Heteroleptic copper(I) complexes [Cu(dmp)(N^P)]BF₄ for photoinduced atom-transfer radical addition reactions

You-Hui Zhao,^a Hai-Yan Li,^a David James Young,^b Xiang-Qian Cao,^a Da-Liang Zhu,^c Zhi-Gang Ren,^a Hong-Xi Li^{*a}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.

Email: lihx@suda.edu.cn

^b Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0909, Australia

^c School of Chemistry and Environmental Engineering, Analysis and Testing Centre,

Yancheng Teachers University, Yancheng 224007, People's Republic of China.

Fig. S1. ¹H NMR of compound **2c** in CDCl₃ with visible light irradiation time and ¹H NMR of $Cu(1c)_2BF_4$ and $Cu(dmp)_2BF_4$ in CDCl₃.

Fig. S2. Enlarge of aromatic area of Fig. S1.

Fig. S3 The ESI-MS spectra of 2a (a), 2b (b), 2c (c), 2d (d). The calculated isotope patterns (lower) and observed patterns (upper) of $[M]^+$ for cations of 2a-2d.

Fig. S4. View of two $[(PhC_3H_2N_2PPh_3)Cu(dmp)]^+$ cations (a and b) in **2c** with a labelling scheme and 30% thermal ellipsoids. All H atoms, uncoordinated molecules and BF₄⁻ anions are omitted for clarity.

Fig. S5. UV/vis absorption spectrum of 1a-1d and dmp in CH_2Cl_2 solution (c = 2 × 10⁻⁵ M) at room temperature.

Fig. S6. UV/vis absorption spectrum of 2a-2d in the solid state.

Fig. S7. Emission spectra of 1a-1d measured in CH_2Cl_2 solution (c = 2 × 10⁻⁵ M) at room temperature (E_x = 305 nm).

Fig. S8. Emission spectra of 2a-2d measured in CH_2Cl_2 solution (c = 2 × 10⁻⁵ M) at room temperature (E_x = 400 nm).

Fig. S9. Time dependences of the emission intensity of 2a (a), 2b (b), 2c (c) and 2d (d) measured at room temperature ($E_x = 400 \text{ nm}$) in CH₂Cl₂ solution ($c = 2 \times 10^{-5} \text{ M}$).

Fig. S10. Time dependences of the emission intensity of 2a (a), 2b (b), 2c (c) and 2d (d) measured at room temperature ($E_x = 400 \text{ nm}$) in solid state.

Fig. S11. Cyclic voltammograms of 2a (a, b), 2b (c, d), 2c (e, f) and 2d (g, h) (1 mmol·L⁻¹) (0.10 mol·L⁻¹ ⁿBu₄NPF₆/CH₂Cl₂ electrolyte) at 100 mV/s scan rate under an argon atmosphere. Working electrode: glassy carbon electrode tip (3 mm diameter); Counter electrode: platinum wire. The excited-state energy E_{00} (1240/521.5 = 2.38 V (2a), 1240/519.5 = 2.39 V (2b), 1240/507.6 = 2.44 V (2c), 1240/528 = 2.35 V (2d)) was obtained from absorption spectra, respectively. The oxidation potential and reduction potential of *2a-*2d were calculated, according to E_{ox} * = E_{ox} - E_{00} .

Fig. S12. Emission spectrum of 45 W CFL.

The reaction quantum yield^{S1}

 Φ = Mole number for product/Mole number for absorption of photons = 2.38

$$\Phi = \frac{nN_A/t}{fP \lambda /hc}$$

n: the mole number of the product 6; t: reaction time (1800 s); N_A: 6.02×10^{23} /mol; f: $1-10^{-A}$ (455 nm, A = 0.685); P: P = E*S (E: illumination intensity, E = 10.2 mW/cm²; S: the area of irradiation S = 1 cm²); λ : wavelength ($\lambda = 4.55 \times 10^{-7}$ m); h: planck constant (h = 6.626×10^{-34} J*s); c: velocity of light (c = 3×10^8 m/s).

Scheme S1 Possible mechanistic pathways of ligand transfer cycle and rebound cycle.

