Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Effects of silylene ligands on performance of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes

Qingqing Fan,^{a,#} Xinyu Du,^{a,#} Wenjing Yang,^a Qingshuang Li,^a Wei Huang,^a Hongjian Sun,^a Alexander Hinz,^{b,*} and Xiaoyan Li^{a,*}

^a School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
^b Karlsruhe Institut für Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131 Karlsruhe, Germany

Corresponding Authors *alexander.hinz@kit.edu

*xli63@sdu.edu.cn

Table of Contents

1. Crystallographic data for complexes 3 - 4	S2
2. IR, 1 H, 31 P, 13 C and 29 Si NMR spectra of complexes 3 - 4	S3
3. ¹ H and ¹³ C NMR spectra for the alcohol products	S10
4. Computational Details	S36
5. The mechanism study for hydrosilylation of benzaldehyde catalyzed by compl	lex 2
	S38
6. References	S39

1. Crystallographic Details

	3	4
formula	C ₁₅ H ₃₅ ClCoP ₃ Si	$C_{39}H_{63}Cl_3CoN_4PSi_3$
<i>Mz</i>	430.81	868.45
crystal system	Monoclinic	Monoclinic
space group	I2/c	$P2_1/n$
a/Å	27.1266(7)	15.27681(17)
b/Å	12.8624(3)	19.2189(3)
c/Å	12.9099(3)	15.42856(19)
α/°	90	90
β/°	92.062(2)	95.7072(11)
$\gamma/^{\circ}$	90	90
V [Å3]	4501.52(19)	4507.43(10)
T [K]	173(2)	173(2)
Z	8	4
μ[mm-1]	9.529	5.959
total reflns	13144	28041
unique reflns	3996	8920
Rint	0.0485	0.0511
$R1[I>2\sigma(I)]$	0.0548	0.0450
$wR(F2)[I>2\sigma(I)]$	0.1410	0.1079
R1(all data)	0.0623	0.0548
wR(F2)(all data)	0.1470	0.1120
GOF on F2	0.859	1.061

Table S1. Crystallographic data for complexes 3 - 4

2. IR, ¹H, ³¹P, ¹³C and ²⁹Si NMR spectra of complexes 3 - 4

Figure S2. The ¹H NMR spectrum of complex **3** in C_6D_6

Figure S3. The 31 P NMR spectrum of complex 3 in C₆D₆

Figure S4. The ${}^{13}C$ NMR spectrum of complex 3 in C_6D_6

Figure S5. The ²⁹Si NMR spectrum of complex 3 in C_6D_6

Figure S6. The IR spectrum of complex 4

Figure S7-A. The ¹H NMR spectrum of complex 4 in C_6D_6

Figure S7-B. Hydride signals A-E in ¹H NMR spectrum of 4 in C_6D_6

Figure S7-C. PMe₃ doublets A-E in ¹H NMR spectrum of 4 in C₆D₆

Figure S8-A. The 31 P NMR of complex 4 in C₆D₆

Figure S8-B. The VT-³¹P NMR of complex 4 A-E in D₈-THF

Figure S9. The 13 C NMR spectrum of complex 4 in C₆D₆

Figure S10. The ²⁹Si NMR of complex 4 in C_6D_6

3. ¹H and ¹³C NMR spectra for the alcohol product

210 200

190

180 170 160 150

140

130 120 110 100 f1 (ppm)

¹H NMR (300 MHz, CDCl₃, δ): 7.17 - 7.26 (m, Ar-*H*, 5H), 4.48 (s, C*H*₂, 2H), 2.70 (s, O*H*, 1H). ¹³C NMR (75 MHz, CDCl₃, 298K, ppm): 140.91 (Ar-*C*), 128.55 (Ar-*C*), 127.59 (Ar-*C*), 127.05 (Ar-*C*), 65.07 (*C*H₂).

Figure S12. ¹³C NMR spectrum of 2a in CDCl₃

-100

¹**H NMR** (300 MHz, CDCl₃, δ): 7.14 - 7.22 (m, Ar-*H*, 5H), 3.70 (t, C*H*₂, 2H), 3.51 (s, O*H*, 1H), 2.74 (t, C*H*₂, 2H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 138.94 (Ar-*C*), 129.18 (Ar-*C*), 128.60 (Ar-*C*), 126.45 (Ar-*C*), 63.51(CH₂), 39.27 (CH₂).

