tricyclohexylphosphinegold-buta-1,3-diyn-1-yl)anthracene (9) with 259 nm excitation.

This journal is © The Royal Society of Chemistry 2023

ARTICLE

Dalton Transactions

Dalton Transactions

Figure S40. Optimised Geometry and frontier orbitals of (OC)Au-C=C-C-L_14H_8-C=C-C=C-C_4U(CO) (\omegaB97X-D/6-31G*/LANL2D\zeta(Au)/Gas phase)

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 41

Dalton Transactions

Figure S41. Frontier orbitals of interest for (OC)Au-C=C-C=C-C14H8-C=C-C=C-Au(CO) (\muB97X-D/6-31G*/LANL2DZ(Au)/Gas phase)

Dalton Transactions

Figure S42. Calculated electronic and infrared spectra of (OC)Au–C=C-C=C-C₁₄H₈-C=C-C=C-Au(CO) (ωB97X-D/6-31G*/LANL2Dζ(Au)/Gas phase)

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, **00**, 1-3 | **43**

ARTICLE

Dalton Transactions

 $\label{eq:Figure S44. Frontier orbitals of interest for (H_3P)Au-C=C-C=C-C_1_4H_8-C=C-C=C-Au(PH_3) \\ (\mbox{$\square B97X-D/6-31G^*/LANL2D\zeta(Au)/Gas phase) $ and a set of the set o$

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 45

Figure S45. Calculated electronic and infrared spectra of (H₃P)Au-C=C-C=C-Au(PH₃) (∞ B97X-D/6-31G*/LANL2Dζ(Au)/Gas phase). NB: The IR absorption at 979 cm-1 that dominates the spectrum corresponds to a δ_{PH} mode.

ARTICLE

Dalton Transactions

 $\label{eq:Figure S46. Optimised Geometry and frontier orbitals of $H_3Si-C=C-C=C-C=C-C_{14}H_8-C=C-C=C-C=C-SiH_3$ ($\mathbb{m}B97X-D/6-31G*/Gas$ phase) and $H_3Si-C=C-C=C-C=C-SiH_3$ ($(mB97X-D/6-31G*/Gas$ phase)) and $(mB97X-D/6-31G*/Gas$ phase)] and $(mB97X-D/6-31G*/Gas$ pha$

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 47

Figure S47. Frontier orbitals of interest for H₃Si-C=C -C=C-C=C-C₁₄H₈-C=C-C=C-C=C-SiH₃ (ω B97X-D/6-31G*/Gas phase)

Dalton Transactions

nm 🔻	strength	MO Component											
336.18	0.0002	HOMO-3 -> LUMO	29%										
		HOMO -> LUMO+3	19%					10.6*	octrum (cm ⁻¹)				
		HOMO-1 -> LUMO+1	18%		3000 250	00 21	000	IR Sp 15	00	1000	50	0	<u>е</u>
		HOMO-2 -> LUMO+2	17%			V.V.							
346.43	0.0001	HOMO-2 -> LUMO	37%	ulated		¥							
		HOMO -> LUMO+1	22%	Calc									
		HOMO-1 -> LUMO+3	15%										
		HOMO-3 -> LUMO+2	11%							8	90		
346.94	0.0000	HOMO-1 -> LUMO	31%										
		HOMO -> LUMO+2	27%										
		HOMO-3 -> LUMO+1	15%										
		HOMO-2 -> LUMO+3	12%	F	. ,							.	
359.33	0.0000	HOMO -> LUMO+1	27%										
		HOMO-2 -> LUMO	22%						\backslash				
		HOMO-3 -> LUMO+2	16%	ated			/			/			
359.52	0.0000	HOMO-1 -> LUMO	28%	alcu		\frown							
		HOMO -> LUMO+2	22%							····/			
		HOMO-3 -> LUMO+1	14%		/								
		HOMO-2 -> LUMO+3	12%	20	200 30	0	4	00	50	0		600	700
450.85	1.1958	HOMO -> LUMO	94%				,	UV/Vis	Spectrum	-			