Characterization Data 1-(2-(Diphenylphosphanyl)phenyl)-1H-pyrazole (1a)^{S2}

Anal. Calcd. for C₂₁H₁₇N₂P: C, 76.82; H, 5.22; N, 8.53%. Found: C, 76.74; H, 5.31; N, 8.74%. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.59 (m, 1H), 7.50 – 7.40 (m, 3H), 7.35 – 7.25 (m, 11H), 7.02 (dd, ³*J*_{HH} = 7.3, ⁴*J*_{HH} = 3.1 Hz, 1H, H5), 6.25 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm): δ = 144.6 (d, ²*J*_{CP} = 21.2 Hz, C1), 140.4, 136.6 (d, ¹*J*_{CP} = 11.2 Hz, C6), 134.8, 133.9 (d, ²*J*_{CP} = 20.5 Hz, C7), 131.2 (d, ³*J*_{CP} = 5.3 Hz, C2), 129.7, 128.9, 128.8, 128.6 (d, ³*J*_{CP} = 7.2 Hz, C4), 128.2, 126.3 (d, ⁴*J*_{CP} = 2.6 Hz, C3), 106.3.

³¹P NMR (162 MHz, CDCl₃, ppm): $\delta = -14.5$.

HRMS (ESI) m/z [M + Na]⁺ Calcd for C₂₁H₁₇N₂NaP⁺ 351.1022; Found 351.1062.

IR (KBr, v, selected peak, cm⁻¹): 1590, 1472, 1432, 1390, 1328, 1192, 1159, 1076, 1043, 1019, 932, 848, 745, 695.

(1,3,3,3-Tetrabromopropyl)benzene (5a)^{S3}

Following the general procedure, **5a** as a white solid was obtained from flash column chromatography using PE as an eluent. Yield: 78.6 mg, 91%. m.p. 62-64 $^{\circ}$ C.

¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.49 (m, 2H), 7.37 (m, 2H), 7.31 (t, ³*J*_{HH} = 7.2 Hz, 1H, H6), 5.33 (dd, ³*J*_{HH} = 7.7, ³*J*_{HH} = 4.1 Hz, 1H, H3), 4.12 (dd, ²*J*_{HH} = 15.6, ³*J*_{HH} = 4.1 Hz, 1H, H2), 4.05 (dd, ²*J*_{HH} = 15.6, ³*J*_{HH} = 7.7 Hz, 1H, H1).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm): $\delta = 140.8$, 129.0, 128. 9, 128.2, 66.5, 50.1, 35.0. HRMS (ESI) *m*/*z* [M]⁺ Calcd for C₉H₈Br₄⁺ 431.7360; Found 431.7369.

1-Fluoro-4-(1,3,3,3-tetrabromopropyl)benzene (5b)⁸³

Following the general procedure, **5b** as a colorless oil was obtained from flash column chromatography using PE as an eluent. Yield: 62.1 mg, 69%.

¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.48 (dd, ³*J*_{HH} = 8.7, ³*J*_{FH} = 5.2 Hz, 2H, H5 or H7), 7.06 (m, 2H), 5.34 (dd, ³*J*_{HH} = 8.4, ³*J*_{HH} = 3.8 Hz, 1H, H3), 4.10 (dd, ²*J*_{HH} = 15.5, ³*J*_{HH} = 3.8 Hz, 1H, H2), 4.01 (dd, ²*J*_{HH} = 15.5, ³*J*_{HH} = 8.4 Hz, 1H, H1).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm): δ = 162.8 (d, ¹*J*_{CF} = 248.9 Hz, C6), 136.6, 130.1 (d, ³*J*_{CF} = 8.6 Hz, C4), 115.9 (d, ²*J*_{CF} = 21.9 Hz, C5), 66.5, 49.1, 34.7.

⁹F NMR (377 MHz, CDCl₃, ppm): δ = -112.0.

HRMS (ESI) *m*/*z* [M]⁺ Calcd for C₉H₇Br₄F⁺ 449.7265; Found 449.7272.

1-Chloro-4-(1,3,3,3-tetrabromopropyl)benzene (5c)^{S3}

Following the general procedure, 5c as a white solid was obtained from flash column chromatography using PE as an eluent. Yield: 83.5 mg, 90%. m.p. 69-74 °C.

¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.43 (d, ³*J*_{HH} = 8.5 Hz, 2H, H5 or H6), 7.34 (d, ³*J*_{HH} = 8.5 Hz, 2H, H4 or H7), 5.31 (dd, ³*J*_{HH} = 8.3, ³*J*_{HH} = 3.8 Hz, 1H, H3), 4.10 (dd, ²*J*_{HH} = 15.5, ³*J*_{HH} = 3.8 Hz, 1H, H2), 4.01 (dd, ²*J*_{HH} = 15.5, ³*J*_{HH} = 8.3 Hz, 1H, H1).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm): δ = 139.2, 134.8, 129.6, 129.1, 66.3, 48.9, 34.6. HRMS (ESI) *m/z* [M]⁺ Calcd for C₉H₇Br₄Cl⁺ 465.6970; Found 465.6968.