Figure S13. ¹H NMR spectrum of 2b in CDCl₃

Figure S14. ¹³C NMR spectrum of 2b in CDCl₃

¹**H** NMR (300 MHz, CDCl₃, δ): 6.91-7.25 (m, *Ar*, 4H), 4.54 (s, C*H*₂, 2H), 2.03 (s, O*H*, 1H). ¹³**C** NMR (75 MHz, CDCl₃, 298K, ppm): 160.68 (s, Ar-*C*), 136.24 (s, Ar-*C*), 128.76 (d, Ar-*C*), 115.37 (d, Ar-*C*), 64.56 (*C*H₂).

Figure S15. ¹H NMR spectrum of 2c in CDCl₃

Figure S16. ¹³C NMR spectrum of 2c in CDCl₃

¹**H** NMR (300 MHz, CDCl₃, δ): 7.15-7.25 (m, *Ar*, 4H), 4.51 (s, *CH*₂, 2H), 2.29 (s, *OH*, 1H). ¹³**C** NMR (75 MHz, CDCl₃, 298K, ppm): 139.95 (Ar-*C*), 134.03 (Ar-*C*), 129.37 (Ar-*C*), 128.99 (Ar-*C*), 65.12 (*C*H₂).

Figure S17. ¹H NMR spectrum of 2d in CDCl₃

Figure S18. ¹³C NMR spectrum of 2d in CDCl₃

¹H NMR (300 MHz, CDCl₃, δ): 7.19-7.37 (m, *Ar*, 4H), 4.41 (s, CH₂, 2H), 2.33 (s, OH, 1H). ¹³C NMR (75 MHz, CDCl₃, 298K, ppm): 131.71 (Ar-C), 128.52 (Ar-C), 128.35 (Ar-C), 122.56 (Ar-C), 51.55 (CH₂).

Figure S20. ¹³C NMR spectrum of 2e in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ/ppm): 7.59 (d, Ar-*H*, 2H), 7.01 (d, Ar-*H*, 2H), 4.53 (s, C*H*₂, 2H), 1.97 (s, O*H*, 1H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 140.42 (Ar-*C*), 137.59 (Ar-*C*), 128.82 (Ar-*C*), 93.01 (Ar-*C*), 64.59 (*C*H₂).

Figure S21. ¹H NMR spectrum of 2f in CDCl₃

Figure S22. ¹³C NMR spectrum of 2f in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ/ppm): 7.25 (d, Ar-*H*, 2H), 7.17 (d, Ar-*H*, 2H), 4.64 (s, C*H*₂, 2H), 2.35 (s, C*H*₃, 3H), 1.66 (s, O*H*, 1H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 137.93 (Ar-*C*), 137.41 (Ar-*C*), 129.25 (Ar-*C*), 127.12 (Ar-*C*), 65.29 (CH₂), 21.14 (CH₂).

Figure S24. ¹³C NMR spectrum of 2g in CDCl₃

¹H NMR (300 MHz, CDCl₃, *δ*): 7.38–7.56 (m, *Ar*, 4H), 4.68 (s, C*H*₂, 2H), 2.32 (s, O*H*, 1H). ¹³C NMR (75 MHz, CDCl₃, 298K, ppm): 146.42 (Ar-*C*), 132.29 (Ar-*C*), 127.02 (Ar-*C*), 118.90 (Ar-*C*), 110.95 (Ar-*C*), 64.07 (*C*H₂).

Figure S26. ¹³C NMR spectrum of 2h in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ/ppm): 8.10 (dd, Ar-*H*, 1H), 7.75 (dd, Ar-*H*, 1H), 7.68 (td, Ar-*H*, 1H), 7.48 (ddd, Ar-*H*, 1H), 4.98 (s, C*H*₂, 2H), 2.56 (s, O*H*, 1H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 136.77 (Ar-*C*), 134.14 (Ar-*C*), 130.02 (Ar-*C*), 128.52 (Ar-*C*), 125.03 (Ar-*C*), 62.57 (*C*H₂).

Figure S27. ¹H NMR spectrum of 2i in CDCl₃

Figure S28. ¹³C NMR spectrum of 2i in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ/ppm): 6.88 - 7.31 (m, Ar-*H*, 4H), 4.59 (s, C*H*₂, 2H), 2.87 (s, O*H*, 1H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 162.19 (Ar-*C*), 158.93 (Ar-*C*), 129.32 (d, Ar-*C*), 129.24 (d, Ar-*C*), 124.20 (d, Ar-*C*), 115.19 (d, Ar-*C*), 59.00 (d, CH₂).

