Electronic Supplementary Material (ESI) for Dalton transactions. This journal is © The Royal Society of Chemistry 2023.

Electronic Supplementary Information

General Synthesis of CoCeMO_x trimetallic oxides via cation exchange

reaction for efficient oxygen evolution reaction

Xianggang Huang,^{‡a} Xin Wang,^{‡b} Yingxin Liu,^a Yan Hou,^a Chengjin Li,^c

Mingyang Cai,^a Hongwei Gu^a and Xueqin Cao^{*a}

a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

b Key Laboratory of Rare Mineral of hubei Province, Ministry of Natural Resources, Hubei Geological Experimental Testing Center, Wuhan 430034, P. R. China.

c National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China

^{*} These authors contributed equally.

* Corresponding author:

E-mail: xqcao2022@sina.com

Figure S1 FT-IR patterns of HL₁₀ and CoCeM-CDSAAs (M=Zn, Ni, Er, Mn, Mg, Ru and Sn).

Figure S2 TEM images of (a) CoCeMn-CDSAAs, (b) CoCeSn-CDSAAs, (c) CoCeMg-CDSAAs, (d) CoCeEr-CDSAAs, (e) CoCeNi-CDSAAs and (f) CoCeRu-CDSAAs.

Figure S3 EDX images of (a) CoCeMnO_x PNs, (b) CoCeSnO_x PSNs, (c) CoCeMgO_x HNs, (d) CoCeErO_x PNs, (e) CoCeNiO_x PSNs and (f) CoCeRuO_x HNs.

Figure S4 LSV curves of CoCeMO_x (M=Zn, Ni, Er, Mn, Mg, Ru and Sn) for OER in 1 M KOH solution.

Figure S5 SEM and TEM images of (a, b) Co-CDSAAs, (c, d) Co-Oxides.

Figure S6 SEM and TEM images of (a, b) CoCe-CDSAAs, (c, d) CoCe-Oxides

Figure S7 SEM and TEM images of (a, d) CoCe-CDSAAs-1, (b, e) CoCe-CDSAAs-2, (c, f) CoCe-CDSAAs-4.

Figure S8 EDX data of (a) CoCe-CDSAAs-1, (b) CoCe-CDSAAs-2, (c) CoCe-CDSAAs, (d) CoCe-CDSAAs-4.

Figure S9 LSV curves in 1 M KOH solution for OER of (a) CoCe-CDSAAs-1, CoCe-CDSAAs-2, CoCe-CDSAAs, CoCe-CDSAAs-4, (b) CoCe-CDSAAs and Co-CDSAAs.

Figure S10 Survey spectra (a) and high High-resolution XPS spectra of (b) Co 2p for Co-CDSAAs and CoCe-CDSAAs.

Figure S11 EDX images of (a) CoCeZn-CDSAAs and (b) CoCeZnO_x PNs.

Figure S12 FI-IR patterns of HL_{10} , Co-CDSAAs, Co-Oxides, CoCe-CDSAAs and CoCe-Oxides.

Figure S13 XRD patterns of Co-CDSAAs and CoCe-CDSAAs.

Figure S14 Nitrogen adsorption-desorption isotherms with inserted pore size distribution plots of CoCeZn-CDSAAs.

Figure S15 XRD (a) of CoCeZnO_x PNs, CoCe-Oxides and Co-Oxides. Corresponding Magnified XRD patterns (b) in (311) of Co₃O₄.

Figure S16 HAADF-STEM image (a) and EDX line scan image (b) of CoCeZnO_x PNs.

Figure S17 High-resolution XPS spectra of Zn2p in CoCeZnO_x PNs.

Figure S18 High-resolution XPS spectra of (a) Co2p and (b) O1s in Co-Oxides.

Figure S19 High-resolution XPS spectra of (a) Co2p and (b) O1s in CoCe-Oxides.

Figure S20 (a) Mg 1s, (b) O 1s and (c) Co 2p high-resolution XPS spectra in $CoCeMgO_x$ HNs.

Figure S21 (a) Er 4d, (b) O 1s and (c) Co 2p high-resolution XPS spectra in CoCeErO_x PNs.

Figure S22 (a) Mn 2p, (b) O 1s and (c) Co 2p high-resolution XPS spectra in CoCeMnO_x PNs.

Figure S23 (a) Ni 2p, (b) O 1s and (c) Co 2p high-resolution XPS spectra in $CoCeNiO_x$ PSNs.

Figure S24 (a) Sn 3d, (b) O 1s and (c) Co 2p high-resolution XPS spectra in CoCeSnO_x PSNs.

