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Materials and methods

Solvents and chemicals were of reagent grade and were distilled prior to use. H,0, 35% in water was
used. Ligand cyclenCB-CH,py (Chart 1) was synthesized according to a literature procedure.

ESI mass spectrometry analyses were performed with a Bruker MicroTOFq spectrometer using a
sodium formate calibrant. Solvents: Methanol HPLC LC/MS (Carlo-Erba), Acetonitrile HPLC (Carlo-
Erba).

NMR spectra were recorded on Bruker 250 MHz, 300 MHz, and 360 MHz spectrometers.

Cyclic Voltammetry experiments were performed using an Autolab potentiostat and a conventional
three electrode device (C working electrode, SCE reference electrode, Pt counter electrode). The
electrolyte salt (TBAPF¢) was recrystallized and all the glassware was dried at 110°C before use. All
cyclic voltammograms (CVs) were recorded under argon in acetonitrile solution containing 0.1 M
Bu,NPFg at a scan rate of 0.1 V/s at 20°C. All potential values are referred to SCE.

X-band EPR spectra were recorded on frozen solutions using a Bruker Elexsys 500E spectrometer
equipped with a Bruker ER 4116DM X band resonator, an Oxford Instrument continuous flow ESR
900 cryostat, and an Oxford ITC 503 temperature control system. Conditions: Microwave frequency
=9.63 GHz, microwave power = 1.0 mW, modulation amplitude = 8 Gauss, modulation frequency =
100 KHz, gain = 50 db, temperature = 90 K. Spectral simulations were done using the Bruker software
XSophe.

Stopped Flow absorption spectrophotometry was performed on a BiolLogic SFM-4000 coupled to a
J&M Tidas diode array spectrometer, with a two-syringe setup (one containing the iron complex, [Fe]
=2 mM, the other containing the oxidant). Experiments were at least triplicated for kinetic fits. Fits at
530 or 730 nm were performed using the BioKine software.

UV-visible. Electronic absorption spectra were recorded with a Varian Cary 60 spectrophotometer.

X-ray diffraction data for compound [(cyclenCB-CH,py)Fe"(OTf)](OTf) was collected by using a
VENTURE PHOTON100 CMOS Bruker diffractometer with Micro-focus luS source Cu Ka radiation. X-ray
diffraction data for compound [(cyclenCB-CH,py)Fe"(OMe)](OTf), was collected by using a Kappa X8
APPEX Il Bruker diffractometer with graphite-monochromated MoK, radiation (% = 0.71073 A). Crystals
were mounted on a CryolLoop (Hampton Research) with Paratone-N (Hampton Research) as
cryoprotectant and then flash frozen in a nitrogen-gas stream at 200 K or 100 K. For compounds, the
temperature of the crystal was maintained at the selected value by means of a 700 series Cryostream
cooling device to within an accuracy of +1 K. The data were corrected for Lorentz polarization, and
absorption effects. The structures were solved by direct methods using SHELXS-97[2 and refined
against F? by full-matrix least-squares techniques using SHELXL-2018B! with anisotropic displacement
parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map
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and introduced into the calculations as a riding model with isotropic thermal parameters. All
calculations were performed by using the Crystal Structure crystallographic software package

WINGX™,

The crystal data collection and refinement parameters are given in Table S1.

CCDC 2184867-2184868 contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge from the Cambridge Crystallographic Data Centre and
Fachinformationszentrum Karlsruhe via http://www.ccdc.cam.ac.uk/structures/.

Table S1. Crystallographic data and structure refinement details.

Compound [(cyclenCB-CH,py)Fe'(OTf)](OTf) [(cyclenCB-CH,py)Fe'(OMe)](OTf),
CcbC 2184867 2184868
Empirical Formula CigHyg F3Fe N5 O3S, CF; 05 S CigH3, FeNs O, 2(CF;059)
M, 657.44 688.47
Crystal size, mm3 0.07x0.22x0.24 0.01x0.12x0.17
Colour yellow green
Crystal system monoclinic monoclinic
Space group P2./c P2,/c
a, A 9.6666(4) 19.0222(9)
b, A 14.8989(6) 12.1505(6)
c, A 18.1683(8) 12.1044(5)
a, ° 90 90
B,° 99.9130(10) 100.596(2)
Y, ° 90 90
Cell volume, A3 2577.56(19) 2750.0(2)
Z;7 4;1 4;1
T, K 100(1) 200 (1)
Radiation type ; wavelength A CuKo; 1.54178 MoKa ; 0.71073
Fooo 1352 1420
M, mm™ 7.037 0.791
range, ° 3.860 - 66.663 1.999 - 30.535
Reflection collected 36732 62 137
Reflections unique 4561 8322
Rint 0.0433 0.0815
GOF 1.067 1.061
Refl. obs. (1>2(1)) 4421 4707
Parameters ; restraints 354;0 372;0
WR, (all data) 0.0665 0.2354
R value (1>2(/)) 0.0283 0.0743
Largest diff. peak and hole 0.467 ; -0.349 1.753 : 0.849

