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Materials and methods
Solvents and chemicals were of reagent grade and were distilled prior to use. H2O2 35% in water was 
used. Ligand cyclenCB-CH2py (Chart 1) was synthesized according to a literature procedure.[1]

ESI mass spectrometry analyses were performed with a Bruker MicroTOFq spectrometer using a 
sodium formate calibrant. Solvents: Methanol HPLC LC/MS (Carlo-Erba), Acetonitrile HPLC (Carlo-
Erba).

NMR spectra were recorded on Bruker 250 MHz, 300 MHz, and 360 MHz spectrometers. 

Cyclic Voltammetry experiments were performed using an Autolab potentiostat and a conventional 
three electrode device (C working electrode, SCE reference electrode, Pt counter electrode). The 
electrolyte salt (TBAPF6) was recrystallized and all the glassware was dried at 110°C before use. All 
cyclic voltammograms (CVs) were recorded under argon in acetonitrile solution containing 0.1 M 
Bu4NPF6 at a scan rate of 0.1 V/s at 20°C. All potential values are referred to SCE. 

X-band EPR spectra were recorded on frozen solutions using a Bruker Elexsys 500E spectrometer 
equipped with a Bruker ER 4116DM X band resonator, an Oxford Instrument continuous flow ESR 
900 cryostat, and an Oxford ITC 503  temperature control system.  Conditions: Microwave frequency 
= 9.63 GHz, microwave power = 1.0 mW, modulation amplitude = 8 Gauss, modulation frequency = 
100 KHz, gain = 50 db, temperature = 90 K. Spectral simulations were done using the Bruker software 
XSophe.

Stopped Flow absorption spectrophotometry was performed on a BioLogic SFM-4000 coupled to a 
J&M Tidas diode array spectrometer, with a two-syringe setup (one containing the iron complex, [Fe] 
= 2 mM, the other containing the oxidant). Experiments were at least triplicated for kinetic fits. Fits at 
530 or 730 nm were performed using the BioKine software. 

UV-visible. Electronic absorption spectra were recorded with a Varian Cary 60 spectrophotometer.

X-ray diffraction data for compound [(cyclenCB-CH2py)FeII(OTf)](OTf) was collected by using a 
VENTURE PHOTON100 CMOS Bruker diffractometer with Micro-focus IuS source Cu Kα radiation. X-ray 
diffraction data for compound [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 was collected by using a Kappa X8 
APPEX II Bruker diffractometer with graphite-monochromated MoK radiation (  = 0.71073 Å). Crystals 
were mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as 
cryoprotectant and then flash frozen in a nitrogen-gas stream at 200 K or 100 K. For compounds, the 
temperature of the crystal was maintained at the selected value by means of a 700 series Cryostream 
cooling device to within an accuracy of ±1 K. The data were corrected for Lorentz polarization, and 
absorption effects. The structures were solved by direct methods using SHELXS-97[2] and refined 
against F2 by full-matrix least-squares techniques using SHELXL-2018[3] with anisotropic displacement 
parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map 
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and introduced into the calculations as a riding model with isotropic thermal parameters. All 
calculations were performed by using the Crystal Structure crystallographic software package 
WINGX[4].

The crystal data collection and refinement parameters are given in Table S1.

CCDC 2184867-2184868 contains the supplementary crystallographic data for this paper. These data 
can be obtained free of charge from the Cambridge Crystallographic Data Centre and 
Fachinformationszentrum Karlsruhe via http://www.ccdc.cam.ac.uk/structures/.

Table S1. Crystallographic data and structure refinement details.

