## **Supporting information**

## Catalytic oxidation properties of an acid-resistant cross-bridged cyclen Fe(II) complex. Influence of the rigid donor backbone and protonation on the reactivity.

Jean-Noël Rebilly, Christian Herrero, Katell Sénéchal-David, Régis Guillot, and Frédéric Banse

## **Materials and methods**

Solvents and chemicals were of reagent grade and were distilled prior to use.  $H_2O_2$  35% in water was used. Ligand cyclenCB-CH<sub>2</sub>py (Chart 1) was synthesized according to a literature procedure.<sup>[1]</sup>

<u>ESI mass spectrometry</u> analyses were performed with a Bruker MicroTOFq spectrometer using a sodium formate calibrant. Solvents: Methanol HPLC LC/MS (Carlo-Erba), Acetonitrile HPLC (Carlo-Erba).

**<u>NMR</u>** spectra were recorded on Bruker 250 MHz, 300 MHz, and 360 MHz spectrometers.

<u>Cyclic Voltammetry</u> experiments were performed using an Autolab potentiostat and a conventional three electrode device (C working electrode, SCE reference electrode, Pt counter electrode). The electrolyte salt (TBAPF<sub>6</sub>) was recrystallized and all the glassware was dried at 110°C before use. All cyclic voltammograms (CVs) were recorded under argon in acetonitrile solution containing 0.1 M  $Bu_4NPF_6$  at a scan rate of 0.1 V/s at 20°C. All potential values are referred to SCE.

**X-band EPR** spectra were recorded on frozen solutions using a Bruker Elexsys 500E spectrometer equipped with a Bruker ER 4116DM X band resonator, an Oxford Instrument continuous flow ESR 900 cryostat, and an Oxford ITC 503 temperature control system. Conditions: Microwave frequency = 9.63 GHz, microwave power = 1.0 mW, modulation amplitude = 8 Gauss, modulation frequency = 100 KHz, gain = 50 db, temperature = 90 K. Spectral simulations were done using the Bruker software XSophe.

**Stopped Flow absorption spectrophotometry** was performed on a BioLogic SFM-4000 coupled to a J&M Tidas diode array spectrometer, with a two-syringe setup (one containing the iron complex, [Fe] = 2 mM, the other containing the oxidant). Experiments were at least triplicated for kinetic fits. Fits at 530 or 730 nm were performed using the BioKine software.

<u>UV-visible</u>. Electronic absorption spectra were recorded with a Varian Cary 60 spectrophotometer.

<u>X-ray diffraction</u> data for compound [(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf) was collected by using a VENTURE PHOTON100 CMOS Bruker diffractometer with Micro-focus IuS source Cu K $\alpha$  radiation. X-ray diffraction data for compound [(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)<sub>2</sub> was collected by using a Kappa X8 APPEX II Bruker diffractometer with graphite-monochromated MoK<sub> $\alpha$ </sub> radiation ( $\lambda$  = 0.71073 Å). Crystals were mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flash frozen in a nitrogen-gas stream at 200 K or 100 K. For compounds, the temperature of the crystal was maintained at the selected value by means of a 700 series Cryostream cooling device to within an accuracy of ±1 K. The data were corrected for Lorentz polarization, and absorption effects. The structures were solved by direct methods using SHELXS-97<sup>[2]</sup> and refined against *F*<sup>2</sup> by full-matrix least-squares techniques using SHELXL-2018<sup>[3]</sup> with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map

and introduced into the calculations as a riding model with isotropic thermal parameters. All calculations were performed by using the Crystal Structure crystallographic software package WINGX<sup>[4]</sup>.

The crystal data collection and refinement parameters are given in Table S1.