1-Bromo-4-(1,3,3,3-tetrabromopropyl)benzene (5d)^{S3}

Following the general procedure, **5d** as a white solid was obtained from flash column chromatography using PE as an eluent. Yield: 50.5 mg, 50%. m.p. 88-95 °C.

¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.43 (d, ³*J*_{HH} = 8.5 Hz, 2H, H5 or H6), 7.34 (d, ³*J*_{HH} = 8.5 Hz, 2H, H4 or H7), 5.31 (dd, ³*J*_{HH} = 8.3, ³*J*_{HH} = 3.8 Hz, 1H, H3), 4.10 (dd, ²*J*_{HH} = 15.5, ³*J*_{HH} = 3.8 Hz, 1H, H2), 4.01 (dd, ²*J*_{HH} = 15.5, ³*J*_{HH} = 8.3 Hz, 1H, H1).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm): δ = 139.7, 132.1, 129.9, 123.0, 66.2, 48.9, 34.6. HRMS (ESI) *m/z* [M]⁺ Calcd for C₉H₇Br₅⁺ 509.6465; Found 509.6469. 1-Nitro-4-(1,3,3,3-tetrabromopropyl)benzene (5g)^{S4}

Following the general procedure, **5g** as a white solid was obtained from flash column chromatography using PE as an eluent. Yield: 26.7 mg, 28%. m.p. 88-91 °C.

¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.24$ (d, ³*J*_{HH} = 8.7 Hz, 2H, H5 or H6), 7.68 (d, ³*J*_{HH} = 8.7 Hz, 2H, H4 or H7), 5.38 (dd, ³*J*_{HH} = 8.5, ³*J*_{HH} = 3.7 Hz, 1H, H3), 4.15 (dd, ²*J*_{HH} = 15.6, ³*J*_{HH} = 3.7 Hz, 1H, H2), 4.05 (dd, ²*J*_{HH} = 15.5, ³*J*_{HH} = 8.5 Hz, 1H, H1).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm): δ = 147.9, 147.5, 129.3, 124.2, 66.0, 47.4, 34.0. HRMS (ESI) *m/z* [M]⁺ Calcd for C₉H₇Br₄NO₂⁺ 476.7210; Found 476.7218.

(1-Bromo-3,3,3-trichloropropyl)benzene (5k)^{S5}

Following the general procedure, 5k as a colorless oil was obtained from flash column chromatography using PE as an eluent. Yield: 37.2 mg, 62%.

¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.47–7.43 (m, 2H), 7.39–7.33 (m, 2H), 7.31 (m, 1H), 5.37 (m, 1H), 3.75 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, ppm): δ = 140.8 128.9, 127.8, 127.4, 96.5, 62.6, 47.5.

HRMS (EI) m/z [M]⁺ Calcd for C₉H₈BrCl₃⁺ 299.8875; Found 299.8881.

References

- S1 K. Zhang, L.-Q. Lu, Y. Jia, Y. Wang, F.-D. Lu, F. Pan and W.-J. Xiao, Angew. Chem. Int. Ed., 2019, 58, 13375–13379.
- S2 J.-H. Jia, X.-L. Chen, J.-Z. Liao, D. Liang, M.-X. Yang, R. Yu and C.-Z. Lu, *Dalton Trans.*, 2019, 48, 1418–1426.
- S3 K. Matsuo, E. Yamaguchi, A. Itoh, J. Org. Chem., 2020, 85, 10574-10583.
- S4 C. X. Song, P. Chen and Y. Tang, RSC Adv., 2017, 7, 11233-112.
- S6 Q. Yao and C. J. Li, Chem. Commun., 2017, 53, 11225-11228.

NMR spectra

Fig. S13. The ¹H (400 MHz), ¹³C{¹H} (101 MHz), ³¹P (162 MHz) and ¹⁹F (377 MHz) NMR spectra for (2-fluorophenyl)diphenylphosphane in CDCl₃.

Fig. S14. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for 1-(2-(diphenylphosphanyl)phenyl)-1H-pyrazole (**1a**) in CDCl₃ and ³¹P (162 MHz) NMR spectra in d_6 -DMSO.

Fig. S15. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for 1-(2-(diphenylphosphanyl)phenyl)-3-methyl-1H-pyrazole (**1b**) in CDCl₃ and ³¹P (162 MHz) NMR spectra in d_6 -DMSO.