Compound [(cyclenCB-CH2py)FeII(OTf)](OTf) [(cyclenCB-CH2py)FeIII(OMe)](OTf)2

CCDC 2184867 2184868

Empirical Formula C18 H29 F3 Fe N5 O3 S, C F3 O3 S C18 H32 Fe N5 O, 2(C F3 O3 S)

Mr 657.44 688.47

Crystal size, mm3 0.07 x 0.22 x 0.24 0.01 x 0.12 x 0.17

Colour yellow green

Crystal system monoclinic monoclinic

Space group P 21/c P 21/c

a, Å 9.6666(4) 19.0222(9)

b, Å 14.8989(6) 12.1505(6)

c, Å 18.1683(8) 12.1044(5)

α, ° 90 90

β, ° 99.9130(10) 100.596(2)

γ, ° 90 90

Cell volume, Å3 2577.56(19) 2750.0(2)

Z ; Z’ 4 ; 1 4 ; 1

T, K 100(1) 200 (1)

Radiation type ; wavelength Å CuKα; 1.54178 MoKα ; 0.71073

F000 1352 1420

µ, mm–1 7.037 0.791

range, ° 3.860 - 66.663 1.999 - 30.535

Reflection collected 36 732 62 137

Reflections unique 4 561 8 322

Rint 0.0433 0.0815

GOF 1.067 1.061

Refl. obs. (I>2(I)) 4 421 4 707

Parameters ; restraints 354 ; 0 372 ; 0

wR2 (all data) 0.0665 0.2354

R value (I>2(I)) 0.0283 0.0743

Largest diff. peak and hole
(e-.Å-3)

0.467 ; -0.349 1.753 ; -0.849
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Table S2. Selected bond distances [Å] and angles [deg]: 

Compound / 
T(K)

[(cyclenCB-CH2py)FeII(OTf)](OTf) 
100K

[(cyclenCB-CH2py)FeIII(OMe)](OTf)2 
200K

Fe-N(1) 2.1368(15) 1.997(3)
Fe-N(2) 2.2202(16) 1.999(3)
Fe-N(3) 2.1581(16) 1.958(3)
Fe-N(4) 2.1916(16) 2.047(3)
Fe-N(5) 2.1759(16) 1.998(3)

Fe-O 2.1121(13) 1.838(3)
N(1)-Fe-N(2) 78.53(6) 86.31(15)
N(1)-Fe-N(3) 156.27(6) 170.60(14)
N(1)-Fe-N(4) 120.38(6) 102.89(15)
N(1)-Fe-N(5) 98.31(6) 94.36(14)

N(1)-Fe-O 89.87(6) 90.65(14)
N(2)-Fe-N(3) 77.86(6) 84.67(14)
N(2)-Fe-N(4) 154.41(6) 165.66(14
N(2)-Fe-N(5) 81.67(6) 85.73(14)

N(2)-Fe-O 104.10(6) 95.54(14)
N(3)-Fe-N(4) 82.83(6) 86.47(14)
N(3)-Fe-N(5) 80.51(6) 87.62(13)

N(3)-Fe-O 93.64(6) 87.59(13)
N(4)-Fe-N(5) 78.70(6) 82.64(13)

N(4)-Fe-O 93.66(6) 95.34(13)
N(5)-Fe-O 170.85(6) 174.90(13)
All esds are estimated using the value of the full covariance matrix of least square.



4

Synthesis of complex [(cyclenCB-CH2py)FeII(OTf)](OTf)

In a glovebox under Ar, cyclenCB-CH2py (202 mg, 668 µmol) in 2 mL MeOH was added dropwise to a 
solution of FeIIOTf2 (236 mg, 668 µmol) in 3 mL MeOH. The resulting solution was stirred overnight. 
The volume was reduced to 2 mL and excess diethylether (20 mL) was added, resulting in the 
precipitation of a gum. After stirring overnight, the gum turned into a tan-yellowish powder that was 
filtered and washed with diethylether (331 mg, 75%). Crystals suitable for X-ray diffraction were 
obtained by slow diffusion of diethylether into a methanol solution of the complex in the glovebox.

Crystals of [(cyclenCB-CH2py)FeIII(OMe)](OTf)2

Green crystals of [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 suitable for X-ray diffraction were obtained by 
slow diffusion of diethylether into an aerated solution (exposed to air and kept on the bench in a 
schlenk for two weeks) of [(cyclenCB-CH2py)FeII(OTf)](OTf) in methanol.

