Insights into the effect of regulation in molecular composition on the

properties of (AuAg)₉ clusters

Xiaoxun Yan,‡ Shangyu Su,‡ Xiaowu Li, Shan Jin,* Manzhou Zhu*

Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China

Figure S1. The ESI-MS data of [Au₄Ag₅(SAdm)₆(Dppm)₂](BPh₄).

Figure S2. The ESI-MS data of [Au₄Ag₅(S-c-C₆H₁₁)₆(Dppm)₂](BPh₄).

Figure S3. The ESI-MS data of [Au_{6.5}Ag_{2.5}(SAdm)₆(Dppm)₂](BPh₄).

Figure S4. The ESI-MS data of [Au₄Ag₅(SAdm)₆(VDPP)₂](BPh₄). The result indicated the (Ph₂P)₂C=CH₂ ligands are reduced to (Ph₂P)₂CH-CH₃ with a deviation of 2 Da for each phosphine ligand.

Figure S5. The overall structure of these nanoclusters. A) $[Au_4Ag_5(SAdm)_6(Dppm)_2](BPh_4)$; B) $[Au_4Ag_5(S-c-C_6H_{11})_6(Dppm)_2](BPh_4)$; C) $[Au_{6.5}Ag_{2.5}(SAdm)_6(Dppm)_2](BPh_4)$.

Figure S6. The the packing mode of these nanoclusters. A) [Au₄Ag₅(SAdm)₆(Dppm)₂](BPh₄); B) [Au₄Ag₅(S-c-C₆H₁₁)₆(Dppm)₂](BPh₄); C) [Au_{6.5}Ag_{2.5}(SAdm)₆(Dppm)₂](BPh₄).

Figure S7. The framework of M_5 ring in these nanoclusters. A) $[Au_4Ag_5(SAdm)_6(Dppm)_2](BPh_4)$; B) $[Au_4Ag_5(S-c-C_6H_{11})_6(Dppm)_2](BPh_4)$; C) $[Au_{6.5}Ag_{2.5}(SAdm)_6(Dppm)_2](BPh_4)$.

Figure S8. Different bond angles for these nanoclusters. A) [Au₄Ag₅(SAdm)₆(Dppm)₂](BPh₄); B) [Au₄Ag₅(S-c-C₆H₁₁)₆(Dppm)₂](BPh₄); C) [Au_{6.5}Ag_{2.5}(SAdm)₆(Dppm)₂](BPh₄).

Figure S9. The obtained $[Au_4Ag_5(S-c-C_6H_{11})_6(Dppm)_2](BPh_4)$ connecting the $[Au_4Ag_5(SAdm)_6(Dppm)_2](BPh_4)$ and $[Au_4Cu_5(S-c-C_6H_{11})_6(Dppm)_2](BPh_4)$.

Table S1. Crystal data and structure refinement for Au₄Ag₅-CHT-revised.

Empirical formula	$C_{110}H_{130}Ag_5Au_4BP_4S_6$
Formula weight	3106.40
Temperature/K	120
Crystal system	monoclinic
Space group	C2/c
a/Å	24.443(3)
b/Å	25.297(3)
c/Å	18.903(3)
α/°	90
β/°	108.051(10)
γ/°	90
Volume/Å ³	11113(3)
Ζ	4
Radiation	$CuK\alpha$ ($\lambda = 1.54186$)
Index ranges	$\text{-}29 \le h \le 18, \text{-}30 \le k \le 28, \text{-}15 \le l \le 22$
Independent reflections	10308 [$R_{int} = 0.0768, R_{sigma} = 0.0495$]
Data/restraints/parameters	10308/1499/515
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0650, wR_2 = 0.1832$
Final R indexes [all data]	$R_1 = 0.0744, wR_2 = 0.1916$
Largest diff. peak/hole / e Å-	2.02/-3.64

Empirical formula	$C_{134.5}H_{154}Ag_{2.48}Au_{6.53}BClP_4S_6$
Formula weight	3685.25
Temperature/K	120
Crystal system	triclinic
Space group	P-1
a/Å	18.3755(10)
b/Å	19.6063(11)
c/Å	21.8061(12)
$\alpha/^{\circ}$	103.741(4)
β/°	100.027(4)
$\gamma/^{\circ}$	112.795(4)
Volume/Å ³	6717.4(7)
Ζ	2
Radiation	CuKa ($\lambda = 1.54186$)
Index ranges	$\text{-18} \le h \le 22, \text{-22} \le k \le 23, \text{-26} \le l \le 11$
Independent reflections	23983 [$R_{int} = 0.0693, R_{sigma} = 0.0731$]
Data/restraints/parameters	23983/4500/1364
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0906, wR_2 = 0.2447$
Final R indexes [all data]	$R_1 = 0.1070, wR_2 = 0.2632$
Largest diff. peak/hole / e Å-3	3.46/-6.45

Table S2. Crystal data and structure refinement for Ag_{2.48}Au_{6.53}.