Supporting Materials for

Silicon(IV) complexes of octaaryl substituted porphyrazines and corrolazines: Influence of the macrocycle contraction on spectral-luminescence, acid-base and redox properties

Ekaterina D. Rychikhina, Svetlana S. Ivanova, Veronika Novakova, Pavel A. Stuzhin

^{a.} Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, RF-153000 Ivanovo, Russia. ^{b.} Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic

Figure S1. Chromato mass spectrum and MALDI TOF mass spectrum of the reaction mixture of diminoimide synthesis, illustrating the formation of its oligomerization.

Figure S2. UV-vis spectra of the dihydroxy silicon octaarylporphyrazines in CH₂Cl₂.

Figure S3. The mass spectra of compound 3a (Si octaphenylporphyrazine) and presumably its pentapyrrolic derivative, contained in the purple fraction.

Figure S4. The absorption spectra of $(Pr_3SiO)SiCz(^{t}BuPh)_8$ (5b) and its porphyrazine precursor $(Pr_3SiO)_2SiPz(^{t}BuPh)_8$ (4b) in CH_2Cl_2 .

Figure S5. MALDI-TOF mass spectra of $(Pr_3SiO)_2SiP_2Ph_8$ (**4a**) (green line), $(Pr_3SiO)_2SiP_2('BuPh)_8$ (**4b**) (red line) and $(Pr_3SiO)SiC_2Ph_8$ (**5a**) (black line).

Figure S6,A. The IR spectra of the dihydroxy silicon octaarylporphyrazines 3a,b.

Figure S6,B. IR spectra of $(Pr_3SiO)_2SiPzPh_8$ (4a) (green line), $(Pr_3SiO)_2SiPz(^tBuPh)_8$ (4b) (red line) and $(Pr_3SiO)SiCzPh_8$ (5a) (black line) (KBr pellet)

IR spectra of the SiPz and SiCz complexes

Figure S7,A. ¹H NMR spectrum of (Pr₃SiO)₂SiPzPh₈ (4a) in CDCl₃.

Figure S7,B. ¹H NMR spectrum of (Pr₃SiO)₂SiPz(^{*t*}BuPh)₈ (4b) in C₆D₆.

Figure S7,C. ¹H NMR spectrum of (Pr₃SiO)SiCzPh₈ (5a) in CDCl₃.

Figure S7,D. ¹³C NMR spectrum of (Pr₃SiO)SiCzPh₈ (6a) in CDCl₃.

Photopysical properties of the SiPz and SiCz complexes

Figure S8,A. Absorption (black line), emission (red line) and excitation (green line) of $(HO)_2SiPzPh_8$ (**3a**) in THF and DMF, and $(Pr_3SiO)_2SiPz(^tBuPh)_8$ (**4b**) in DMF ($\lambda_{ex} = 590$ nm, $\lambda_{em} = 660$ nm).

Figure S8,B. Fluorescence decay for $(Pr_3SiO)_2SiPzPh_8$ (4a) and $(Pr_3SiO)SiCzPh_8$ (5a) in DMF. Excitation wavelength $\lambda_{ex} = 600$ nm.

1200 1,2 -1000 1,0 y = 6,6417x y = 3,6795x R² = 0,9992 1000 800 R² = 0,9991 800 In(A₀/A₁) 1,0 600 In(A_n/A_t) 600 0,8 400 400 0,8 200 200 04 0 Abs 0,6 50 150 time, s 200 250 100 sqe 0,6 0 | 20 40 60 80 100 120 140 160 180 (OH)₂-SiPh₈Pz in DMF time, s (OSiPr₃)₂-SiPh₈Pz 0,4 0 s 0,4 -0s 50 s 120 s 40 s 0,2 - 180 s - 240 s 80 s 0,2 120 s 160 s 0.0 0,0 700 400 400 600 Wavelenght, nm 500 600 700 800 800 500 Wavelength, nm 1,2 2500 y = 36,411x R² = 0,999 100 y = 12,908x 1,0 2000 R² = 0,9971 1,0 · 800 In(A₀/A₁) (¹4/⁰4) 1000 UI 600 0.8 0,8 400 200 500 sqe Vps SqP 0,6 0 20 40 50 90 0 10 60 70 80 time, s Pr₃SiO-SiPh₈Cz 10 20 time, s (Pr₃SiO)₂-Si(*t*BuPh₈)Pz 0,4 0,4 0 s 0 s 15 s 20 s 0,2 30 s 0.2 40 s 45 s 60 s 60 s 80 s 0,0 0,0 400 500 700 400 500 600 700 800 600 800 Wavelength, nm Wavelength, nm

Photochemical properties of the SiPz and SiCz complexes

Figure S9. The changes of absorption spectra upon irradiation time in air saturated DMF solution containing DPBF and the photosensitizer (Si complex). Insets: logarithmic dependencies of absorbance on irradiation time at 415 nm.

Figure S10,A. Cyclic voltamograms of $(Pr_3SiO)_2SiPzPh_8$ (4a) (black line) and $(Pr_3SiO)SiCzPh_8$ (5a) (green line) in pyridine with ferrocene. Sweep rate was 25 mV/s.

Figure S10,B. Cyclic voltamograms of $(Pr_3SiO)_2SiPzPh_8$ (4a) (green line) and $(Pr_3SiO)SiCzPh_8$ (5a) (black line) in CH₂Cl₂ with ferrocene. Sweep rate was 25 mV/s.

Figure S10,C. Cyclic voltamograms of $(Pr_3SiO)SiCzPh_8$ (5a) in DMF (left) and in DMF with ferrocene (right). Sweep rate was 25 mV/s.