Figure S1. 1H NMR spectrum (CD3CN, 360 MHz, 300 K) of [(cyclenCB-CH2py)FeII(OTf)](OTf). 
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Figure S2. 1H NMR spectrum (CD3CN, 360 MHz, 300 K, wide spectral range) of [(cyclenCB-
CH2py)FeII(OTf)](OTf). 

Figure S3. Comparison of the 1H NMR spectra (300 K) of [(cyclenCB-CH2py)FeII(OTf)](OTf) (360 MHz, 
CD3CN) and cyclenCB-CH2py (300 MHz, CDCl3). The macrocycle and pyridyl resonances appear 
downfield shifted with respect to the ligand, in line with the pentadentate binding of cyclenCB-CH2py 
observed in the solid state. The diamagnetic nature of the complex suggests that triflate has been 
substituted by acetonitrile in solution.
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Figure S4. HR-ESI-MS spectrum of [(cyclenCB-CH2py)FeII(OTf)](OTf). m/z = 179.5880 (calcd. for 
[(cyclenCB-CH2py)FeII]2+: 179.5879, error = 0.6 ppm); m/z = 390.1933 (calcd. for [(cyclenCB-
CH2py)FeII(OMe)]2+: 390.1956, error = 5.8 ppm); m/z = 404.1729 (calcd. for [(cyclenCB-
CH2py)FeII(formate)]2+: 404.1749, error = 4.9 ppm); m/z = 421.1756 (calcd. for [(cyclenCB-
CH2py)FeIII(formate)(OH)]2+: 421.1776, error = 4.7 ppm). Formate was used as calibrant.
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Figure S5. UV-vis spectrum of [(cyclenCB-CH2py)FeII(OTf)](OTf), 0.2 mM in MeCN (300 K).
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Figure S6. CV at a glassy carbon electrode of [(cyclenCB-CH2py)FeII(OTf)](OTf) (C =2 mM) in MeCN (300 
K). NBu4PF6 0.1 M. WE: GC, CE: Pt, Ref: SCE. Couple at E1/2 = 0.71 V (E = 100 mV) vs SCE is ascribed to 
a FeIII/FeII couple and the less reversible one at E1/2 = -1.84 V (E = 130 mV) vs SCE is ascribed to a 
FeII/FeI couple.
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Figure S7. CVs at a glassy carbon electrode of [(cyclenCB-CH2py)FeII(OTf)](OTf) (C =2 mM) in MeCN 
(300 K), before and after addition of a/ 1or b/ 2 equiv. NBu4Cl. NBu4PF6 0.1 M. WE: GC, CE: Pt, Ref: SCE. 
The initial couple at E1/2 = 0.71 V (E = 100 mV) vs SCE is ascribed to a (N5)FeIII/II(MeCN)3+/2+. After 
addition of 1 equiv. chloride, the couple at E1/2 = 0.4 V (E = 100 mV) is ascribed to (N5)FeIII/IICl2+/+. A 
weaker (N4)FeIII/IICl2+/0 couple is detected at Ep