Figure S29. ¹H NMR spectrum of 2j in CDCl₃

Figure S30. ¹³C NMR spectrum of 2j in CDCl₃

¹H NMR (300 MHz, CDCl₃, δ): 7.12-7.40 (m, *Ar*, 4H), 4.68 (s, C*H*₂, 2H), 2.18 (s, O*H*, 1H). ¹³C NMR (75 MHz, CDCl₃, 298K, ppm): 138.16 (Ar-*C*), 132.70 (Ar-*C*), 129.34 (Ar-*C*), 128.83 (Ar-*C*), 128.72 (Ar-*C*), 127.03 (Ar-*C*), 62.80 (*C*H₂).

Figure S32. ¹³C NMR spectrum of 2k in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 7.43 (dd, Ar-*H*, 1H), 7.36 (dd, Ar-*H*, 1H), 7.22 (td, Ar-*H*, 1H), 7.05 (td, Ar-*H*, 1H), 4.61 (s, C*H*₂, 2H), 2.51 (s, O*H*, 1H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 139.72 (Ar-*C*), 132.56 (Ar-*C*), 129.08 (Ar-*C*), 128.81 (Ar-*C*), 127.65 (Ar-*C*), 122.51 (Ar-*C*), 64.92 (*C*H₂).

Figure S34. ¹³C NMR spectrum of 2l in CDCl₃

¹**H** NMR (300 MHz, CDCl₃, δ): 7.23 (d, Ar-*H*, 2H), 7.07 (dd, Ar-*H*, 1H), 4.84 (s, C*H*₂, 2H), 2.36 (s, O*H*, 1H). ¹³**C** NMR (75 MHz, CDCl₃, 298K, ppm): 135.99 (Ar-*C*), 135.66 (Ar-*C*), 129.79 (Ar-*C*), 128.46 (Ar-*C*), 60.08 (*C*H₂).

Figure S36. ¹³C NMR spectrum of 2m in CDCl₃

¹H NMR (300 MHz, CDCl₃, δ): 7.25 (d, Ar-*H*, 1H), 7.22 (d, Ar-*H*, 1H), 7.10 (dd, Ar-*H*, 1H), 4.55 (s, C*H*₂, 2H), 3.02 (s, O*H*, 1H). ¹³C NMR (75 MHz, CDCl₃, 298K, ppm): 136.77 (Ar-*C*), 133.85 (Ar-*C*), 133.20 (Ar-*C*), 129.43 (Ar-*C*), 129.14 (Ar-*C*), 127.29 (Ar-*C*), 62.20 (CH₂).

Figure S37. ¹H NMR spectrum of 2n in CDCl₃

Figure S38. ¹³C NMR spectrum of 2n in CDCl₃

¹H NMR (300 MHz, CDCl₃, δ): 7.16-7.78 (m, Ar-*H*, 7H), 4.71 (s, C*H*₂, 2H), 2.93 (s, O*H*, 1H). ¹³C NMR (75 MHz, CDCl₃, 298K, ppm): 136.35 (Ar-*C*), 133.80 (Ar-*C*), 131.26 (Ar-*C*), 128.72 (Ar-*C*), 128.45 (Ar-*C*), 126.33 (Ar-*C*), 125.90 (Ar-*C*), 125.50 (Ar-*C*), 125.27 (Ar-*C*), 123.74 (Ar-*C*), 63.20 (*C*H₂).

Figure S40. ¹³C NMR spectrum of 20 in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 7.14-7.29 (m, Ar-*H*, 5H), 6.50 (d, *H*C=C, 1H), 6.20-6.29 (m, C=C*H*, 1H), 4.19 (dd, *CH*₂, 2H), 2.31 (s, *OH*, 1H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 136.72 (Ar-*C*), 131.05 (Ar-*C*), 128.63 (Ar-*C*), 128.55 (Ar-*C*), 127.70 (Ar-*C*), 126.50 (*C*=*C*), 63.59 (*C*H₂).

Figure S41. ¹H NMR spectrum of 2p in CDCl₃

Figure S42. ¹³C NMR spectrum of 2p in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 7.08-7.24 (m, Ar-*H*, 5H), 6.41 (d, *H*C=C, 1H), 4.05 (dd, *CH*₂, 2H), 2.73 (s, *OH*, 1H) ,1.77 (d, *CH*₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 137.70 (Ar-*C*), 137.66 (Ar-*C*), 128.94 (Ar-*C*), 128.20 (Ar-*C*), 126.45 (Ar-*C*), 124.94 (*C*=*C*), 68.77 (*C*H₂), 15.33 (*C*H₃).

