Supporting information

Locally regulating Li⁺ distribution on electrode surface with Li-

Sn alloying nanoparticles for stable lithium metal anodes

Jianzong Man *a, Wenlong Liu^b, Xiaodong Sun^b, Juncai Sun *b

^a Shandong Provincial Key Laboratory of Chemical Energy Storage and New Battery

Technology, Liaocheng University, Liaocheng, 252000, China

^b Institute of Materials and Technology, Dalian Maritime University, Dalian, 116026,

China

* Corresponding author:

manjianzong@lcu.edu.cn (J. Man); sunjc@dlmu.edu.cn (J. Sun)

Fig. S1 The SEM images of (a) bare Li and (b) Sn powders.

Fig. S2 The binary phase diagram of Li-Sn.

Fig. S3 The elemental distribution of Sn on the surface of Li-Sn anode.

Fig. S4 Comparison of Li nucleation overpotential on the bare Li and Li-Sn anode.

Fig. S5The cycling performance of Li-Sn symmetrical cell with the plating/stripping capacity of 5 mAh cm⁻² at the current density of 1 mA cm⁻².

Fig. S6 Comparison of impedance of bare Li and Li-Sn symmetrical cells before cycling and after 100 cycles.

Li-M alloy	Modification method	Current	Hysteresis	Cycling	Reference
anode		density-	voltage	time	
		capacity	(mV)	(h)	
		(mA cm ⁻² -			
		mAh cm ⁻²)			
Li@NFZO	Li melting infusion	1-1	57	700	[1]
Li-LiAl	Li-Al thermal	1-1	15	1100	[2]
	melting				
Li@Li-Zn	Depositing Zn on Cu	1-1	23	400	[3]
	foam- electrochemical				
	deposition				
Li@CuSn	Electroless Sn plating-	1-1	~20	800	[4]
	electrochemical				
	deposition				
CP/Sn/SnO2@Li	Heat treatment (SnO2,	1-1	~25	800	[5]
	Li)				
Li-Mg alloy	Melting-spontaneous	1-1	23	1000	[6]
	reaction				
Sn-Li scaffold	Electrodeposition	1-1	21.3	750	[7]
Li-Sn	Rolling	1-1	10	1200	This
		1-5	20	800	work

Table S1 Comparison of electrochemical performance of similar configuration of anode.

Table S2 Simulation parameters of impedance for bare Li and Li-Sn symmetrical cells

Electrode	Before cycling		After 100 cycles	
	$R_{SEI}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$R_{SEI}\left(\Omega ight)$	$R_{ct}\left(\Omega\right)$
Li	93.4	14.2	30.5	68.1
Li-Sn	60.7	9.3	13.2	59.6

before and after cycling.

References:

- [1] J. Jia, Z. Tang, Z. Guo, H. Xu, H. Hu, S. Li, 3D composite lithium metal anode with pre-fabricated LiZn via reactive wetting, Chem. Commun., 56 (2020) 4248-4251.
- [2] H. Zhuang, P. Zhao, G. Li, Y. Xu, X. Jia, Li-LiAl alloy composite with memory effect as high-performance lithium metal anode, J. Power Sources, 455 (2020) 227977.
- [3] Y. Ye, Y. Liu, J. Wu, Y. Yang, Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode, J. Power Sources, 472 (2020) 228520.
- [4] Z. Luo, C. Liu, Y. Tian, Y. Zhang, Y. Jiang, J. Hu, H. Hou, G. Zou, X. Ji, Dendritefree lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation, Energy Storage Materials, 27 (2020) 124-132.
- [5] L. Tan, S. Feng, X. Li, Z. Wang, W. Peng, T. Liu, G. Yan, L. Li, F. Wu, J. Wang, Oxygen-induced lithiophilicity of tin-based framework toward highly stable lithium metal anode, Chem. Eng. J., 394 (2020) 124848.
- [6] K. Peng, Z. Chen, X. Zhao, K. Shi, C. Zhu, X. Yan, Dual-Conductive Li alloy composite anode constructed by a synergetic Conversion-Alloying reaction with LiMgPO4, Chem. Eng. J., 439 (2022) 135705.
- [7] L. Ren, X. Cao, Y. Wang, M. Zhou, W. Liu, H. Xu, H. Zhou, X. Sun, 3D porous and li-rich sn-li alloy scaffold with mixed Ionic-Electronic conductivity for Dendrite-Free lithium metal anodes, J. Alloy Compd., (2023) 169362.