Supporting Information for:

A tris(2-aminoethyl)amine-based zinc complex as a highly water-soluble drug carrier for the anti-COVID-19 drug favipiravir: A joint Experimental and Theoretical study

Farshid Hajibabaei^a, Samaneh Sanei Movafagh^a, Sadegh Salehzadeh^{a*}, Robert William Gable^b

^a Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

^b School of Chemistry, University of Melbourne, Victoria 3010, Australia

*Corresponding authors. E-mail addresses: saleh@basu.ac.ir (S. Salehzadeh)

Contains:

Table complexes	S1.	Crystal	data	and s	structure 2	refinement	for	1,	2	and	3
Table S2previously42]	. Selecte	d Bond Ler r	ngths (Å) a eported	and Angle	es (°) for orga	<i>N/O</i> -coordinated nic	complex sa	xes and lt	FAV	anion	in a [ref.
Table S3structurestheory	Calculat of all st	ted ^a gas pha audied confo	ase electron ormers of	nic energio keto and	es, enthalp enol tauto	ies and Gibbs fro omers of FAV	ee energi at M06-1	es (Hart D3/def2	tree) o -TZVF	f optim PP leve	nized el of
Table S4enol isometheory	. Solvati ers/confo	on energies rmers of F	s (G _{solv} , Ha AV in H ₂	ntree) and O, CH ₃ O	Gibbs free H and DM	e energies (G _{solut} , MSO solutions a	, Hartree) at M06-1) ^a of the D3/def2-	e studie -TZVP	ed keto P leve	and and of 4
Table S5isomers/cotheory	• Calcula	of FAV	free energie in H ₂ O,	es (G, Ha CH ₃ OH	artree) of t and DMS	he optimized str SO solutions at	uctures o M06-D	of studi 3/def2-'	ed ket TZVPI	o and P leve	enol 1 of 5
Table S6.[Zn(tren)(C)	The con D-FAV)] ⁺	nparison of complexes.	calculated ^a	and expe	erimental s	elected distances	s (Å) for	[Zn(tre	en)(N-I	FAV)]+	and 6
Table S7 [Zn(tren)(C)]	. The cal D-FAV)] ⁺	culated ^a and	1 experime	ntal data 1	for intrame	elecular hydrogen	ı bond in 6	ı [Zn(tro	en)(N-l	FAV)] ⁺ comple	and exes.
Table S8[Zn(tren)(Nthetheory	8. Calcula V-FAV)] ⁺ M06-	ated interact and [Zn(tre ·D3/def2-TZ	tion energy n)(O-FAV) WPP	/ (IE, kca] ⁺ comple and	al/mol) bet xes, and al	ween the FAV so their total inte B3LYP/def2-TZV 7	anion an raction en /PP	nd [Zn(nergy (I le	tren)] ² E _{total,} 1 evels	+ catio ccal/mo	n in ol) at of
Table S9.coordinatedthem	Gas pha d comp	se calculate blexes of 7	d ^a electron FAV a	ic energy nd the	(E, kcal/m transition	nol) and Gibbs fi n state (TS)	ree energ of in	gy (G, 1 nterconv	ccal/mo version	ol) of a betw	N/O- ween
Table S10statethem	. Compar	ison of calco (TS)	ulated solva	ation energ of	gies for N/0	D-coordinated con interconv 	mplexes rersion	of FAV	and th	e trans betv	ition ween
Table S1involved3 ^b	1. Calcula	ated ^a gas ph	nase electro in	nic energi	ies, enthalp	ies and Gibbs fro equatior	ee energi ns	es (Hart .8	ree) of	f all sp	ecies 1-
Table S1 (ΔG, kcal/z 3 ^b 8	2. Calcumol) of t	llated ^a electr he gas pha s	onic energi se protonati	es (ΔE, k on proces	cal/mol), e ss of <i>N/O</i> -c	nthalpies (ΔH, ke coordinated comp	cal/mol), lexes by	and G conside	ibbs fr ering e	ree ener equation	rgies 1s 1-
TableSsolutions	13. Sol	vation ener	rgies of	all speci	es involv	ed in equation	us 1-3 ^b	in H ₂	O an	d CH	í ₃ OH

Figure S1. Potential energy scan for the rotation of the carboxamide group on the favipiravir anion......10