Figure S44. ¹³C NMR spectrum of 2q in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 7.12-7.23 (m, Ar-*H*, 5H), 4.71 (q, C*H*, 1H), 2.50 (s, O*H*, 1H), 1.34 (d, C*H*₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 145.89 (Ar-*C*), 128.46 (Ar-*C*), 127.40 (Ar-*C*), 125.45 (Ar-*C*), 70.32 (CH), 25.16 (CH₃).

Figure S46. ¹³C NMR spectrum of 1a in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 7.02-7.32 (m, Ar-*H*, 4H), 4.61 (q, C*H*, 1H), 3.20 (s, O*H*, 1H), 1.26 (d, C*H*₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 144.79 (Ar-*C*), 131.48 (Ar-*C*), 127.22 (Ar-*C*), 121.05 (Ar-*C*), 69.55 (*C*H), 25.19 (*C*H₃).

Figure S48. ¹³C NMR spectrum of 1b in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 7.09-7.17 (m, Ar-*H*, 2H), 6.70-6.79 (m, Ar-*H*, 2H), 4.68 (q, C*H*, 1H), 3.66 (s, OCH₃, 3H), 2.52 (s, O*H*, 1H), 1.33 (d, CH₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 158.85 (Ar-*C*), 138.16 (Ar-*C*), 126.72 (Ar-*C*), 113.78 (Ar-*C*), 69.79 (*C*H), 55.26 (OCH₃), 25.07 (*C*H₃).

¹**H** NMR (300 MHz, CDCl₃, δ): 7.36-7.50 (m, Ar-*H*, 4H), 4.82 (q, C*H*, 1H), 3.10 (s, O*H*, 1H), 1.36 (d, C*H*₃, 3H). ¹³**C** NMR (75 MHz, CDCl₃, 298K, ppm): 151.51 (Ar-*C*), 132.25 (Ar-*C*), 126.12 (Ar-*C*), 118.93 (Ar-*C*), 108.33 (Ar-*C*), 69.38 (CH), 24.79 (CH₃).

Figure S51. ¹H NMR spectrum of 1d in CDCl₃

Figure S52. ¹³C NMR spectrum of 1d in CDCl₃

¹**H NMR** (300 MHz, CDCl3, δ): 7.25 (s, Ar-*H*, 1H), 7.09-7.17 (m, Ar-*H*, 3H), 4.71 (q, C*H*, 1H), 2.50 (s, O*H*, 1H), 1.34 (d, C*H*₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 147.87 (Ar-C), 134.31 (Ar-C), 129.79 (Ar-C), 127.49 (Ar-C), 125.63 (Ar-C), 123.58 (Ar-C), 69.71 (CH), 25.18 (CH₃).

Figure S54. ¹³C NMR spectrum of 1e in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 6.66-7.16 (m, Ar-*H*, 4H), 4.69 (q, C*H*, 1H), 3.67 (d, OC*H*₃, 3H), 2.61 (s, O*H*, 1H), 1.34 (d, C*H*₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 159.68 (Ar-*C*), 147.73 (Ar-*C*), 129.49 (Ar-*C*), 117.76 (Ar-*C*), 112.79 (Ar-*C*), 110.93 (Ar-*C*), 70.16 (*C*H), 55.19 (OCH₃), 25.16 (*C*H₃).

Figure S56. ¹³C NMR spectrum of 1f in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 8.40 (d, Ar-*H*, 1H), 7.59 (td, Ar-*H*, 1H), 7.29 (d, Ar-*H*, 1H), 7.09 (m, Ar-*H*, 1H), 4.81 (q, *CH*, 1H), 4.24 (s, *OH*, 1H), 1.41 (d, *CH*₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 163.46 (Ar-*C*), 148.05 (Ar-*C*), 136.90 (Ar-*C*), 122.19 (Ar-*C*), 119.80 (Ar-*C*), 69.13 (*C*H), 24.15 (*C*H₃).

Figure S58. ¹³C NMR spectrum of 1g in CDCl₃

¹**H NMR** (300 MHz, CDCl₃, δ): 7.69–7.72 (m, Ar-*H*, 3H), 7.67 (s, Ar-*H*, 1H) 7.35–7.38 (m, Ar-*H*, 3H), 4.91 (q, *CH*, 1H), 2.12 (s, *OH*, 1H), 1.45 (d, *CH*₃, 3H). ¹³**C NMR** (75 MHz, CDCl₃, 298K, ppm): 143.26 (Ar-*C*), 133.37 (Ar-*C*), 132.96 (Ar-*C*), 128.36 (Ar-*C*), 128.01 (Ar-*C*), 127.75 (Ar-*C*), 126.21 (Ar-*C*), 125.86 (Ar-*C*), 123.87 (Ar-*C*), 70.54 (CH), 25.20 (CH₃).

