Strongly interfacial interaction NiCoSe_x/CG heterostructure with rapid diffusion kinetics as flexible anode for high-rate sodium storage

Dan Li,^{1,2*} Honglang Liu,^{1,2} Hanhao Liu,^{1,2} Yanjun Chen,^{1,2} Chao Wang^{1,2*} and Li

 Guo^{2^*}

1 School of Materials Science and Engineering, North University of China, Taiyuan,

China

2 Advanced Energy Materials and Systems Institute, North University of China,

Taiyuan, China

* Corresponding author: lidan@nuc.edu.cn (Dan Li), wangchao nuc@126.com (Chao

Wang), guoli@nuc.edu.cn (Li Guo)

Fig. S1 Photographs of CoSe₂/CG and NiSe₂/CG in the tiled and curled state.

Fig. S2 Cross sectional SEM pictures of CoSe₂/CG (a), NiSe₂/CG (b) and NiCoSe_x/CG (c) films.

Calculation of the relative content of CoSe2 and carbon in CoSe2/CG.

As shown in Figure 1c, the weight loss of $CoSe_2/CG$ is 77.8 wt%. After heating to 500 °C in the air, the final product is Co_3O_4 . According to the reaction equation (1), the weight loss from pure $CoSe_2$ to Co_3O_4 is 63.0 wt%. The weight reduction of composite is consisted of two parts: weight

loss of the variation from $CoSe_2$ to Co_3O_4 and the weight loss of carbon oxidation, which can be illustrated as the equation (2):

$$3CoSe_2 + 8O_2 \rightarrow Co_3O_4 + 6SeO_2 \uparrow \tag{1}$$

$$W \times 63.0\% + 100\% - W = 77.8\%$$
 (2)

W represents the loading content of $CoSe_2$, and the loading content of carbon is (100%-W). Thus, the content of $CoSe_2$ in $CoSe_2/CG$ can be calculated as 60.0 wt%.

Calculation of the relative content of NiSe₂ and carbon in NiSe₂/CG.

As shown in Figure 1c, the weight loss of NiSe₂/CG is 91.0 wt%. After heating to 500 °C in the air, the final product is Ni₂O₃. According to the reaction equation (1), the weight loss from pure NiSe₂ to Ni₂O₃ is 61.7 wt%. The weight reduction of composite is consisted of two parts: weight loss of the variation from NiSe₂ to Ni₂O₃ and the weight loss of carbon oxidation, which can be illustrated as the equation (2):

$$4NiSe_2 + 11O_2 \rightarrow 2Ni_2O_3 + 8SeO_2 \uparrow$$
(3)

$$W \times 61.7\% + 100\% - W = 91.0\%$$
(4)

W represents the loading content of NiSe₂, and the loading content of carbon is (100%-W). Thus, the content of NiSe₂ in NiSe₂/CG can be calculated as 23.5 wt%.

Calculation of the relative content of CoSe₂, NiSe₂ and carbon in NiCoSe_x/CG.

As shown in Figure 1c, the weight loss of $NiCoSe_x/CG$ is 84.1 wt%. The weight reduction of composite is consisted of three parts: weight loss of the variation from $CoSe_2$ to Co_3O_4 , $NiSe_2$ to Ni_2O_3 and the weight loss of carbon oxidation.

W represents the loading content of $CoSe_2$. Because the ratio of cobalt to nickel in the raw material is controlled to be 1:1, the loading content of NiSe₂ is also W, and the loading content of carbon is (100%-2W). Thus, according to the equation (5), it can be calculated that the content of $CoSe_2$ in NiCoSe_x/CG is 21.1 wt%, the content of NiSe₂ in NiCoSe_x/CG is 21.1 wt%. W × 63.0% + W × 61.7% + 100% - W = 84.1% (5)

Fig. S3 Initial three discharge/charge voltage curves at 0.1 A g^{-1} of CoSe₂/CG.

Fig. S4 Initial three discharge/charge voltage curves of $NiSe_2/CG$ at 0.1 A g⁻¹.

Fig. S5 The initial three discharge/charge curves of NiCoSe_x/CG at different current densities.

Fig. S6 Cyclic performance of NiCoSe_x/CG at different voltage ranges.