CCDC 2184867-2184868 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe via http://www.ccdc.cam.ac.uk/structures/.

| Compound                                           | [(cyclenCB-CH₂py)Fe"(OTf)](OTf)                                                                                      | [(cyclenCB-CH₂py)Fe <sup>III</sup> (OMe)](OTf)₂                                           |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| CCDC                                               | 2184867                                                                                                              | 2184868                                                                                   |
| Empirical Formula                                  | C <sub>18</sub> H <sub>29</sub> F <sub>3</sub> Fe N <sub>5</sub> O <sub>3</sub> S, C F <sub>3</sub> O <sub>3</sub> S | C <sub>18</sub> H <sub>32</sub> Fe N <sub>5</sub> O, 2(C F <sub>3</sub> O <sub>3</sub> S) |
| M <sub>r</sub>                                     | 657.44                                                                                                               | 688.47                                                                                    |
| Crystal size, mm <sup>3</sup>                      | 0.07 x 0.22 x 0.24                                                                                                   | 0.01 x 0.12 x 0.17                                                                        |
| Colour                                             | yellow                                                                                                               | green                                                                                     |
| Crystal system                                     | monoclinic                                                                                                           | monoclinic                                                                                |
| Space group                                        | P 21/c                                                                                                               | P 2 <sub>1</sub> /c                                                                       |
| a, Å                                               | 9.6666(4)                                                                                                            | 19.0222(9)                                                                                |
| b, Å                                               | 14.8989(6)                                                                                                           | 12.1505(6)                                                                                |
| c, Å                                               | 18.1683(8)                                                                                                           | 12.1044(5)                                                                                |
| α, °                                               | 90                                                                                                                   | 90                                                                                        |
| β, °                                               | 99.9130(10)                                                                                                          | 100.596(2)                                                                                |
| γ, °                                               | 90                                                                                                                   | 90                                                                                        |
| Cell volume, Å <sup>3</sup>                        | 2577.56(19)                                                                                                          | 2750.0(2)                                                                                 |
| Z ; Z'                                             | 4;1                                                                                                                  | 4;1                                                                                       |
| Т, К                                               | 100(1)                                                                                                               | 200 (1)                                                                                   |
| Radiation type ; wavelength Å                      | СиКα; 1.54178                                                                                                        | ΜοΚα ; 0.71073                                                                            |
| F <sub>000</sub>                                   | 1352                                                                                                                 | 1420                                                                                      |
| μ, mm <sup>-1</sup>                                | 7.037                                                                                                                | 0.791                                                                                     |
| range, °                                           | 3.860 - 66.663                                                                                                       | 1.999 - 30.535                                                                            |
| Reflection collected                               | 36 732                                                                                                               | 62 137                                                                                    |
| Reflections unique                                 | 4 561                                                                                                                | 8 322                                                                                     |
| R <sub>int</sub>                                   | 0.0433                                                                                                               | 0.0815                                                                                    |
| GOF                                                | 1.067                                                                                                                | 1.061                                                                                     |
| Refl. obs. (/>2(/))                                | 4 421                                                                                                                | 4 707                                                                                     |
| Parameters ; restraints                            | 354 ; 0                                                                                                              | 372 ; 0                                                                                   |
| wR <sub>2</sub> (all data)                         | 0.0665                                                                                                               | 0.2354                                                                                    |
| R value (/>2(/))                                   | 0.0283                                                                                                               | 0.0743                                                                                    |
| Largest diff. peak and hole<br>(eÅ <sup>-3</sup> ) | 0.467 ; -0.349                                                                                                       | 1.753 ; -0.849                                                                            |

 Table S1. Crystallographic data and structure refinement details.

Table S2. Selected bond distances [Å] and angles [deg]:



| Compound /<br>T(K) | [(cyclenCB-CH₂py)Fe"(OTf)](OTf)<br>100K | [(cyclenCB-CH₂py)Fe <sup>III</sup> (OMe)](OTf)₂<br>200K |
|--------------------|-----------------------------------------|---------------------------------------------------------|
| Fe-N(1)            | 2.1368(15)                              | 1.997(3)                                                |
| Fe-N(2)            | 2.2202(16)                              | 1.999(3)                                                |
| Fe-N(3)            | 2.1581(16)                              | 1.958(3)                                                |
| Fe-N(4)            | 2.1916(16)                              | 2.047(3)                                                |
| Fe-N(5)            | 2.1759(16)                              | 1.998(3)                                                |
| Fe-O               | 2.1121(13)                              | 1.838(3)                                                |
| N(1)-Fe-N(2)       | 78.53(6)                                | 86.31(15)                                               |
| N(1)-Fe-N(3)       | 156.27(6)                               | 170.60(14)                                              |
| N(1)-Fe-N(4)       | 120.38(6)                               | 102.89(15)                                              |
| N(1)-Fe-N(5)       | 98.31(6)                                | 94.36(14)                                               |
| N(1)-Fe-O          | 89.87(6)                                | 90.65(14)                                               |
| N(2)-Fe-N(3)       | 77.86(6)                                | 84.67(14)                                               |
| N(2)-Fe-N(4)       | 154.41(6)                               | 165.66(14                                               |
| N(2)-Fe-N(5)       | 81.67(6)                                | 85.73(14)                                               |
| N(2)-Fe-O          | 104.10(6)                               | 95.54(14)                                               |
| N(3)-Fe-N(4)       | 82.83(6)                                | 86.47(14)                                               |
| N(3)-Fe-N(5)       | 80.51(6)                                | 87.62(13)                                               |
| N(3)-Fe-O          | 93.64(6)                                | 87.59(13)                                               |
| N(4)-Fe-N(5)       | 78.70(6)                                | 82.64(13)                                               |
| N(4)-Fe-O          | 93.66(6)                                | 95.34(13)                                               |
| N(5)-Fe-O          | 170.85(6)                               | 174.90(13)                                              |

All esds are estimated using the value of the full covariance matrix of least square.

## Synthesis of complex [(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)

In a glovebox under Ar, cyclenCB-CH<sub>2</sub>py (202 mg, 668  $\mu$ mol) in 2 mL MeOH was added dropwise to a solution of Fe<sup>II</sup>OTf<sub>2</sub> (236 mg, 668  $\mu$ mol) in 3 mL MeOH. The resulting solution was stirred overnight. The volume was reduced to 2 mL and excess diethylether (20 mL) was added, resulting in the precipitation of a gum. After stirring overnight, the gum turned into a tan-yellowish powder that was filtered and washed with diethylether (331 mg, 75%). Crystals suitable for X-ray diffraction were obtained by slow diffusion of diethylether into a methanol solution of the complex in the glovebox.

Crystals of [(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)<sub>2</sub>

Green crystals of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub> suitable for X-ray diffraction were obtained by slow diffusion of diethylether into an aerated solution (exposed to air and kept on the bench in a schlenk for two weeks) of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** in methanol.



Figure S1. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 360 MHz, 300 K) of [(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf).



Figure S2. <sup>1</sup>H NMR spectrum (CD<sub>3</sub>CN, 360 MHz, 300 K, wide spectral range) of [(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf).



Figure S3. Comparison of the <sup>1</sup>H NMR spectra (300 K) of **[(cyclenCB-CH<sub>2</sub>py)Fe"(OTf)](OTf)** (360 MHz, CD<sub>3</sub>CN) and **cyclenCB-CH<sub>2</sub>py** (300 MHz, CDCl<sub>3</sub>). The macrocycle and pyridyl resonances appear downfield shifted with respect to the ligand, in line with the pentadentate binding of cyclenCB-CH<sub>2</sub>py observed in the solid state. The diamagnetic nature of the complex suggests that triflate has been substituted by acetonitrile in solution.



Figure S4. HR-ESI-MS spectrum of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)**. m/z = 179.5880 (calcd. for **[(cyclenCB-CH<sub>2</sub>py)**Fe<sup>II</sup>]<sup>2+</sup>: 179.5879, error = 0.6 ppm); m/z = 390.1933 (calcd. for **[(cyclenCB-CH<sub>2</sub>py)**Fe<sup>II</sup>(OMe)]<sup>2+</sup>: 390.1956, error = 5.8 ppm); m/z = 404.1729 (calcd. for **[(cyclenCB-CH<sub>2</sub>py)**Fe<sup>II</sup>(formate)]<sup>2+</sup>: 404.1749, error = 4.9 ppm); m/z = 421.1756 (calcd. for **[(cyclenCB-CH<sub>2</sub>py)**Fe<sup>III</sup>(formate)]<sup>2+</sup>: 421.1776, error = 4.7 ppm). Formate was used as calibrant.



Figure S5. UV-vis spectrum of [(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf), 0.2 mM in MeCN (300 K).