(e-.A3)




Table S2. Selected bond distances [A] and angles [deg]:

O

Compound / [(cyclenCB-CH,py)Fe'(OTf)](OTf) [(cyclenCB-CH,py)Fe'"(OMe)](OTf),
T(K) 100K 200K
Fe-N(1) 2.1368(15) 1.997(3)
Fe-N(2) 2.2202(16) 1.999(3)
Fe-N(3) 2.1581(16) 1.958(3)
Fe-N(4) 2.1916(16) 2.047(3)
Fe-N(5) 2.1759(16) 1.998(3)
Fe-O 2.1121(13) 1.838(3)
N(1)-Fe-N(2) 78.53(6) 86.31(15)
N(1)-Fe-N(3) 156.27(6) 170.60(14)
N(1)-Fe-N(4) 120.38(6) 102.89(15)
N(1)-Fe-N(5) 98.31(6) 94.36(14)
N(1)-Fe-O 89.87(6) 90.65(14)
N(2)-Fe-N(3) 77.86(6) 84.67(14)
N(2)-Fe-N(4) 154.41(6) 165.66(14
N(2)-Fe-N(5) 81.67(6) 85.73(14)
N(2)-Fe-O 104.10(6) 95.54(14)
N(3)-Fe-N(4) 82.83(6) 86.47(14)
N(3)-Fe-N(5) 80.51(6) 87.62(13)
N(3)-Fe-O 93.64(6) 87.59(13)
N(4)-Fe-N(5) 78.70(6) 82.64(13)
N(4)-Fe-O 93.66(6) 95.34(13)
N(5)-Fe-O 170.85(6) 174.90(13)

All esds are estimated using the value of the full covariance matrix of least square.




Synthesis of complex [(cyclenCB-CH,py)Fe"(OTf)](OTf)

In a glovebox under Ar, cyclenCB-CH,py (202 mg, 668 pumol) in 2 mL MeOH was added dropwise to a
solution of Fe'"OTf, (236 mg, 668 umol) in 3 mL MeOH. The resulting solution was stirred overnight.
The volume was reduced to 2 mL and excess diethylether (20 mL) was added, resulting in the
precipitation of a gum. After stirring overnight, the gum turned into a tan-yellowish powder that was
filtered and washed with diethylether (331 mg, 75%). Crystals suitable for X-ray diffraction were
obtained by slow diffusion of diethylether into a methanol solution of the complex in the glovebox.

Crystals of [(cyclenCB-CH,py)Fe"(OMe)](OTf),
Green crystals of [(cyclenCB-CH,py)Fe"'(OMe)](OTf), suitable for X-ray diffraction were obtained by

slow diffusion of diethylether into an aerated solution (exposed to air and kept on the bench in a
schlenk for two weeks) of [(cyclenCB-CH,py)Fe"(OTf)](OTf) in methanol.
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Figure S1. *H NMR spectrum (CDs;CN, 360 MHz, 300 K) of [(cyclenCB-CH,py)Fe'(OTf)](OTf).
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Figure S2. 'H NMR spectrum (CDsCN, 360 MHz, 300 K, wide spectral range) of [(cyclenCB-
CH,py)Fe"(OTf)](OTf).
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Figure S3. Comparison of the 'H NMR spectra (300 K) of [(cyclenCB-CH,py)Fe"(OTf)](OTf) (360 MHz,
CD;CN) and cyclenCB-CH,py (300 MHz, CDCl;). The macrocycle and pyridyl resonances appear
downfield shifted with respect to the ligand, in line with the pentadentate binding of cyclenCB-CH,py
observed in the solid state. The diamagnetic nature of the complex suggests that triflate has been