Table 51. Crystal data a	ind structure refinement	101 1, 2 and 5 complexes	•
Empirical formula	C11H23ClFN7O3Zn	C12H25ClFN7O3Zn	$C_{12}H_{36}Cl_6N_8Zn_3$
Formula weight	421.18	435.21	701.30
Temperature/K	100.0(2)	100.0(10)	100.0(2)
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	Cc	P21/c
a/Å	7.5403(15)	13.1029(4)	8.0201(16)
b/Å	10.171(2)	18.5099(6)	16.781(3)
c/Å	11.342(2)	7.7230(2)	19.809(4)
α/°	79.19(3)	90	90
β/°	88.86(3)	90.067(3)	95.86(3)
$\gamma/^{\circ}$	74.13(3)	90	90
Volume/Å ³	821.4(3)	1873.08(10)	2652.0(9)
Z	2	4	4
$\rho_{calc}g/cm^3$	1.703	1.543	1.756
µ/mm ⁻¹	1.696	1.490	3.313
F(000)	436.0	904.0	1424.0
Crystal size/mm ³	$0.04 \times 0.01 \times 0.01$	0.59 imes 0.18 imes 0.11	$0.04\times0.005\times0.005$
Radiation	Synchrotron ($\lambda =$	Mo Kα (λ = 0.71073 Å)	Synchrotron ($\lambda =$
20 range for data	0.71076Å)	6.218 to 60.744	0.71092 Å)
collection/°	3.658 to 58.414	$-18 \le h \le 18, -25 \le k \le$	3.188 to 64.358
Index ranges	$-10 \le h \le 10, -13 \le k \le$	25, $-10 \le l \le 10$	$-11 \le h \le 11, -25 \le k \le$
	$13, -15 \le 1 \le 14$	15847	$25, -29 \le 1 \le 29$
Reflections collected	21370	5008 [Rint = 0.0216,	91824
Independent reflections	3766 [Rint = 0.0424,	Rsigma = 0.0226]	8417 [Rint = 0.0331,
	Rsigma = 0.0297]	5008/2/228	Rsigma = 0.0156]
Data/restraints/parameters	3766/0/220	1.040	8417/10/279
Goodness-of-fit on F ²	1.097	R1 = 0.0183, wR2 =	1.056
Final R indexes [I>=2o	R1 = 0.0363, wR2 =	0.0455	R1 = 0.0268, wR2 =
(I)]	0.1044	R1 = 0.0193, $wR2 =$	0.0740
Final R indexes [all data]	R1 = 0.0379, wR2 =	0.0461	R1 = 0.0274, wR2 =
Largest diff. peak/hole / e	0.1058	0.32/-0.19	0.0744
Å-3	1.07/-0.92	-0.005(3)	0.82/-1.22
Flack parameter			

Table S1. Crystal data and structure refinement for 1, 2 and 3 complexes.

Bond lengths	O-coordinated	N-coordinated	FAV Anion Ref. 45
Zn1-O1/N5	2.0192(15)	2.0992(18)	
Zn1-N1	2.3107(16)	2.3108(18)	
Zn1-N2	2.0505(17)	2.0542(19)	
Zn1-N3	2.0693(17)	2.0650(18)	
Zn1-N4	2.0690(17)	2.0992(18)	
F1-C9	1.356(2)	1.357(2)	1.352(3) 1.359(3)
O1-C7	1.286(2)	1.263(3)	1.280(3) 1.281(3)
O2-C11	1.237(3)	1.242(3)	1.244(3) 1.243(3)
N5-C7	1.356(3)	1.380(3)	1.368(3) 1.367(3)
N5-C8	1.320(3)	1.336(3)	1.317(4) 1.318(4)
N6-C9	1.301(3)	1.309(3)	1.297(3) 1.299(3)
N6-C10	1.341(3)	1.333(3)	1.333(3) 1.342(3)
N7-C11	1.333(3)	1.332(3)	1.321(3) 1.331(3)
C7-C10	1.430(3)	1.451(3)	1.443(3) 1.430(3)
C8-C9	1.376(3)	1.376(3)	1.379(4) 1.384(4)
C10-C11	1.503(3)	1.503(3)	1.495(3) 1.495(3)
Angles			
01/N5-Zn1-N1	172.75(6)	178.23(6)	
O1/N5-Zn1-N2	105.95(7)	101.41(7)	
O1/N5-Zn1-N3	100.78(7)	99.17(7)	
O1/N5-Zn1-N4	92.56(6)	99.31(7)	
N2-Zn1-N1	79.73(6)	80.29(7)	
N2-Zn1-N3	118.97(7)	120.37(7)	
N2-Zn1-N4	117.67(7)	110.24(8)	
N3-Zn1-N1	79.87(6)	80.33(7)	
N4-Zn1-N1	80.70(6)	79.56(7)	
N4-Zn1-N3	114.66(7)	120.60(8)	
Torsion Angles			
N2-Zn1-O1/N5-C7	-40.82(17)	161.89(13)	
N3-Zn1-O1/N5-C7	83.73(16)	-74.40(14)	
N4-Zn1-O1/N5-C7	-160.57(16)	48.89(14)	
N1-C1-C2-N2	53.2(2)	-53.2(2)	
N1-C3-C4-N3	56.8(2)	-54.5(2)	
N1-C5-C6-N4	57.2(2)	-50.8(2)	

