Electronic Supplementary Information

An electrochemically fabricated cobalt iron oxyhydroxide bifunctional

electrode for an anion exchange membrane water electrolyzer

Seokjin Hong^{a,1}, Hyunki Kim^{a,1}, Ho Won Jang^{b,*}, Soo Young Kim^{c,*}, and Sang Hyun Ahn^{a,*}

^aSchool of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic

of Korea

^bDepartment of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea

^cDepartment of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

*Corresponding authors.

E-mail: shahn@cau.ac.kr (Sang Hyun Ahn), sooyoungkim@korea.ac.kr (Soo Young Kim),

hwjang@snu.ac.kr (Ho Won Jang)

¹These authors contributed equally to this work.

Electrodes	Electrolyte concentration (mM)				Deposition conditions	
	CoSO ₄ ·7H ₂ O	FeSO ₄ ·7H ₂ O	Na ₂ SO ₄	Na ₃ C ₆ H ₅ O ₇	Potential (V _{SCE})	Time (s)
CoO _x H _y /TP	35.0	-	100.0	100.0	-1.8	600.0
Co ₆₅ Fe ₃₅ O _x H _y /TP	30.0	5.0	100.0	100.0	-1.8	600.0
Co ₅₂ Fe ₄₈ O _x H _y /TP	17.5	17.5	100.0	100.0	-1.8	600.0
C0 ₄₇ Fe ₅₃ O _x H _y /TP	10.0	25.0	100.0	100.0	-1.8	600.0
FeO _x H _y /TP	-	35.0	100.0	100.0	-1.8	600.0

Table S1 Electrodeposition condition of CoO_xH_y/TP , $Co_zFe_{1-z}O_xH_y/TP$, and FeO_xH_y/TP

Table S2 HER and OER performances of CoO_xH_y/TP , $Co_zFe_{1-z}O_xH_y/TP$, and FeO_xH_y/TP

Electrode	Co/Fe ratio	Overpotential @ 10 mA cm_{geo}^{-2} (mV)	Tafel slope for OER (mV dec ⁻¹)	Overpotential @-10 mA cm_{geo}^{-2} (mV)	Tafel slope for HER (mV dec ⁻¹)
CoO _x H _y /TP	-	385	97	152	112
Co ₆₅ Fe ₃₅ O _x H _y /TP	1.86	335	57	150	75
Co ₅₂ Fe ₄₈ O _x H _y /TP	1.08	357	47	151	77
C047Fe53OxHy/TP	0.89	375	71	198	67
FeO _x H _y /TP	0	481	92	292	94

MEA configuration			The stars last a	Operating	Current density	
Catalyst (Anode and cathode)	Membrane	MEA fabrication	$(\text{cm}^{-3} \text{min}^{-1})$	temperature (°C)	@ 2.0 V _{cell} (A cm ⁻²)	Reference
Co ₆₅ Fe ₃₅ O _x H _y /TP	X37-50	CCS	1 M KOH (20)	50	0.61	This study
$Fe_{0.2}Ni_{0.8}$ - $P_{0.5}S_{0.5}$	FAA-3-50	CCS	1 M KOH (50)	60	2.5	48
Ni foam	C-PVA-ABPBI	CCM	15 wt% KOH (-)	70	0.45	49
VCoCO _x	FAA-3-50	CCS	1 M KOH (-)	45	0.20	50
Ni foam	PF-41	-	20 wt% KOH (1)	60	0.8	51
Ni foam	PAEK-APMBI	-	10 wt% KOH (-)	60	0.64	52
Ni foam	FAA-3	-	10 wt% KOH (-)	60	0.03	53
NiCo ₂ O ₄ -HSp	PAni-1.03	CCS	1 M KOH (10)	50	0.4 @ 2 V	54
Ni ₁₂ P ₅ /Ni ₃ (PO ₄) ₂	YAB	CCS	1 M KOH (5)	50	0.36 @ 1.87 V	55
Ni	A201	CCS	1 M KOH (1)	50	0.19 @ 1.8 V	56
CoPNS	YAB	CCS	1 M KOH (5)	50	0.42 @ 1.8 V	57

Table S3 Operation conditions and performances of AEMWE using bifunctional $Co_{65}Fe_{35}O_xH_y/TP$ and previously reported non noble metal-based electrodes

Fig. S1 EDS spectra for (a) CoO_xH_y/TP , (b) $Co_{65}Fe_{35}O_xH_y/TP$, (c) $Co_{52}Fe_{48}O_xH_y/TP$, (d) $Co_{47}Fe_{53}O_xH_y/TP$, and (e) FeO_xH_y/TP .

Fig. S2 XPS spectra of CoO_xH_y/TP , $Co_zFe_{1-z}O_xH_y/TP$, and FeO_xH_y/TP .

Fig. S3 FESEM images of (a) bare TP, (b) CoO_xH_y/TP , (c) $Co_{65}Fe_{35}O_xH_y/TP$, (d) $Co_{52}Fe_{48}O_xH_y/TP$, (e) $Co_{47}Fe_{53}O_xH_y/TP$, and (f) FeO_xH_y/TP . Insets: corresponding images at a higher magnification.

Fig. S4 EDS mapping of $Co_{65}Fe_{35}O_xH_y/TP$. (a) FESEM image and elemental mapping images of: (b) O, (c) Co, and (d) Fe.

Fig. S5 Polarization curves of HER activity at 5 mV/s in 1.0 M KOH: (a) CoO_xH_y/TP , (b) $Co_{65}Fe_{35}O_xH_y/TP$, (c) $Co_{52}Fe_{48}O_xH_y/TP$ (d) $Co_{47}Fe_{53}O_xH_y/TP$, and (e) FeO_xH_y/TP .

Fig. S6 Polarization curves of OER activity at 5 mV/s in 1.0 M KOH: (a) CoO_xH_y/TP , (b) $Co_{65}Fe_{35}O_xH_y/TP$, (c) $Co_{52}Fe_{48}O_xH_y/TP$ (d) $Co_{47}Fe_{53}O_xH_y/TP$, and (e) FeO_xH_y/TP .

Fig. S7 Nyquist plot of each electrode measured at current density of (a) 10 mA cm⁻² for OER, and (b) -10 mA cm⁻² for HER.

Fig. S8 Comparison of OER/HER overpotential in alkaline condition.

Fig. S9 FESEM images of $Co_{65}Fe_{35}O_xH_y/TP$ electrode. (a-b) pristine $Co_{65}Fe_{35}O_xH_y/TP$, (b) (c-d) $Co_{65}Fe_{35}O_xH_y/TP$ after OER long-term stability test, (e-f) $Co_{65}Fe_{35}O_xH_y/TP$ HER long-term stability test.

Fig. S10 XRD patterns of the $Co_{65}Fe_{35}O_xH_y/TP$ after HER/OER stability test.

Fig. S11 XPS spectra of pristine and after stability test for (a) survey peaks, (b) O 1s, (c) Co 2p, and (d) Fe 2p.

Fig. S12 Chronoamperometric curves for the AEMWE with bifunctional $Co_{65}Fe_{35}O_xH_y/TP$.

Fig. S13 Configuration of AEMWE single-cell.