Fig. S7 Cyclic performance of NiCoSe_x/CG with different cobalt to nickel at 0.1 A g⁻¹.

Fig. S8 Rate performance of $NiCoSe_x/CG$ with different cobalt to nickel at various current density from 0.1 to 5 A g⁻¹.

Table S1. Randles equivalent circuit and the dynamical parameters of the $CoSe_2/CG$,NiSe_2/CG and NiCoSe_x/CG after three cycles at 100 mA/g.

	Cr Re Re Rf		— 0
	R_e/Ω	$R_{f}\!/\Omega$	R_{ct}/Ω
CoSe ₂ /CG	13.4	58.5	43.5
NiSe ₂ /CG	11.8	27.0	29.2
NiCoSe _x /CG	11.6	13.9	11.1

Table S2. A comparison of this work with previously reported performances of flexible

 anode materials for SIBs.

	Initial	Capacity	Rate capability	Capacity	
	roversible	retention —	1 5	 retention 	
Samples	Teversible				Ref

	capacity/mAh	at a low	mAh·g ⁻¹	mA·g ⁻¹	at a high	
	$\cdot g^{-1}$	current			current	
		density			density	
Bi ₄ Se ₃ /Bi ₂ O ₂ Se- CNTs-rGO	345.6		345.6	0.1		
		68.1% at	235.3	0.2	84% at 1	[1]
		0.1 A/g	155	0.5	A/g after	
		after 100	120.5	1	1000	
		cycles	101.5	2	cycles	
			85.4	5		
			242.7	0.05		
		88% at	215.5	0.1	null	[2]
P-doped carbon	197	0.2 A/g	186.8	0.2		
cloth	180	after 600	152.7	0.5		
		cycles	123.1	1		
			87	2		
			183	0.1	000/ 1	
			150	0.2	89% at 1	
Crumpled graphene	190	null	120	0.5	A/g after	[3]
			100	1	500	
			80	2	cycles	
	145	020/	163	0.1		
		83% at	143	0.3		
1 / 1		0.3 A/g	120	0.5		[4]
graphene stacks		atter	100	1	null	נין
		1000	82	2		
		cycles	52	5		
		91% at	110	0.1		
		05 A/g	82	0.2		
Ni-CNTs	101	after	78	0.5	null	[5]
		1800	72	1		
		cycles	67	2		
	695		400	0.05		[6]
		33.4% at	210	0.1	null	
Bismuth Selenide		0.05 A/g	160	0.2		
/Graphene		after 50	70	0.5		
		cycles	30	1		
			20	2		
NiCoSe _x /CG	338		338	0.1	66% at 2 A/g after 1000	This work
		61% at	285	0.2		
		0.1 A/g	225	0.5		
		after 100	206	1		
		cycles	183	2		
		-	140	5	cycles	

References

 Liu H, Li D, Liu H, et al. Binary self-assembly of ordered Bi₄Se₃/Bi₂O₂Se lamellar architecture embedded into CNTs@Graphene as a binder-free electrode for superb Na-Ion storage. *J Colloid Interface Sci*, **2022**, *620*: 168-178.

[2] Lu H Y, Zhang X H, Wan F, et al. Flexible P-Doped Carbon Cloth: Vacuum-Sealed Preparation and Enhanced Na-Storage Properties as Binder-Free Anode for Sodium Ion Batteries. ACS Appl Mater. Interfaces, 2017, 9(14): 12518-12527.

[3] Yun Y S, Park Y-U, Chang S-J, et al. Crumpled Graphene Paper for High Power Sodium Battery Nnode . *Carbon*, 2016, 99: 658-664.

[4] Choe J H, Kim N R, Lee M E, et al. Flexible Graphene Stacks for Sodium-Ion Storage. *ChemElectroChem*, **2017**, *4*(3): 716-720.

[5] Zhu Y H, Yuan S, Bao D, et al. Decorating Waste Cloth via Industrial Wastewater for Tube-Type Flexible and Wearable Sodium-Ion Batteries. *Adv Mater.*, 2017, 29(16): 1603719.

[6] Chen X, Tang H, Huang Z, et al. Flexible Bismuth Selenide /Graphene Composite Paper for Lithium-Ion Batteries. *Ceram Int*, 2017, 43(1): 1437-1442.