substituted by acetonitrile in solution.
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Figure S4. HR-ESI-MS spectrum of [(cyclenCB-CH,py)Fe"(OTf)](OTf). m/z = 179.5880 (calcd. for
[(cyclenCB-CH,py)Fe"]?*: 179.5879, error = 0.6 ppm); m/z = 390.1933 (calcd. for [(cyclenCB-
CH,py)Fe'"(OMe)]?*: 390.1956, error = 5.8 ppm); m/z = 404.1729 (calcd. for [(cyclenCB-
CH,py)Fe'(formate)]**: 404.1749, error = 4.9 ppm); m/z = 421.1756 (calcd. for [(cyclenCB-
CH,py)Fe"(formate)(OH)]?*: 421.1776, error = 4.7 ppm). Formate was used as calibrant.
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Figure S5. UV-vis spectrum of [(cyclenCB-CH,py)Fe"(OTf)](OTf), 0.2 mM in MeCN (300 K).
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Figure S6. CV at a glassy carbon electrode of [(cyclenCB-CH,py)Fe"(OTf)](OTf) (C=2 mM) in MeCN (300
K). NBuyPF 0.1 M. WE: GC, CE: Pt, Ref: SCE. Couple at E;;, =0.71 V (AE = 100 mV) vs SCE is ascribed to
a Fe'/Fe" couple and the less reversible one at E;;; = -1.84 V (AE = 130 mV) vs SCE is ascribed to a
Fe'/Fe' couple.
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Figure S7. CVs at a glassy carbon electrode of [(cyclenCB-CH,py)Fe"(OTf)](OTf) (C =2 mM) in MeCN
(300 K), before and after addition of a/ 1or b/ 2 equiv. NBu,Cl. NBu,PFs 0.1 M. WE: GC, CE: Pt, Ref: SCE.
The initial couple at E;;; = 0.71 V (AE = 100 mV) vs SCE is ascribed to a (Ns)Fe"/"(MeCN)3*/2*, After
addition of 1 equiv. chloride, the couple at E;/, = 0.4 V (AE = 100 mV) is ascribed to (Ns)Fe"/'CI%/+. A
weaker (N,)Fe"'Cl,*/° couple is detected at E,° = 0.12 V, along with the reoxidation of Cl-bridged
dimeric species at E,¢ = -0.13 V. Upon addition of a 2" equiv. chloride, the amount of (N,)Fe"/'Cl,*/°
couple increases and the oxidation of dimeric species vanished, in line with the displacement of
equilibria towards (N,)Fe"Cl, in solution.
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Figure S8. Comparison of the *H NMR spectrum (360 MHz, 300 K) of [(cyclenCB-CH,py)Fe"(OTf)](OTf)
in the presence and absence of 1 equiv. HCIO,. For spectrum analysis purposes, the NMR spectra of
(cyclenCB-CH,py) (CDCl;), and (cyclenCB-CH,py) (CDsCN) in the presence of 1 or 5 equiv. HCIO, are
overlaid, allowing us to identify the resonances of protonated pyridines and CH,py protons. With 1
equiv. HCIO,, the macrocycle of (cyclenCB-CH,py) is protonated. With 5 equiv., pyridine is also
protonated.
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Figure S9. Change in absorbance of the UV-vis spectrum of [(cyclenCB-CH,py)Fe"(OTf)](OTf) after
addition of 1 equiv. HCIO, (MeCN, [Fe] =1 mM, 20°C).
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Figure S10. CV at a glassy carbon electrode of [(cyclenCB-CH,py)Fe'(OTf)](OTf) (C =2 mM) in MeCN
(300 K) upon addition of HCIO,. NBu,PF¢ 0.1 M. WE: GC, CE: Pt, Ref: SCE. Couple at E;;, =0.71V (AE =
100 mV) vs SCE is ascribed to a (Ns)Fe"(MeCN)/(Ns)Fe"(MeCN) couple and the one at at E;, = 1.0 V (AE
= 100 mV) vs SCE is ascribed to a (N,)Fe"(MeCN),/(N,)Fe"(MeCN), couple resulting from the
decoordination (protonation) of the pyridine. Note that a (N,)Fe"(MeCN)(OH)/(N,)Fe"(MeCN)(OH)
couple is expected to have E;;, around 0.7 V also (anion coordination induces a ca. 300 mV shift of the
potential). the wave around 0.7 V on the reverse scan could thus also correspond to the reduction of
a (N,)Fe"(MeCN)(OH) complex.
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Figure S11. Evolution of the UV-vis sectrum of [(cyclenCB-CH,py)Fe"(OTf)](OTf) (C =1 mM) in MeCN
(293 K), upon addition of 1.2 equiv. PhIO (a/) or 1.4 equiv. mCPBA (b/). Timetraces of the absorbances
at 430 nm (c/) and 730 nm (d/) for these two experiments.



