Electronic Supplementary Information (ESI) for

Near Ultraviolet Excitable Cyan-Green Phosphors of Ba₆La₂Al₃ScO₁₅:Ce³⁺ and

Ba₆La₂Al₃ScO₁₅:Ce³⁺,Tb³⁺: Investigations on Crystal Structure, Site Assignment of

Ce³⁺ and Tb³⁺ ions, and Energy Transfer Process from Ce³⁺ to Tb³⁺

Masato Iwaki^{†,*}, Mizuho Onodera[†], Kazuyoshi Uematsu[§], Kenji Toda^{†,*} and Mineo Sato[§]

[†]Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-

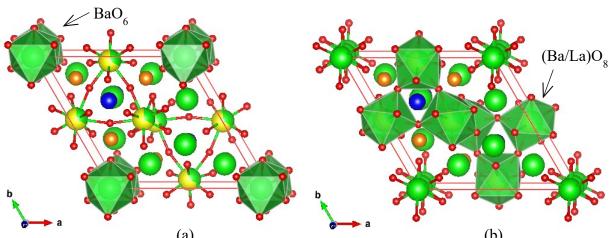
2181, Japan

[§]Department of Chemistry and Chemical Engineering, Niigata University, 8050

Ikarashi 2-nocho, Niigata 950-2181, Japan.

*Corresponding author

*Masato Iwaki


Tel/Fax +81-25-262-6772

E-mail: f20k003j@mail.cc.niigata-u.ac.jp

* Kenji Toda

Tel/Fax +81-25-262-6771

E-mail: ktoda@eng.niigata-u.ac.jp

(a) (b) Figure S1. (a) Linkage of BaO_6 octahedra along [001] direction and (b) network of $(Ba/La)O_8$ polyhedra.

Table S1a. Bond distances(Å) a indices of BaO6 polyhedron in	
Bal - O4	2.586(12)
Ba1 - O4	2.892(13)
Ba1 - O4	2.892(13)
Ba1 - O4	2.586(12)
Ba1 - O4	2.586(12)
Ba1 - O4	2.892(13)
Average bond length	2.7394 Å
Polyhedral volume	26.5229 Å ³
Distortion index(bond length)	0.05586
Effective coordination number	5.2062

Table S1b. Bond distances(Å) a	and polyhedral
indices of(Ba/La)O8 polyhedron	in BLASO.
Ba4/La4 - O2	2.636(7)
Ba4/La4 - O1	2.691(10)
Ba4/La4 - O3	2.73(2)
Ba4/La4 - O1	2.499(10)
Ba4/La4 - O2	2.636(7)
Ba4/La4 - O1	2.691(10)
Ba4/La4 - O3	2.381(14)
Ba4/La4 - O1	2.499(10)
Average bond length	2.5948 Å
Polyhedral volume	30.4526 Å ³
Distortion index(bond length)	0.03912
Effective coordination number	7.1312

Table S1c. Bond distances(Å) a	nd polyhedral			
indices of BaO10 polyhedron in BLASO.				
Ba2 - O1	2.856(12)			
Ba2 - O4	3.099(7)			
Ba2 - O3	2.903(6)			
Ba2 - O1	3.144(9)			
Ba2 - O4	3.184(14)			
Ba2 - O2	2.666(19)			
Ba2 - O1	3.144(9)			
Ba2 - O4	3.099(7)			
Ba2 - O3	2.903(6)			
Ba2 - O1	2.856(12)			
Average bond length	2.9853 Å			
Polyhedral volume	56.5525 Å ³			
Distortion index(bond length)	0.04974			
Effective coordination number	8.1618			