Figure S60. ¹³C NMR spectrum of 1h in CDCl₃

4. Computational Details

All computations were performed using Gaussian16¹ utilizing the PBE1PBE level of theory, Def2SVP basis sets and empirical dispersion correction (GD3). No solvent corrections were applied. All optimized molecular structures where checked to be minima on the energy hypersurface and possess no imaginary vibrational frequencies.

Table S2. Computed Data for 3 and Isomers of 4								
Calcd.		unscaled			obsd.			
		ΔG						
		kJ/mol	¹ H NMR	v(CoH)	v(SiH)	¹ H NMR	v(CoH)	v(SiH)
	H trans to		ppm	cm⁻¹	cm ⁻¹	ppm	cm⁻¹	cm⁻¹
3	PMe ₃		-5.6	2063	2101, 2137	-12.30	1960	2032, 2052
4a – A	Cl	0.0	-26.1	2043	2163, 2172	-28.23	1959	2086
4b – B	Cl	17.0	-23.6	2043	2161, 2186	-26.75		
4c	SiH ₂	58.2	-4.1	1890	2062, 2183			
4d – E	SiH ₂	39.5	-3.5	1773	2107, 2177	-9.6		
4e	L	71.4	-9.4	1937	2077, 2156			
4f	L	49.4	-6.2	1994	2092, 2140			
4g	PMe₃	47.7	-13.5	2017	2123, 2145			
4h	PMe ₃	43.2	-11.9	1975	2070, 2146			

Scheme S1 Isomers of complex 4, assigned species highlighted.

Calcd.		Calco.		
	G		ΔG	ΔG
	a.u.		a.u.	kJ/mol
PMe ₃	-460.540966	B(S) – [A(S) + PhSiH₃]	-0.040363	-106.0
PhSiH₃	-522.198598	[C(S) + PMe ₃] – B(S)	0.045509	119.5
PhCHO	-344.846491	D1(S) – [C(S) + PhCHO]	-0.016913	-44.4
PhCH ₂ OSiH ₂ Ph	-867.078348	D2(S) – [C(S) + PhCHO]	-0.011702	-30.7
A (S)	-3223.981976	E(S) - D1(S)	-0.010490	-27.5
A (T)	-3224.028007	E(S) – D2(S)	-0.015701	-41.2
B (S)	-3746.220937	F1(S) – [E(S) + PMe ₃]	-0.010047	-26.4
C (S)	-3285.634462	F2(S) – E(S)	0.008366	22.0
D1 (S)	-3630.497866	G(S) – F1(S)	0.000267	0.7
D2 (S)	-3630.492655	G(S) – [F2(S) + PMe ₃]	0.018146	47.6
E (S)	-3630.492554	[A(S) + PhCH ₂ OSiH ₂ Ph] – G(S)	0.001222	3.2
F1 (S)	-4091.059369	B(S) – [A(T) + PhSiH₃]	0.005668	14.9
F2 (S)	-3630.499990	F2(T) – E(S)	-0.034767	-91.3
F2 (T)	-3630.543123	G(T) - F1(S)	-0.040589	-106.6
G (S)	-4091.059102	[<mark>A(T)</mark> + PhCH2OSiH2Ph] – G(T)	-0.006397	-16.8
G (T)	-4091.099958	G(T) – [F2(T)+PMe₃]	-0.015869	-41.7
		A(T) – A(S)	-0.046031	-120.9
		F2(T) - F2(S)	-0.043133	-113.2
		G(T) – G(S)	-0.040856	-107.3

Table S3. Catalysis cycle with 1 and benzaldehyde (S = singlet, T = triplet) Calcd

5. The mechanism study for hydrosilylation of benzaldehyde catalyzed by complex 2

Figure S61. IR spectrum of reaction solution of 2 and benzaldehyde at 40°C for 3 min.

Figure S62. IR spectrum of reaction solution of **2** and benzaldehyde at 40°C for 3 min, then addition of benzaldehyde at 40°C for 15 min.

Figure S63. IR spectrum of reaction solution of 2 and benzaldehyde at 40°C for 3 min, then addition of benzaldehyde at 40°C for 15 min, then addition of PhSiH₃ at 40° C for 1h.

6. References

1) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., *Gaussian16, Revision B.01*, 2016.