0.22 T

|

| |

\ h 1 | h 2
1 *} phase 1 025 phase

|

|

B 0.14
A =550 nm
B 0.12

0.1

500 600 700 800 900
wavelength (nm)

0 20 40 60 80 100 120 140
time (s)

wavelength (nm)

Figure S12. Evolution of the UV-vis spectrum of [(cyclenCB-CH,py)Fe"(OTf)](OTf) (C =1 mM) in MeCN

(293 K), upon addition of 20 equiv. H,0, : growth at 550 nm (phase 1, a/), decay at 550 nm (phase 2,
b/) and timetrace at 550 nm (c/).
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Figure S13. UV-vis spectrum of a solution of [(cyclenCB-CH,py)Fe"(OTf)](OTf) in MeCN ([Fe] =1 mM,
0.1 M NBu,4PFg, 293 K) oxidized by electrolysis.
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Figure S14. X-band EPR spectra (90 K) of the species accumulated upon mixing [(cyclenCB-
CH,py)Fe"(OTf)](OTf) 1 mM in MeCN with 2 or 20 equ. H,0, at 293 K after a 9 s delay (maximum of

accumulation of the 550 nm chromophore, a/). Evolution of the X-band EPR spectra (90 K) of the
[(cyclenCB-CH,py)Fe"(OTf)](OTf) / H,O, 1:20 mixture after successive thawing/freezing cycles (b/).
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Figure S15. Low spin section of the X-band EPR spectra (90 K) of the species accumulated upon mixing
[(cyclenCB-CH,py)Fe'(OTf)](OTf) 1 mM in MeCN with 20 equiv. H,0, at 293 K after a 9 s delay
(maximum of accumulation of the 550 nm chromophore, plain red line) and simulated spectrum (black
dashed line) for a S=1/2 species with parameters g = 2.414 2.240 1.888.
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Figure S16. Top: X-band EPR spectra (90 K) of [(cyclenCB-CH,py)Fe'"'(OMe)](OTf), in MeOH (left) or
MeCN (right) with corresponding simulations:g = 2.35, 2.18, 1.92 in MeOH; g = 2.38, 2.21, 1.91 in
MeCN. The EPR signhature is ascribed to [(cyclenCB-CH,py)Fe"(OMe)]?*, the slight shift in the
parameters being ascribed to the protic nature of methanol which can develop hydrogen bonds with
the methoxo ligand, unlike MeCN. Bottom: UV-vis spectra of [(cyclenCB-CH,py)Fe"'(OMe)](OTf),
crystals in MeOH (red) or MeCN (blue) (293 K).
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Figure S17. X-band EPR spectra (90 K) of [(cyclenCB-CH,py)Fe"(OTf)](OTf) in the presence of 20 equiv.
H,0, (pink) and [(cyclenCB-CH,py)Fe'"(OMe)](OTf), in the presence of 100 equiv. H,0, (green) in
MeOH. The main species correspond to [(cyclenCB-CH,py)Fe"(OMe)]?* . The pink stars indicate signals
from [(cyclenCB-CH,py)Fe"(OH)]?>* and the green circles signals from [(cyclenCB-CH,py)Fe"(OOH)]%*.
The overall LS signal for the Fe(ll) complex + 20 H,0, represents around 70% of the Fe content. The LS
signal for the Fe(lll) complex + 100 H,0, represents 75% of the Fe content.
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Figure S18. X-band EPR spectra (90 K) of [(cyclenCB-CH,py)Fe"(OTf)](OTf) in the presence of 20 equiv.
H,0, (green) in MeOH. (Left) With isolated simulations of A = (N;)Fe"(OMe) (g = 2.35 2.177 1.92) and
B = (N5)Fe"(OH) (g = 2.40 2.21 1.91) and (Right) with the sum spectrum of both contributions (A + 0.1