Tabl indic

Table S1d. Bond distances(Å) and polyhedral		Table S1e. Bond distances(Å) and polyhedral		
indices of BaO12 polyhedron in BLASO.		indices of YO ₈ polyhedron in YAG.		
Ba3 - O1	3.219(13)	Y1-01	2.317(4)	
Ba3 - O1	3.219(13)	Y1-01	2.317(4)	
Ba3 - O2	3.271(19)	Y1-01	2.437(4)	
Ba3 - O3	2.768(19)	Y1-01	2.437(4)	
Ba3 - O3	2.768(19)	Y1-01	2.437(4)	
Ba3 - O1	3.219(13)	Y1-01	2.317(4)	
Ba3 - O2	3.271(19)	Y1-01	2.317(4)	
Ba3 - O1	3.219(13)	Y1-01	2.437(4)	
Ba3 - O2	3.271(19)	Average bond length	2.3767 Å	
Ba3 - O1	3.219(13)	Polyhedral volume	22.9811 Å ³	
Ba3 - O3	2.768(19)	Distortion index(bond length)	0.02520	
Ba3 - O1	3.219(13)	Effective coordination number	7.8058	
Average bond length	3.1193 Å			
Polyhedral volume	69.9772 Å ³			
Distortion index(bond length)	0.05631			
Effective coordination number	8.3884			

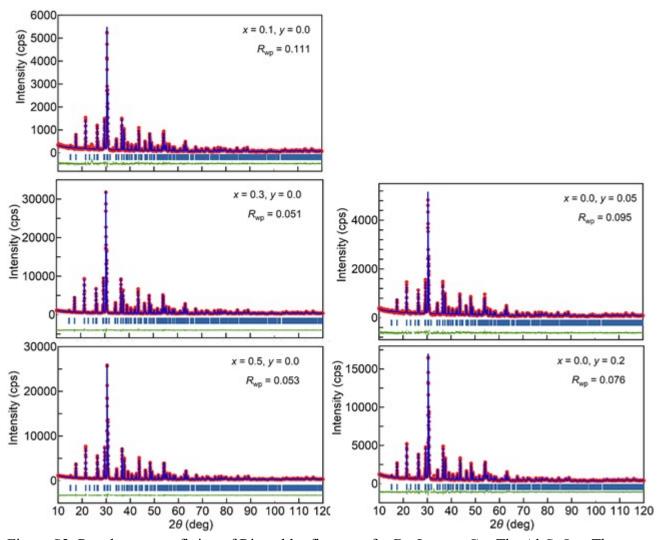
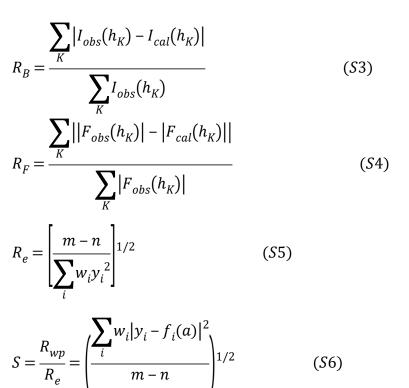



Figure S2. Powder pattern fitting of Rietveld refinement for $Ba_6La_{2(1-x-y)}Ce_{2x}Tb_{2y}Al_3ScO_{15}$. The species of Ce and Tb were not included in the refinement because their atomic numbers are close to that of Ba, providing no accurate occupancy factors.

The reliable factors in the Rietveld refinement

$$R_{wp} = \left[\frac{\sum_{i}^{i} w_{i} |y_{i} - f_{i}(a)|^{2}}{\sum_{i}^{i} w_{i} y_{i}^{2}}\right]^{1/2}$$
(S1)
$$R_{p} = \frac{\sum_{i}^{i} |y_{i} - f_{i}(a)|}{\sum_{i}^{i} y_{i}}$$
(S2)

Where *m* is the number of steps in the step-scan measurement, $I_{obs}(h_K)$ and $I_{cal}(h_K)$ theobserved and calculated integral intensity for Blagg reflection *K*, respectively, and $F_{obs}(h_K)$ and $F_{cal}(h_K)$ the observed and calculated structure factures, repectively.

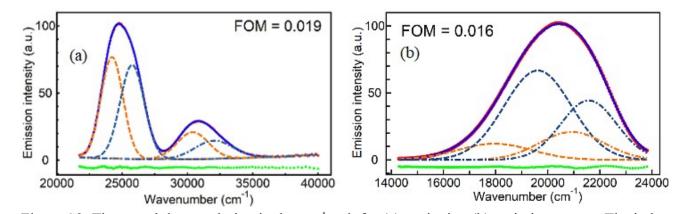


Figure S3. The actual deconvolution in the cm⁻¹ unit for (a) excitation (b) emission curves. The index of FOM is the Figure-of-merit defined in equation S7.