Figure S48. Calculated electronic and infrared spectra of H₃Si-C=C -C=C-C=C-C=C-C=C-C=C-C=C-C=C-SiH₃ (∞ B97X-D/6-31G*/Gas phase). NB: The IR absorption at 890 cm⁻¹ that dominates the spectrum corresponds to a δ_{SiH} mode

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 49

ARTICLE

Figure \$49. Optimised Geometry and frontier orbitals of Ph -C≡C-C≡C-C₁₄H₈-C≡C-C≡C-Ph (ωB97X-D/6-31G*/Gas phase)

Dalton Transactions

ARTICLE

номо

HOMO-1

HOMO-2

Figure S50. Frontier orbitals of interest for Ph -C=C-C=C-C₁₄H₈-C=C-C=C- Ph (ω B97X-D/6-31G*/Gas phase)

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 51

Dalton Transactions

 $\label{eq:Figure S51.} Calculated electronic and infrared spectra of Ph -C=C-C_{14}H_8-C=C-C_Ph \ (\omega B97X-D/6-31G^*/Gas \ phase)$

Cartesian Coordinates and Thermodynamic Data

(a) 9,10-C₁₄H₈(C=CC=CPh)₂

Aton	1 X	у	z	
Н	4.586897	0.372737	-1.247662	
С	3.646452	0.295459	-0.710811	
Н	2.470335	0.201366	-2.485161	
С	2.474085	0.200511	-1.400225	
С	2.474059	0.200678	1.400173	
С	1.225472	0.098631	-0.714804	
С	3.646433	0.295552	0.710735	
С	1.225473	0.098706	0.714756	
С	0.000334	0.000583	-1.413312	
Н	4.586869	0.372904	1.247599	
Н	2.470324	0.201673	2.485113	
С	-1.224765	-0.097232	-0.714807	
С	-2.473172	-0.199227	-1.400307	
С	-1.224767	-0.097137	0.714834	
Н	-2.469466	-0.199784	2.485248	
С	0.000344	0.000769	1.413301	
С	-3.645459	-0.294238	-0.710804	
Н	-2.469442	-0.200209	-2.485224	
Н	-4.585922	-0.371707	-1.247626	
С	-3.645480	-0.294101	0.710851	
Н	-4.585956	-0.371454	1.247660	
С	-2.473201	-0.198994	1.400336	
С	0.000417	0.000018	-2.836531	
С	0.000520	0.000326	-4.051669	
С	-0.000045	-0.000175	-5.420242	
С	-0.000138	-0.000225	-6.633940	
С	0.000703	0.000715	2.836524	
С	0.000566	0.000366	4.051674	
С	-0.000041	-0.000015	5.420250	
С	-0.000177	0.000062	6.633946	
С	-0.000247	-0.000324	8.062334	
С	-0.000732	-0.001104	10.855943	
С	-0.829801	0.881832	8.770094	
С	0.829112	-0.882874	8.769853	
С	0.825453	-0.879736	10.158698	
С	-0.826656	0.877895	10.158911	
Н	-1.469706	1.564797	8.220820	
Н	1.469168	-1.565619	8.220476	
Н	1.469460	-1.566575	10.699340	
Н	-1.470870	1.564427	10.699643	
Н	-0.000918	-0.001373	11.941703	
С	-0.000270	-0.000352	-8.062327	
С	-0.000647	-0.000957	-10.855930	
С	0.829179	-0.882780	-8.769878	
С	-0.829907	0.881765	-8.770049	
С	-0.826705	0.877909	-10.158874	
С	0.825581	-0.879559	-10.158711	
Н	1.469252	-1.565496	-8.220492	
Н	-1.469929	1.564631	-8.220784	