Table S2. Selected Bond Lengths (Å) and Angles (°) for *N/O*-coordinated complexes and FAV anion in a previously reported organic salt [Ref. 45].

Table S3. Calculated^a gas phase electronic energies, enthalpies and Gibbs free energies (Hartree) of optimized structures of all studied conformers of keto and enol tautomers of FAV at M06-D3/def2-TZVPP level of theory.

	E (Eel + ZPE)	Н	G
Enol-1	-607.324520	-607.314926	-607.358484
Enol-1'	-607.311484	-607.301387	-607.346699
Enol-2	-607.307899	-607.297823	-607.343288
Keto-1	-607.306247	-607.296389	-607.340967
Keto-2	-607.301249	-607.291122	-607.336658
Enol-2'	-607.300596	-607.290785	-607.335041

Table S4. Solvation energies (G_{solv} , Hartree) and Gibbs free energies (G_{solut} , Hartree)^a of the studied keto and enol isomers/conformers of FAV in H₂O, CH₃OH and DMSO solutions at M06-D3/def2-TZVPP level of theory.

	H ₂	2 0	СН	3OH	DM	SO
Conformer/ isomer	\mathbf{G}_{solv}	G _{solut}	G _{solv}	$\mathbf{G}_{solut}^{\mathbf{a}}$	G _{solv}	G _{solut} ^a
Enol-1						
PCM	-0.01045402	-607.368938	-0.01015124	-607.368635	-0.010310601	-607.368794
CPCM	-0.01053370	-607.369018	-0.01031060	-607.368794	-0.010422153	-607.368906
SMD	-0.01627067	-607.374754	-0.01344999	-607.371934	-0.013226891	-607.371711
Enol-1'						
PCM	-0.01351374	-607.360213	-0.01309940	-607.359798	-0.013306571	-607.360005
CPCM	-0.01360935	-607.360308	-0.01332250	-607.360021	-0.013465931	-607.360165
SMD	-0.02197576	-607.368675	-0.01996782	-607.366667	-0.014677068	-607.361376
Enol-2						
PCM	-0.01623880	-607.359527	-0.01572884	-607.359017	-0.015983821	-607.359272
CPCM	-0.01635035	-607.359638	-0.01598382	-607.359272	-0.016175054	-607.359463
SMD	-0.02482831	-607.368116	-0.02215106	-607.365439	-0.017210895	-607.360498
Keto-1						
PCM	-0.02113115	-607.362098	-0.02047778	-607.361445	-0.020812434	-607.361779
CPCM	-0.02127458	-607.362242	-0.02079650	-607.361763	-0.021051474	-607.362018
SMD	-0.02868482	-607.369652	-0.02739401	-607.368361	-0.025115157	-607.366082
Keto-2						
PCM	-0.02197576	-607.358633	-0.02129051	-607.357948	-0.021641106	-607.358299
CPCM	-0.02211919	-607.358777	-0.02160923	-607.358267	-0.021880147	-607.358538
SMD	-0.03019874	-607.366857	-0.02930633	-607.365964	-0.025513558	-607.362171
Enol-2'						
PCM	-0.01719496	-607.352236	-0.01663719	-607.351678	-0.016924046	-607.351965
CPCM	-0.01732244	-607.352363	-0.01695592	-607.351997	-0.017147150	-607.352188
SMD	-0.02656533	-607.361606	-0.02315503	-607.358196	-0.020573393	-607.355613