Figure S6. CV at a glassy carbon electrode of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** (C = 2 mM) in MeCN (300 K). NBu<sub>4</sub>PF<sub>6</sub> 0.1 M. WE: GC, CE: Pt, Ref: SCE. Couple at  $E_{1/2} = 0.71$  V ( $\Delta E = 100$  mV) vs SCE is ascribed to a Fe<sup>III</sup>/Fe<sup>II</sup> couple and the less reversible one at  $E_{1/2} = -1.84$  V ( $\Delta E = 130$  mV) vs SCE is ascribed to a Fe<sup>III</sup>/Fe<sup>II</sup> couple.



Figure S7. CVs at a glassy carbon electrode of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** (C = 2 mM) in MeCN (300 K), before and after addition of a/ 1or b/ 2 equiv. NBu<sub>4</sub>Cl. NBu<sub>4</sub>PF<sub>6</sub> 0.1 M. WE: GC, CE: Pt, Ref: SCE. The initial couple at  $E_{1/2} = 0.71$  V ( $\Delta E = 100$  mV) vs SCE is ascribed to a  $(N_5)$ Fe<sup>III/II</sup>(MeCN)<sup>3+/2+</sup>. After addition of 1 equiv. chloride, the couple at  $E_{1/2} = 0.4$  V ( $\Delta E = 100$  mV) is ascribed to  $(N_5)$ Fe<sup>III/II</sup>Cl<sup>2+/+</sup>. A weaker  $(N_4)$ Fe<sup>III/II</sup>Cl<sub>2</sub><sup>+/0</sup> couple is detected at  $E_p^c = 0.12$  V, along with the reoxidation of CI-bridged dimeric species at  $E_p^c = -0.13$  V. Upon addition of a 2<sup>nd</sup> equiv. chloride, the amount of  $(N_4)$ Fe<sup>III/II</sup>Cl<sub>2</sub><sup>+/0</sup> couple increases and the oxidation of dimeric species vanished, in line with the displacement of equilibria towards  $(N_4)$ Fe<sup>III/II</sup>Cl<sub>2</sub> in solution.



Figure S8. Comparison of the <sup>1</sup>H NMR spectrum (360 MHz, 300 K) of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** in the presence and absence of 1 equiv. HClO<sub>4</sub>. For spectrum analysis purposes, the NMR spectra of **(cyclenCB-CH<sub>2</sub>py)** (CDCl<sub>3</sub>), and **(cyclenCB-CH<sub>2</sub>py)** (CD<sub>3</sub>CN) in the presence of 1 or 5 equiv. HClO<sub>4</sub> are overlaid, allowing us to identify the resonances of protonated pyridines and CH<sub>2</sub>py protons. With 1 equiv. HClO<sub>4</sub>, the macrocycle of **(cyclenCB-CH<sub>2</sub>py)** is protonated. With 5 equiv., pyridine is also protonated.



Figure S9. Change in absorbance of the UV-vis spectrum of [(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf) after addition of 1 equiv.  $HClO_4$  (MeCN, [Fe] = 1 mM, 20°C).



Figure S10. CV at a glassy carbon electrode of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** (C = 2 mM) in MeCN (300 K) upon addition of HClO<sub>4</sub>. NBu<sub>4</sub>PF<sub>6</sub> 0.1 M. WE: GC, CE: Pt, Ref: SCE. Couple at  $E_{1/2} = 0.71$  V ( $\Delta E = 100$  mV) vs SCE is ascribed to a ( $N_5$ )Fe<sup>III</sup>(MeCN)/( $N_5$ )Fe<sup>III</sup>(MeCN) couple and the one at at  $E_{1/2} = 1.0$  V ( $\Delta E = 100$  mV) vs SCE is ascribed to a ( $N_4$ )Fe<sup>III</sup>(MeCN)<sub>2</sub>/( $N_4$ )Fe<sup>III</sup>(MeCN)<sub>2</sub> couple resulting from the decoordination (protonation) of the pyridine. Note that a ( $N_4$ )Fe<sup>III</sup>(MeCN)(OH)/( $N_4$ )Fe<sup>III</sup>(MeCN)(OH) couple is expected to have  $E_{1/2}$  around 0.7 V also (anion coordination induces a ca. 300 mV shift of the potential). the wave around 0.7 V on the reverse scan could thus also correspond to the reduction of a ( $N_4$ )Fe<sup>III</sup>(MeCN)(OH) complex.