Η	-1.470972	1.564397	-10.699612
Н	1.469677	-1.566309	-10.699344
Н	-0.000771	-0.001153	-11.941689

Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	998.36	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	62.04	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	1060.40	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-1305.385870	Enthalpy :
	J/mol•K	635.84	Entropy :
(Enthalpy - T*Entropy)	au	-1305.458075	Gibbs Energy :
	J/mol•K	461.46	C _v :

(b) 9,10-C₁₄H₈(C=CC=CC=CSiH₃)₂

Atom	ı x	У	z
Н	4.599005	0.001111	-1.248086
С	3.655592	0.000818	-0.711195
Н	2.477285	0.001696	-2.485995
С	2.479600	0.001135	-1.401114
С	2.479780	-0.000251	1.400428
С	1.227899	0.000768	-0.714887
С	3.655676	0.000058	0.710249
С	1.227995	0.000148	0.714449
С	-0.003024	0.000962	-1.411044
Н	4.599179	-0.000232	1.247005
Н	2.477691	-0.000829	2.485318
С	-1.233839	0.000649	-0.714675
С	-2.485485	0.000854	-1.400762
С	-1.233735	0.000082	0.714739
Н	-2.483000	-0.000872	2.485923
С	-0.002846	-0.000091	1.410866
С	-3.661299	0.000466	-0.710555
Н	-2.483376	0.001347	-2.485678
Н	-4.604823	0.000631	-1.247283
С	-3.661198	-0.000185	0.710983
Н	-4.604654	-0.000505	1.247822
С	-2.485287	-0.000362	1.401018
С	-0.002879	0.000698	-2.832276
С	-0.001227	0.000703	-4.048614
С	0.000535	0.000418	-5.411713
С	0.001944	0.000487	-6.628965
С	-0.002416	-0.000824	2.832105
С	-0.001211	-0.000690	4.048490
С	0.000420	-0.000864	5.411587
С	0.002433	-0.001137	6.628845
С	0.004291	-0.000304	-7.994396
С	0.005955	-0.000600	-9.213076
С	0.003532	-0.000311	7.994753

ARTICLE

Dalton Transactions

0.004809	-0.000283	9.213337
0.005966	-0.000992	-11.040534
-0.692486	1.209609	-11.532498
-0.693792	-1.211124	-11.532006
1.404034	-0.001874	-11.531512
0.005491	0.000003	11.040762
-0.693103	-1.210369	11.533238
-0.692878	1.210599	11.533000
1.403448	-0.000542	11.531946
	0.004809 0.005966 -0.692486 -0.693792 1.404034 0.005491 -0.693103 -0.692878 1.403448	0.004809 -0.000283 0.005966 -0.000992 -0.692486 1.209609 -0.693792 -1.211124 1.404034 -0.001874 0.005491 0.000003 -0.693103 -1.210369 -0.692878 1.210599 1.403448 -0.00542

Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	716.59	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	61.36	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	777.96	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-1577.145211	Enthalpy :
	J/mol•K	634.39	Entropy :
(Enthalpy - T*Entropy)	au	-1577.217251	Gibbs Energy :
	J/mol•K	434.83	C _v :

(c) 9,10-C₁₄H₈(C=CC=CAuPH₃)₂

Ato	m x	У	z	
Н	-4.600613	0.001149	-1.248494	
С	-3.657143	0.001571	-0.710898	
Н	-2.474705	0.002042	-2.485149	
С	-2.480668	0.002067	-1.400095	
С	-2.480659	0.002087	1.400027	
С	-1.227652	0.002478	-0.714797	
С	-3.657137	0.001584	0.710860	
С	-1.227648	0.002483	0.714720	
С	-0.000160	0.002870	-1.416934	
Н	-4.600599	0.001178	1.248467	
Н	-2.474678	0.002081	2.485080	
С	1.227335	0.002481	-0.714803	
С	2.480348	0.002082	-1.400107	
С	1.227338	0.002480	0.714714	
Н	2.474376	0.002049	2.485068	
С	-0.000153	0.002874	1.416859	
С	3.656826	0.001582	-0.710916	
Н	2.474380	0.002072	-2.485161	
Н	4.600294	0.001174	-1.248516	
С	3.656826	0.001573	0.710843	
Н	4.600292	0.001153	1.248444	
С	2.480352	0.002071	1.400015	
С	-0.000164	0.003836	-2.839936	
С	-0.000163	0.004919	-4.055763	
С	-0.000151	0.005528	-5.425409	
С	-0.000145	0.005953	-6.647271	
С	-0.000149	0.003841	2.839975	
С	-0.000150	0.004929	4.055873	