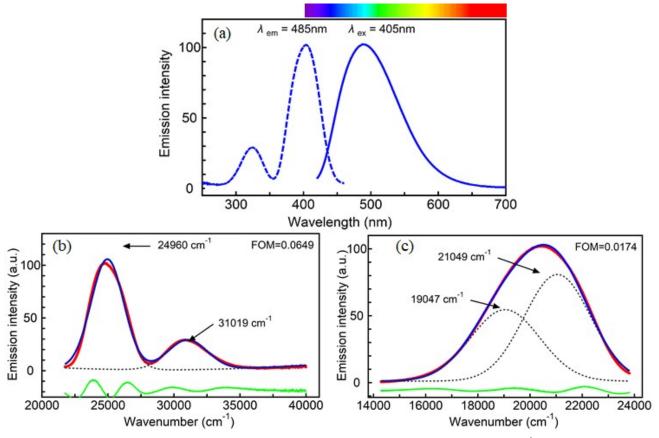


Figure S4. (a) Excitation (dashed line) and emission (solid) spectra of BLASO:Ce³⁺(x = 0.015) and Gaussian fitting of (b) excitation and (c) emission of BLASO:Ce³⁺ by two components.

Index of FOM
It is defined as,

$$FOM = \left[\frac{\sum_{i}^{i} w_{i} |y_{i}^{obs} - y_{i}^{cal}|^{2}}{\sum_{i}^{i} w_{i} y_{i}^{obs2}}\right]^{1/2}$$
(S7)

where y_{i}^{obs} is the intensity at *i*th data, y_{i}^{cal} the intensity at *i*th data calculated from the model Gaussian function and w_i the weighting factor at *i*th data, usually all factors set to 1.

Calculation of Dorenbos model

The total energy shift from the lowest 5d level edge in a compound A, $E_{total}(Ce^{3+},A)$, can be described as equation 1,¹⁻²

 $E_{total}(Ce^{3+}, A) = 49,340 \ cm^{-1} - \varepsilon_{c} - \varepsilon_{cfs} - \Delta S(A)$ (S8)

where the value of 49340 cm^{-1} is the energy of free Ce³⁺, ε_C means the centroid shift, ε_{cfs} is the crystal field splitting, $\Delta S(A)$ is the Stokes shift estimated from the excitation and emission spectra of compound *A*. The centroid shift ε_C is estimated from the following equation,³⁻⁴

$$\varepsilon_{C} = 1.79 \times 10^{13} \sum_{i=1}^{N} \frac{\alpha_{sp}^{i}}{(R_{i} - 0.6\Delta R)^{6}}$$
 (S9)

where R_i represents the bond distance of the Ce³⁺-O²⁻ ions in the host lattice, ΔR is the difference in the ionic radii between Ce³⁺ and the host cation replaced by Ce³⁺ (Ba²⁺ and La³⁺ in this case), N is the number of anions coordinated with Ce³⁺, and α_{sp}^i the spectroscopic polarizability, which is described as.⁴

$$\alpha_{sp}^{i} = 0.33 + \frac{4.8}{\chi_{av}^{2}}$$
 (S10)

where χ_{av} is the weighted average of the cation electronegativity in s host lattice. The strength of the crystal field splitting, ε_{cfs} , for a polyhedron can be estimated from the following equation,⁴ $\varepsilon_{cfs} = \beta_{poly}^{Q} R_{av}^{-2}$ (S11)

where β_{poly}^{Q} has a constant dependent on the shape and coordination number, and R_{av} the average bond distance of the polyhedron, which is defined as,⁴

$$R_{av} = \frac{1}{N} \sum_{i=1}^{N} (R_i - 0.6\Delta R) \quad (S12)$$

where R_i is the bond distance between Ce³⁺ and *N* number of coordinating anions, and ΔR the difference in ionic radii between the central cation and Ce³⁺. The experimentally determined Stokes shift value of 4100 cm⁻¹, estimated from the single component fitting in Figure S4, is used in the calculation. The value are comparable to that of γ -Ca₂SiO₄:Ce³⁺ (4560 cm⁻¹)⁵ and a little larger than those of YAG: Ce³⁺ (~2700 cm⁻¹),⁶ Sr₃GaO₄F:Ce³⁺ (2762 cm⁻¹)⁷ and Lu₂CaMg₂Si₃O₁₂: Ce³⁺ (2550 cm⁻¹)⁸ phosphors.