 ${}^{a}G_{solut} = G_{gas} + G_{solv}$

Isomer/conformer	Solvent	Model		
		PCM	CPCM	SMD
	H ₂ O			
Enol-1		-607.369620	-607.369695	-607.376366
Keto-1		-607.362384	-607.362537	-607.371100
Enol-1'		-607.360765	-607.360850	-607.368290
Enol-2		-607.359870	-607.359975	-607.368966
Keto-2		-607.359552	-607.359680	-607.368387
Enol-2'		-607.353062	-607.353222	-607.363991
	CH ₃ OH			
Enol-1		-607.369282	-607.369456	-607.373305
Keto-1		-607.361684	-607.362037	-607.369494
Enol-1'		-607.360343	-607.360547	-607.368252
Enol-2		-607.359387	-607.359590	-607.366170
Keto-2		-607.358853	-607.359157	-607.367883
Enol-2'		-607.352447	-607.352814	-607.360190
	DMSO			
Enol-1		-607.369456	-607.369580	-607.372455
Keto-1		-607.362045	-607.362296	-607.366935
Enol-1'		-607.360562	-607.360704	-607.361846
Enol-2		-607.359636	-607.359790	-607.362173
Keto-2		-607.359214	-607.359424	-607.363234
Enol-2'		-607.352764	-607.353026	-607.356860

Table S5. Calculated Gibbs free energies (G, Hartree) of the optimized structures of studied keto and enol isomers/conformers of FAV in H_2O , CH_3OH and DMSO solutions at M06-D3/def2-TZVPP level of theory.

Bond	[Zn(tren)(N	-FAV)] ⁺	[Zn(tren)(O	-FAV)] +
	Exp.	Theo.	Exp.	Theo.
Length				
Zn1-O1/N5	2.0992(18)	2.0354	2.0192(15)	1.9494
Zn1-N1	2.3108(18)	2.3198	2.3107(16)	2.3502
Zn1-N2	2.0542(19)	2.1478	2.0505(17)	2.1179
Zn1-N3	2.0650(18)	2.1331	2.0693(17)	2.1128
Zn1-N4	2.0992(18)	2.1374	2.0690(17)	2.1233
Angle				
01/N5-Zn1-N1	178.23(6)	173.87	172.75(6)	178.09
O1/N5-Zn1-N2	101.41(7)	105.99	105.95(7)	100.54
O1/N5-Zn1-N3	99.17(7)	100.24	100.78(7)	102.83
O1/N5-Zn1-N4	99.31(7)	97.33	92.56(6)	99.66
N2-Zn1-N1	80.29(7)	79.77	79.73(6)	78.37
N2-Zn1-N3	120.37(7)	110.71	118.97(7)	124.20
N2-Zn1-N4	110.24(8)	110.11	117.67(7)	112.76
N3-Zn1-N1	80.33(7)	79.28	79.87(6)	79.06
N4-Zn1-N1	79.56(7)	78.47	80.70(6)	79.41
N4-Zn1-N3	120.60(8)	128.51	114.66(7)	112.13

Table S6. The comparison of calculated^a and experimental selected distances (Å) for $[Zn(tren)(N-FAV)]^+$ and $[Zn(tren)(O-FAV)]^+$ complexes.

^a At the M06-D3/def2-TZVPP level of theory

Table S7. The calculated^a and experimental data for intramolecular hydrogen bond in $[Zn(tren)(N-FAV)]^+$ and $[Zn(tren)(O-FAV)]^+$ complexes.

Complex		X-Ray	
	d(D-H)/Å	d(H-A)/Å	D-H-A/°
N-Coord	0.86	1.94	139.3
O-Coord	0.88	1.94	137.3
		Theo.	
N-Coord	1.00	1.95	133.7
O-Coord	1.00	1.94	132.9

^a At the M06-D3/def2-TZVPP level of theory

Table S8. Calculated interaction energy (IE, kcal/mol) between the FAV anion and $[Zn(tren)]^{2+}$ cation in $[Zn(tren)(N-FAV)]^+$ and $[Zn(tren)(O-FAV)]^+$ complexes, and also their total interaction energy (IE_{total}, kcal/mol) at the M06-D3/def2-TZVPP and B3LYP/def2-TZVPP levels of theory

	M0e	6-D3	B3LYP		
	O-Coord	N-Coord	O-Coord	N-Coord	
IE	-208.80	-210.57	-199.03	-199.28	
IE _{total} ^a	-561.43	-561.00	-554.25	-551.72	

 $^{a}IE_{total} = E_{Complex} - (E_{FAV} + E_{Zn} + E_{tren})$

Table S9. Gas phase calculated^a electronic energy (E, kcal/mol) and Gibbs free energy (G, kcal/mol) of N/O-coordinated complexes of FAV and the transition state (TS) of interconversion between them

	$\mathbf{E} (\mathbf{E}_{el} + \mathbf{ZPE})$	G _{gas}
$[Zn(tren)(O-FAV)]^+$	-2844.047176 (0.29) ^b	-2844.099479 (0.00)
$[Zn(tren)(N-FAV)]^+$	-2844.047644 (0.00)	-2844.099300 (0.11)
TS	-2844.042242 (3.39)	-2844.093907 (3.49)