Figure S11. Evolution of the UV-vis sectrum of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** (C =1 mM) in MeCN (293 K), upon addition of 1.2 equiv. PhIO (a/) or 1.4 equiv. mCPBA (b/). Timetraces of the absorbances at 430 nm (c/) and 730 nm (d/) for these two experiments.



Figure S12. Evolution of the UV-vis spectrum of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** (C =1 mM) in MeCN (293 K), upon addition of 20 equiv.  $H_2O_2$  : growth at 550 nm (phase 1, a/), decay at 550 nm (phase 2, b/) and timetrace at 550 nm (c/).



Figure S13. UV-vis spectrum of a solution of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** in MeCN ([Fe] = 1 mM, 0.1 M NBu<sub>4</sub>PF<sub>6</sub>, 293 K) oxidized by electrolysis.



Figure S14. X-band EPR spectra (90 K) of the species accumulated upon mixing **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** 1 mM in MeCN with 2 or 20 equ.  $H_2O_2$  at 293 K after a 9 s delay (maximum of accumulation of the 550 nm chromophore, a/). Evolution of the X-band EPR spectra (90 K) of the **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** /  $H_2O_2$  1:20 mixture after successive thawing/freezing cycles (b/).



Figure S15. Low spin section of the X-band EPR spectra (90 K) of the species accumulated upon mixing **[(cyclenCB-CH<sub>2</sub>py)Fe"(OTf)](OTf)** 1 mM in MeCN with 20 equiv.  $H_2O_2$  at 293 K after a 9 s delay (maximum of accumulation of the 550 nm chromophore, plain red line) and simulated spectrum (black dashed line) for a S=1/2 species with parameters g = 2.414 2.240 1.888.



Figure S16. *Top:* X-band EPR spectra (90 K) of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub> in MeOH (left) or MeCN (right) with corresponding simulations:g = 2.35, 2.18, 1.92 in MeOH; g = 2.38, 2.21, 1.91 in MeCN. The EPR signature is ascribed to **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)]**<sup>2+</sup>, the slight shift in the parameters being ascribed to the protic nature of methanol which can develop hydrogen bonds with the methoxo ligand, unlike MeCN. *Bottom:* UV-vis spectra of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub> crystals in MeOH (red) or MeCN (blue) (293 K).



Figure S17. X-band EPR spectra (90 K) of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OTf)](OTf)** in the presence of 20 equiv. H<sub>2</sub>O<sub>2</sub> (pink) and **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sup>2</sup> in the presence of 100 equiv. H<sub>2</sub>O<sub>2</sub> (green) in MeOH. The main species correspond to **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)]**<sup>2+</sup>. The pink stars indicate signals from **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OH)]**<sup>2+</sup> and the green circles signals from **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OOH)]**<sup>2+</sup>. The overall LS signal for the Fe(II) complex + 20 H<sub>2</sub>O<sub>2</sub> represents around 70% of the Fe content. The LS signal for the Fe(III) complex + 100 H<sub>2</sub>O<sub>2</sub> represents 75% of the Fe content.



Figure S18. X-band EPR spectra (90 K) of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** in the presence of 20 equiv. H<sub>2</sub>O<sub>2</sub> (green) in MeOH. (Left) With isolated simulations of A = ( $N_5$ )Fe<sup>III</sup>(OMe) (g = 2.35 2.177 1.92) and B = ( $N_5$ )Fe<sup>III</sup>(OH) (g = 2.40 2.21 1.91) and (Right) with the sum spectrum of both contributions (A + 0.1 B) (pink).



Figure S19. X-band EPR spectra (90 K) of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub> in the presence of 100 equiv. H<sub>2</sub>O<sub>2</sub> (green) in MeOH. With a/ isolated simulations of A = ( $N_5$ )Fe<sup>III</sup>(OMe) (g = 2.35 2.177 1.92) and B = ( $N_5$ )Fe<sup>III</sup>(OOH) (g = 2.19 2.15 1.955) and (b/) with the sum spectrum of both contributions (A + 0.1 B) (pink).