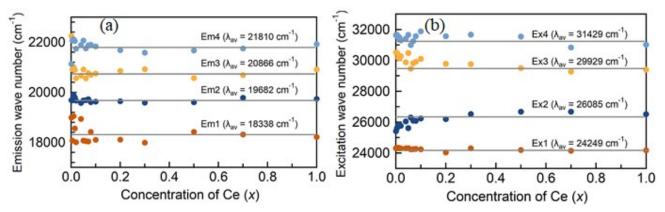


Figure S5. Concentration dependence of (a) emission and (b) excitation wave numbers on Ce in BLASO:Ce³⁺.

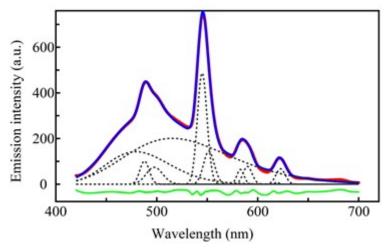


Figure S6. Deconvolution of emission band of BLASO: $Ce^{3+}(x = 0.015)$, $Tb^{3+}(y = 0.05)$ using Gaussian Function.

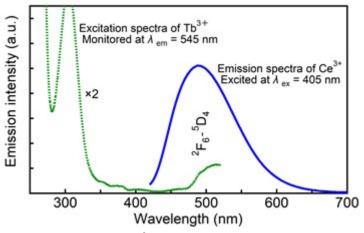


Figure S7. Overlap between excitation of Tb^{3+} (green dashed line) and emission of Ce^{3+} (blue solid line) in BLASO.

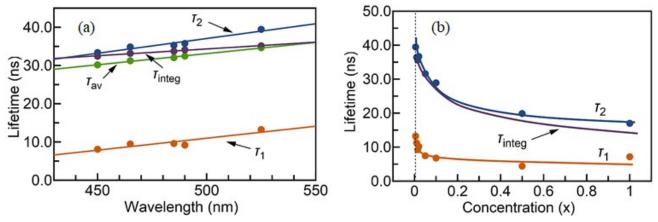


Figure S8. (a) Dependence of Ce^{3+} lifetimes on emission wavelength and (b) concentration of Ce^{3+} .

1			
S	<i>a</i> ₁	<i>a</i> ₂	b_1
6	10.866	15.500	8.743
8	17.072	35.860	13.882
10	24.524	67.909	20.290

Table S2. The values of a_1 , a_2 , and b_1 in Martin model equation.

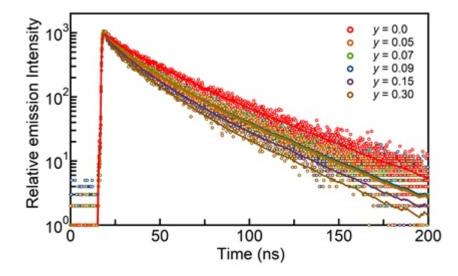


Figure S9. Results of decay curve fitting to Yokota-Tanimoto equation for BLASO: $Ce^{3+}(x = 0.015)$, $Tb^{3+}(y = 0.05 - 0.30)$.

REFERENCES

- 1. P. Dorenbos, J. Lumin. 2000, 91, 155-176.
- 2. P. Dorenbos, J. Lumin. 2002, 99, 283-299.
- 3. P. Dorenbos, J. Lumin. 2003, **105**, 117-119.
- 4. P. Dorenbos, Journal of Physics: Condensed Matter 2003, 15, 4797-4807.
- 5. A. Kalaji, M. Mikami, A. K. Cheetham, *Chem. Mater.* 2014, **26**, 3966-3975.
- 6. V. Bachmann, C. Ronda, A. Meijerink, *Chem. Mater.* 2009, **21**, 2077-2084.
- 7. W. Chen, H. Liang, B. Han, J. Zhong, Q. Su, J. Phys. Chem. C 2009, 113, 17194-17199.
- 8. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, M. V. Shankar, *Chem. Mater.* 2006, **18**, 3314-3322.