^a At M06-D3/def2-TZVPP level of theory

^b Figures in parentheses show their relative energies

Table S10. Comparison of calculated solvation energies for N/O-coordinatedcomplexes of FAV and the transition state (TS) of interconversion between them

	G_{solv}						
	SMD			CI	CPCM		
	CH ₃ OH	H ₂ O	DMSO	C	H ₃ OH	H ₂ O	DMSO
$[Zn(tren)(O-FAV)]^+$	-80.68	-76.73	-76.52	-6	4.08	-65.41	-64.77
$[Zn(tren)(N-FAV)]^+$	-79.28	-75.78	-75.13	-6	3.36	-64.68	-64.04
TS	-80.36	-76.73	-75.96	-6	3.37	-64.69	-64.06

	$\mathbf{E} (\mathbf{E}_{el} + \mathbf{ZPE})$	Н	G
$[Zn(tren)(N-FAV)]^+$	-2844.047644	-2844.024320	-2844.099300
[Zn(tren)(O-FAV)] ⁺	-2844.047176	-2844.023776	-2844.099479
[Zn(tren)Cl] ⁺	-2697.545260	-2697.530060	-2697.586074
FAV	-607.324520	-607.314926	-607.358484
H_2O	-76.404885	-76.401105	-76.423165
H_3O^+	-76.669535	-76.665657	-76.688667
Cl-	-460.249229	-460.246869	-460.264252
CH ₃ OH ₂	-115.936896	-115.932084	-115.961361
CH ₃ OH	-115.651860	-115.647497	-115.674698
[ZnTrenH ₂ O] ²⁺	-2313.376398	-2313.360160	-2313.417333

Table S11. Calculated^a gas phase electronic energies, enthalpies and Gibbs free energies(Hartree) of all species involved in equations 1-3^b

^aAt M06-D3/def2-TZVPP level of theory

^b see manuscript

Table S12. Calculated ^a electronic energies (ΔE , kcal/mol), enthalpies (ΔH , kcal/mol), and Gibbs free energies (ΔG , kcal/mol) of the gas phase protonation process of <i>N/O</i> - coordinated complexes by considering equations 1-3 ^b						
Eq.	Isomer	ΔΕ	ΔH	ΔG		
(1)	O-Coord	-193.73	-194.39	-197.87		
	N-Coord	-193.43	-194.05	-197.98		
(2)	O-Coord	-180.93	-181.82	-184.59		

-180.64

9.91

10.20

-181.48

9.00

9.34

-184.70

7.73

7.62

^a At M06-D3/def2-TZVPP level of theory

^b see manuscript

(3)

N-Coord

O-Coord

N-Coord

Table S13. Solvation energies of all species involved in equations $1-3^{b}$ in $H_{2}O$ and $CH_{3}OH$ solutions

H ₂ O	РСМ	CPCM	SMD
$[Zn(tren)(N-FAV)]^+$	-64.52	-64.68	-75.78
$[Zn(tren)(O-FAV)]^+$	-65.27	-65.41	-76.73
[Zn(tren)Cl] ⁺	-56.46	-56.53	-63.54
FAV	-6.56	-6.61	-10.21
H ₂ O	-4.22	-4.24	-7.36
H_3O^+	-77.36	-77.37	-95.57
Cl ⁻	-72.92	-72.92	-67.29
$[Zn(tren)H_2O]^{2+}$	-165.80	-165.82	-184.96
CH ₃ OH			
$[Zn(tren)(N-FAV)]^+$	-63.01	-63.36	-79.28
$[Zn(tren)(O-FAV)]^+$	-63.76	-64.08	-80.68
[Zn(tren)Cl] ⁺	-55.30	-55.45	-69.68
FAV	-6.37	-6.47	-8.44
H ₂ O	-4.10	-4.16	-7.45
H_3O^+	-75.95	-75.96	-95.52
Cl-	-71.59	-71.59	-67.86
$CH_3OH_2^+$	-65.34	-65.35	-79.69
CH ₃ OH	-2.89	-2.94	-4.65
h			

^b see manuscript

Figure S1. Potential energy scan for the rotation of the carboxamide group on the favipiravir anion.

Figure S2. AutoDock4 poses of FAV (a), Drug carrier (b), *O*-Coord complex (c) and *N*-Coord complex (d) in the interaction with DNA (PDB ID: 1BND)