---14.41

Fig. S16. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for 1-(2-(diphenylphosphanyl)phenyl)-3-phenyl-1H-pyrazole (**1c**) in CDCl₃ and ³¹P (162 MHz) NMR spectra in d_6 -DMSO.

S-17

Fig. S17. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for 1-(2-(diphenylphosphanyl)phenyl)-3,5-dimethyl-1H-pyrazole (**1d**) in CDCl₃ and ³¹P (162 MHz) NMR spectra in d_6 -DMSO.

S-20

Fig. S18. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for **2a** in d_6 -DMSO.

Fig. S19. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for **2b** in d_6 -DMSO.

Fig. S20. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for **2c** in d_6 -DMSO and ³¹P (162 MHz) NMR spectra inCDCl₃.

Fig. S21. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ³¹P (162 MHz) NMR spectra for **2d** in d_6 -DMSO.

Fig. S22. The 1 H (400 MHz) and 31 P (162 MHz) NMR spectra for [Cu(1c)]BF₄ in CDCl₃.

-40 f1 (ppm) -90

-140

-200

130

80

40

Ó

Fig. S23. The ¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR spectra for (1,3,3,3- tetrabromopropyl)benzene (5a) in CDCl₃.

Fig. S24. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 1-fluoro-4-(1,3,3,3-tetrabromopropyl)benzene (**5b**) in CDCl₃.

20	10	0	-10	-30	-50	-70	-90		-110	-130	-150	-170	-190	-210
							f1	(ppn	n)					

Fig. S25. The ¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR spectra for 1-chloro-4-(1,3,3,3-tetrabromopropyl)benzene (5c) in CDCl₃.

Fig. S26. The ¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR spectra for 1-bromo-4-(1,3,3,3-tetrabromopropyl)benzene (5d) in CDCl₃.

Fig. S27. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 1-(1,3,3,3-tetrabromopropyl)-4-(trifluoromethyl)benzene (5e) in CDCl₃.

Fig. S28. The ¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR spectra for 4-(1,3,3,3-tetrabromopropyl)phenyl acetate (5f) in CDCl₃.

Fig. S29. The ¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR spectra for 1-nitro-4-(1,3,3,3-tetrabromopropyl)benzene (5g) in CDCl₃.

Fig. S30. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 1-fluoro-3-(1,3,3,3-tetrabromopropyl)benzene (5h) in CDCl₃.

Fig. S31. The ¹H (400 MHz), ¹³C{¹H} (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 1-fluoro-2-(1,3,3,3-tetrabromopropyl)benzene (5i) in CDCl₃.

S-4	42
-----	----

Fig. S32. The ¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR spectra for 2-(1,3,3,3-tetrabromopropyl)pyridine (**6j**) in CDCl₃.

Fig. S33. The ¹H (400 MHz) and ¹³C {¹H} (101 MHz) NMR spectra for (1-bromo-3,3,3-trichloropropyl)benzene (**5k**) in CDCl₃.

Fig. S34. The ¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR spectra for (1,3,3-triiodopropyl)benzene (5l) in CDCl₃.

Fig. S35. The ¹H (600 MHz) and ¹³C {¹H} (151 MHz) NMR spectra for (*E*)-(1,1,1,6-tetrabromohex-3-en-3-yl)benzene (6a) in CDCl₃.

Fig. S36. The ¹³C{¹H}-NNE NMR spectra for (*E*)-(1,1,1,6-tetrabromohex-3-en-3-yl)benzene (6a) in CDCl₃.

Fig. S37. The ¹³C{¹H}-DEPT NMR spectra for (*E*)-(1,1,1,6-tetrabromohex-3-en-3-yl)benzene (6a) in CDCl₃.

Fig. S38. The ¹³C-¹H COSY NMR spectra for (E)-(1,1,1,6-tetrabromohex-3-en-3-yl)benzene (6a) in CDCl₃.

Fig. S39. The ¹H-¹H NOSEY NMR spectra for (*E*)-(1,1,1,6-tetrabromohex-3-en-3-yl)benzene (6a) in CDCl₃.

f2 (ppm)

Fig. S40. The ¹H (600 MHz) and ¹³C{¹H} (151 MHz) NMR spectra for (Z)-(1,1,1,6-tetrabromohex-3-en-3-yl)benzene (6b) in CDCl₃.

Fig. S41. The ¹H-¹H NOSEY NMR spectra for (Z)-(1,1,1,6-tetrabromohex-3-en-3-yl)benzene (6b) in CDCl₃.