Figure S20. Low spin section of the X-band EPR spectra (90 K, MeCN) of the species accumulated upon addition of 1 equiv.  $HClO_4$  to a **[(cyclenCB-CH\_2py)Fe<sup>II</sup>(OTf)](OTf)** /  $H_2O_2$  1:20 mixture (plain red line) and simulated spectrum for a S =1/2 species with parameters g = 2.580, 2.475, 1.710. The overall LS signal represents around 72% of the Fe content.



Figure S21. Evolution of the UV-vis spectrum (MeCN, 293 K, [Fe] = 1 mM) of a **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>II</sup>(OTf)](OTf)** /  $H_2O_2$  1:20 mixture solution (aged 9 s) upon addition of 1 equiv. HClO<sub>4</sub> (Top). Timetraces of the absorbances at 560, 480, and 450 nm (Bottom).



Figure S22. X-band EPR spectra (90 K) **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub> upon addition of different amounts of HClO<sub>4</sub> in MeCN (a/). Simulation of the EPR spectrum at the end of the titration with parameters g = 2.565 2.465 1.725 (b/). Green circles indicates the signals of remaining **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)]**<sup>2+</sup> and \* a residual signal of the EPR cavity. The LS signal represents 97% of Fe content. Addition of 0.5 eq., 1 eq. and 1.5 eq HClO<sub>4</sub> lead respectively to LS signals representing 63, 58, 47 % of the Fe content respectively. After addition of H<sub>2</sub>O<sub>2</sub> to this solution, it represents 42%.



Figure S23. X-band EPR spectra (90 K) **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub> and 1.5 equiv. HClO<sub>4</sub> before (black) and after (red) addition of 100 eq. H<sub>2</sub>O<sub>2</sub> in MeCN. The LS signal after addition of 1.5 eq HClO<sub>4</sub> represents 47 % of the Fe content. After addition of H<sub>2</sub>O<sub>2</sub> to this solution, it represents 42% of the Fe content.



Figure S24. X-band EPR spectra (90 K) **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub> upon addition of 1.5 equiv. HClO<sub>4</sub> and 100 equiv. H<sub>2</sub>O<sub>2</sub> in MeCN (green) and simulation (pink) with parameters g = 2.58 2.47 1.71. \* a residual signal of the EPR cavity.



Scheme S1. Proposed steps for the formation of  $[(N_4)Fe^{III}(OOH)]^{2+}$  from either  $[(N_5)Fe^{II}(MeCN)]^{2+}$  or  $[(N_5)Fe^{III}(OMe)]^{2+}$ . g factors are indicated for species detected.



Figure S25. X-band EPR spectra (90 K) [(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)<sub>2</sub> upon successive additions of HClO<sub>4</sub> and H<sub>2</sub>O<sub>2</sub> in MeOH. The initial LS signal represents 75% of the Fe content. After addition of 1 eq.

 $HClO_4$ , it drops to 62 %. The first addition of  $H_2O_2$  lowers it to 52%. Another aliquot of acid raises it to 66% and the second addition of  $H_2O_2$  lowers it to 52%.



Figure S26. X-band EPR spectrum (90 K, MeOH) of a solution of **[(cyclenCB-CH<sub>2</sub>py)Fe<sup>III</sup>(OMe)](OTf)**<sub>2</sub>, 2 equiv. HClO<sub>4</sub>, and 200 equiv. H<sub>2</sub>O<sub>2</sub>, (green trace) and (a/) simulations (pink and yellow traces) with two sets of signals g = 2.55 2.47 1.73 (( $N_4$ )Fe<sup>III</sup>(OOH)(MeOH) = species A) and g = 2.35 2.177 1.92 (( $N_5$ )Fe<sup>III</sup>(OMe) = species B), and (b/) summed simulation of the two species (B + 0.1 A).

- [1] K. R. Wilson, D. J. Cannon-Smith, B. P. Burke, O. C. Birdsong, S. J. Archibald, T. J. Hubin, *Polyhedron* **2016**, *114*, 118-127.
- [2] G. M. Sheldrick, University of Göttingen, Germany, Göttingen, **1997**.
- [3] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64 112-122.
- [4] L. J. Farrugia, J. Appl. Cryst. **1999**, 32, 837.