B) (pink).
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Figure S19. X-band EPR spectra (90 K) of [(cyclenCB-CH,py)Fe"'(OMe)](OTf), in the presence of 100
equiv. H,0, (green) in MeOH. With a/ isolated simulations of A = (N5)Fe"(OMe) (g = 2.35 2.177 1.92)

and B = (Ns)Fe"(OOH) (g = 2.19 2.15 1.955) and (b/) with the sum spectrum of both contributions (A +
0.1 B) (pink).
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Figure S20. Low spin section of the X-band EPR spectra (90 K, MeCN) of the species accumulated upon
addition of 1 equiv. HCIO, to a [(cyclenCB-CH,py)Fe"(OTf)](OTf) / H,0, 1:20 mixture (plain red line)

and simulated spectrum for a S =1/2 species with parameters g = 2.580, 2.475, 1.710. The overall LS
signal represents around 72% of the Fe content.
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Figure S21. Evolution of the UV-vis spectrum (MeCN, 293 K, [Fe] = 1 mM) of a [(cyclenCB-
CH,py)Fe"(OTf)](OTf) / H,0, 1:20 mixture solution (aged 9 s) upon addition of 1 equiv. HCIO, (Top).
Timetraces of the absorbances at 560, 480, and 450 nm (Bottom).
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Figure S22. X-band EPR spectra (90 K) [(cyclenCB-CH,py)Fe"(OMe)](OTf), upon addition of different
amounts of HCIO, in MeCN (a/). Simulation of the EPR spectrum at the end of the titration with
parameters g = 2.565 2.465 1.725 (b/). Green circles indicates the signals of remaining [(cyclenCB-
CH,py)Fe"(OMe)]?* and * a residual signal of the EPR cavity. The LS signal represents 97% of Fe content.
Addition of 0.5 eq., 1 eq. and 1.5 eq HCIO, lead respectively to LS signals representing 63, 58, 47 % of
the Fe content respectively. After addition of H,0, to this solution, it represents 42%.
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Figure S23. X-band EPR spectra (90 K) [(cyclenCB-CH,py)Fe"'(OMe)](OTf), and 1.5 equiv. HCIO, before
(black) and after (red) addition of 100 eq. H,0, in MeCN. The LS signal after addition of 1.5 eq HCIO,

represents 47 % of the Fe content. After addition of H,0, to this solution, it represents 42% of the Fe
content.
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Figure S24. X-band EPR spectra (90 K) [(cyclenCB-CH,py)Fe"(OMe)](OTf), upon addition of 1.5 equiv.

HCIO, and 100 equiv. H,0, in MeCN (green) and simulation (pink) with parameters g = 2.58 2.47 1.71.
* a residual signal of the EPR cavity.
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Scheme S1. Proposed steps for the formation of [(N,)Fe"(OOH)]** from either [(Ns)Fe'(MeCN)]** or
[(Ns)Fe"'(OMe)]?*. g factors are indicated for species detected.

| MeOH
LFe"(OMe)(OTf) X

L+1 HCIO4

b/ MeOH

2400 2600 2800 3000 3200 3400 3600 3800
Field [G]

LFe”‘(OMe)(OTf)Z 1
+1HCIO,
+100H,0,

I I I
2500 3000 3500

LFe"'(OMe)(OTf)2

L+ 1HCIO,
+100H,0,

-+ 1HCIO,

+100 H.O, |

4000
Field [G]
d/ ‘ MeOH
L | LFe'(OMe)(OTf), |
|
;’\ n +1HCIo,
H I +100 H,0,
|~ +1HCIO,
[ '}

2400 2600 2800 3000 3200 3400 3600 3800
Field [G]

|
|

Field [G]

2000 2400 2800 3200 3600 4000 4400

Figure S25. X-band EPR spectra (90 K) [(cyclenCB-CH,py)Fe"(OMe)](OTf), upon successive additions of
HCIO, and H,0, in MeOH. The initial LS signal represents 75% of the Fe content. After addition of 1 eq.
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HCIO,, it drops to 62 %. The first addition of H,0, lowers it to 52%. Another aliquot of acid raises it to
66% and the second addition of H,0, lowers it to 52%.
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Figure S26. X-band EPR spectrum (90 K, MeOH) of a solution of [(cyclenCB-CH,py)Fe"'(OMe)](OTf),, 2
equiv. HCIO,4, and 200 equiv. H,0,, (green trace) and (a/) simulations (pink and yellow traces) with two
sets of signals g = 2.55 2.47 1.73 ((N,)Fe"(OOH)(MeOH) = species A) and g = 2.35 2.177 1.92
((Ns5)Fe"(OMe) = species B), and (b/) summed simulation of the two species (B + 0.1 A).
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