c = 0.12 V, along with the reoxidation of Cl-bridged 
dimeric species at Ep

c = -0.13 V. Upon addition of a 2nd equiv. chloride, the amount of (N4)FeIII/IICl2+/0 
couple increases and the oxidation of dimeric species vanished, in line with the displacement of 
equilibria towards (N4)FeIICl2 in solution.
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Figure S8. Comparison of the 1H NMR spectrum (360 MHz, 300 K) of [(cyclenCB-CH2py)FeII(OTf)](OTf) 
in the presence and absence of 1 equiv. HClO4. For spectrum analysis purposes, the NMR spectra of 
(cyclenCB-CH2py) (CDCl3), and (cyclenCB-CH2py) (CD3CN) in the presence of 1 or 5 equiv. HClO4 are 
overlaid, allowing us to identify the resonances of protonated pyridines and CH2py protons. With 1 
equiv. HClO4, the macrocycle of (cyclenCB-CH2py) is protonated. With 5 equiv., pyridine is also 
protonated.
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Figure S9. Change in absorbance of the UV-vis spectrum of [(cyclenCB-CH2py)FeII(OTf)](OTf) after 
addition of 1 equiv. HClO4 (MeCN, [Fe] = 1 mM, 20°C).
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Figure S10. CV at a glassy carbon electrode of [(cyclenCB-CH2py)FeII(OTf)](OTf) (C =2 mM) in MeCN 
(300 K) upon addition of HClO4. NBu4PF6 0.1 M. WE: GC, CE: Pt, Ref: SCE. Couple at E1/2 = 0.71 V (E = 
100 mV) vs SCE is ascribed to a (N5)FeIII(MeCN)/(N5)FeII(MeCN) couple and the one at at E1/2 = 1.0 V (E 
= 100 mV) vs SCE is ascribed to a (N4)FeIII(MeCN)2/(N4)FeII(MeCN)2 couple resulting from the 
decoordination (protonation) of the pyridine. Note that a (N4)FeIII(MeCN)(OH)/(N4)FeII(MeCN)(OH) 
couple is expected to have E1/2 around 0.7 V also (anion coordination induces a ca. 300 mV shift of the 
potential). the wave around 0.7 V on the reverse scan could thus also correspond to the reduction of 
a (N4)FeIII(MeCN)(OH) complex.
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Figure S11. Evolution of the UV-vis sectrum of [(cyclenCB-CH2py)FeII(OTf)](OTf) (C =1 mM) in MeCN 
(293 K), upon addition of 1.2 equiv. PhIO (a/) or 1.4 equiv. mCPBA (b/). Timetraces of the absorbances 
at 430 nm (c/) and 730 nm (d/) for these two experiments.
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Figure S12. Evolution of the UV-vis spectrum of [(cyclenCB-CH2py)FeII(OTf)](OTf) (C =1 mM) in MeCN 
(293 K), upon addition of 20 equiv. H2O2 : growth at 550 nm (phase 1, a/), decay at 550 nm (phase 2, 
b/) and timetrace at 550 nm (c/).
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Figure S13. UV-vis spectrum of a solution of [(cyclenCB-CH2py)FeII(OTf)](OTf) in MeCN ([Fe] = 1 mM, 
0.1 M NBu4PF6, 293 K) oxidized by electrolysis.
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Figure S14. X-band EPR spectra (90 K) of the species accumulated upon mixing [(cyclenCB-
CH2py)FeII(OTf)](OTf) 1 mM in MeCN with 2 or 20 equ. H2O2 at 293 K after a 9 s delay (maximum of 
accumulation of the 550 nm chromophore, a/). Evolution of the X-band EPR spectra (90 K) of the 
[(cyclenCB-CH2py)FeII(OTf)](OTf) / H2O2 1:20 mixture after successive thawing/freezing cycles (b/).



11

2500 3000 3500 4000
Field (G)