С	-0.000162	0.005525	5.425203	
С	-0.000167	0.005956	6.647145	
Au	-0.000109	0.003055	-8.631874	
Au	-0.000201	0.003053	8.632082	
Р	-0.000285	-0.007627	10.960148	
Н	-0.214239	-1.233147	11.610813	
Н	-0.951202	0.781551	11.626835	
Н	1.163054	0.411626	11.625259	
Р	-0.000024	-0.007622	-10.959925	
Н	1.172943	-0.416203	-11.614343	
Н	-0.231894	1.205058	-11.628638	
Н	-0.933347	-0.823411	-11.619405	

Thermodynamic Properties at 298.15 K

Zero Point Energy :	684.73	kJ/mol	(ZPE)
Temperature Correction :	60.66	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	745.39	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-1799.591814	au	(Electronic Energy + Enthalpy Correction)
Entropy :	650.51	J/mol•K	
Gibbs Energy :	-1799.665686	au	(Enthalpy - T*Entropy)
C _v :	419.72	J/mol•K	

(d) 9,10-C₁₄H₈(C=CC=CAuCO)₂

Atom	n x	у	z
Н	4.599905	0.002061	-1.245355
С	3.656095	0.001755	-0.708692
Н	2.476349	0.001842	-2.483915
С	2.480305	0.001637	-1.398911
С	2.478504	0.001180	1.401745
С	1.227354	0.001369	-0.714032
С	3.655159	0.001424	0.712941
С	1.226429	0.001201	0.715343
С	-0.000786	0.001175	-1.414607
Н	4.598276	0.001430	1.250840
Н	2.473288	0.000964	2.486726
С	-1.229912	0.001040	-0.715522
С	-2.482127	0.000981	-1.401853
С	-1.230841	0.000879	0.713890
Н	-2.479933	0.000342	2.483761
С	-0.002619	0.000916	1.414433
С	-3.658846	0.000809	-0.713052
Н	-2.476883	0.001178	-2.486855
Н	-4.601976	0.000876	-1.250943
С	-3.659791	0.000498	0.708550
Н	-4.603608	0.000283	1.245209
С	-2.483936	0.000547	1.398734
С	0.000404	0.000714	-2.837033
С	0.000510	0.000267	-4.052761
С	0.000490	0.000069	-5.420927

С	-0.001122	0.000386	-6.642365
С	-0.002828	0.000561	2.836847
С	-0.001242	0.001229	4.052567
С	-0.000247	0.002915	5.420732
С	0.001036	0.005385	6.642169
Au	-0.001129	-0.000660	-8.616647
Au	0.003964	0.006191	8.616416
С	0.009575	-0.003127	10.570578
0	0.015160	-0.017442	11.704670
С	0.004040	-0.004163	-10.569338
0	0.010983	-0.007504	-11.703344

Thermodynamic Properties at 298.15 K

Zero Point Energy :	587.49	kJ/mol	(ZPE)
Temperature Correction :	56.96	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	644.45	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-1339.940169	au	(Electronic Energy + Enthalpy Correction)
Entropy :	626.83	J/mol•K	
Gibbs Energy :	-1340.011352	au	(Enthalpy - T*Entropy)
C _v :	391.77	J/mol•K	

This journal is © The Royal Society of Chemistry 2023