Figure S25 (a) Ru 3p, (b) O 1s and (c) Co 2p high-resolution XPS spectra in CoCeRuO_x HNs.

Figure S26 LSV curves of Commercial RuO₂ in 1 M KOH solution.

Figure S27 CV curves of (a) CoCeZn-CDSAAS, (b) CoOxides, (c) CoCe-Oxides and (d) CoCeZnOx PNs with different scan rates from 10 to 60 mV s^{-1} .

Figure S28 EDX images of (a) CoCeZn-CDSAAs-1 (3mL ZnCl₂), (b) CoCeZn-CDSAAs-2 (7mL ZnCl₂), (c) CoCeZn-CDSAAs (11mL ZnCl₂) and (d) CoCeZn-CDSAAs-4 (20mL ZnCl₂).

Figure S29 TEM images of (a) CoCeZn-CDSAAs-1, (b) CoCeZn-CDSAAs-2, (c) CoCeZn-CDSAAs-4, (d) CoCeZnO_x-1, (e) CoCeZnO_x-2 and (f) CoCeZnO_x-4.

Figure S30 TEM images of (a) CoCeMg-CDSAAs-1, (b) CoCeMg-CDSAAs-2, (c) CoCeMg-CDSAAs-4, (d) CoCeMgO_x-1, (e) CoCeMgO_x-2 and (f) CoCeMgO_x-4.

Figure S31 TEM images of (a) CoCeMn-CDSAAs-1, (b) CoCeMn-CDSAAs-2, (c) CoCeMn-CDSAAs-4, (d) CoCeMnO_x-1, (e) CoCeMnO_x-2 and (f) CoCeMnO_x-4.

Figure S32 TEM images of (a) CoCeNi-CDSAAs-1, (b) CoCeNi-CDSAAs-2, (c) CoCeNi-CDSAAs-4, (d) CoCeNiO_x-1, (e) CoCeNiO_x-2 and (f) CoCeNiO_x-4.

Figure S33 TEM images of (a) CoCeEr-CDSAAs-1, (b) CoCeEr-CDSAAs-2, (c) CoCeEr-CDSAAs-4, (d) CoCeErO_x-1, (e) CoCeErO_x-2 and (f) CoCeErO_x-4.

Figure S34 CV curves of (a) $CoCeZnO_x$ -1, (b) $CoCeZnO_x$ -2 and (c) $CoCeZnO_x$ -4 with different scan rates from 10 to 60 mV s⁻¹.

Figure S35 SEM image of CoCeZnO_x after CP test corresponding to the EDX selection area.

Figure $\overline{S36}$ HRTEM image of CoCeZnO_x after CP test.

Figure S37 SAED image of CoCeZnO_x after CP test.

Figure S38 Ce 3d high-resolution XPS spectra in CoCeZnO_x PNs after CP test.

Figure S39 Zn 2p high-resolution XPS spectra in CoCeZnO_x PNs after CP test.

Catalysts	η (10mA cm ⁻²) (mV)	Reference
CoCeZnO _x PNs	333	This Work
Ni/Co ₃ O ₄ @NC	350	1
C-Co/Co ₃ O ₄ hollow sphere	352	2
Ce-Co3O4	369	3
Co-MOF-CSMSs	350	4
In-Co3O4	340	5
LDH-R@Co(v-Zn)-NCNTs	344	6

Table S1 Comparison of the OER performance of $CoCeZnO_x$ PNs with previously reported Co-based OER electrocatalysts in 1M KOH solution.

Reference

1 B. Dong, J. Xie, Z. Tong, J. Chi, Y. Zhou, X. Ma, Z. Lin, L. Wang and Y. Chai, *Chinese J. Catal.*, 2020, **41**, 1782–1789.

2 L. Hang, Y. Sun, D. Men, S. Liu, Q. Zhao, W. Cai and Y. Li, *J. Mater. Chem. A*, 2017, **5**, 11163–11170.

3 X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang and G. Wang, *ACS Sustainable Chem. Eng.*, 2018, **7**, 1169-1177.

4 P. Liu, H. Han, Q. Xia, N. Ma, S. Lu, X. Shang, G. Wang and S. Chao, *Dalton Trans.*, 2021, **50**, 11440–11445.

5 Z. Shao, X. Gao, Q. Zhu, W. Zhao, X. Wu, K. Huang and S. Feng, *Chem. Commun.*, 2022, **58**, 10408–10411

6 W. Yang, Y. Bai, J. Ma, Z. Wang, W. Sun, J. Qiao, H. Cai and K. Sun, *J. Mater. Chem. A*, 2020, **8**, 25268–25274.