Figure S15. Low spin section of the X-band EPR spectra (90 K) of the species accumulated upon mixing 
[(cyclenCB-CH2py)FeII(OTf)](OTf) 1 mM in MeCN with 20 equiv. H2O2 at 293 K after a 9 s delay 
(maximum of accumulation of the 550 nm chromophore, plain red line) and simulated spectrum (black 
dashed line) for a S=1/2 species with parameters g = 2.414 2.240 1.888.
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Figure S16. Top: X-band EPR spectra (90 K) of [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 in MeOH (left) or 
MeCN (right) with corresponding simulations:g = 2.35, 2.18, 1.92 in MeOH; g = 2.38, 2.21, 1.91 in 
MeCN. The EPR signature is ascribed to [(cyclenCB-CH2py)FeIII(OMe)]2+, the slight shift in the 
parameters being ascribed to the protic nature of methanol which can develop hydrogen bonds with 
the methoxo ligand, unlike MeCN. Bottom: UV-vis spectra of [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 
crystals in MeOH (red) or MeCN (blue) (293 K).
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Figure S17. X-band EPR spectra (90 K) of [(cyclenCB-CH2py)FeII(OTf)](OTf) in the presence of 20 equiv. 
H2O2 (pink) and [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 in the presence of 100 equiv. H2O2 (green) in 
MeOH. The main species correspond to [(cyclenCB-CH2py)FeIII(OMe)]2+ . The pink stars indicate signals 
from [(cyclenCB-CH2py)FeIII(OH)]2+ and the green circles signals from [(cyclenCB-CH2py)FeIII(OOH)]2+. 
The overall LS signal for the Fe(II) complex + 20 H2O2 represents around 70% of the Fe content. The LS 
signal for the Fe(III) complex + 100 H2O2 represents 75% of the Fe content.
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Figure S18. X-band EPR spectra (90 K) of [(cyclenCB-CH2py)FeII(OTf)](OTf) in the presence of 20 equiv. 
H2O2 (green) in MeOH. (Left) With isolated simulations of A = (N5)FeIII(OMe) (g = 2.35 2.177 1.92) and 
B = (N5)FeIII(OH) (g = 2.40 2.21 1.91) and (Right) with the sum spectrum of both contributions (A + 0.1 
B) (pink).
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Figure S19. X-band EPR spectra (90 K) of [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 in the presence of 100 
equiv. H2O2 (green) in MeOH. With a/ isolated simulations of A = (N5)FeIII(OMe) (g = 2.35 2.177 1.92) 
and B = (N5)FeIII(OOH) (g = 2.19 2.15 1.955) and (b/) with the sum spectrum of both contributions (A + 
0.1 B) (pink).
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Figure S20. Low spin section of the X-band EPR spectra (90 K, MeCN) of the species accumulated upon 
addition of 1 equiv. HClO4 to a [(cyclenCB-CH2py)FeII(OTf)](OTf) / H2O2  1:20 mixture (plain red line) 
and simulated spectrum for a S =1/2 species with parameters g = 2.580, 2.475, 1.710. The overall LS 
signal represents around 72% of the Fe content. 
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Figure S21. Evolution of the UV-vis spectrum (MeCN, 293 K, [Fe] = 1 mM) of a [(cyclenCB-
CH2py)FeII(OTf)](OTf) / H2O2 1:20 mixture solution (aged 9 s) upon addition of 1 equiv. HClO4 (Top). 
Timetraces of the absorbances at 560, 480, and 450 nm (Bottom). 
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Figure S22. X-band EPR spectra (90 K) [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 upon addition of different 
amounts of HClO4 in MeCN (a/). Simulation of the EPR spectrum at the end of the titration with 
parameters g = 2.565 2.465 1.725 (b/). Green circles indicates the signals of remaining [(cyclenCB-
CH2py)FeIII(OMe)]2+ and * a residual signal of the EPR cavity. The LS signal represents 97% of Fe content. 
Addition of 0.5 eq., 1 eq. and 1.5 eq HClO4 lead respectively to LS signals representing 63, 58, 47 % of 
the Fe content respectively. After addition of H2O2 to this solution, it represents 42%.
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Figure S23. X-band EPR spectra (90 K) [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 and 1.5 equiv. HClO4 before 
(black) and after (red) addition of 100 eq. H2O2 in MeCN. The LS signal after addition of 1.5 eq HClO4 
represents 47 % of the Fe content. After addition of H2O2 to this solution, it represents 42% of the Fe 
content.
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Figure S24. X-band EPR spectra (90 K) [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 upon addition of 1.5 equiv. 
HClO4 and 100 equiv. H2O2 in MeCN (green) and simulation (pink) with parameters g = 2.58 2.47 1.71. 
* a residual signal of the EPR cavity.
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Scheme S1. Proposed steps for the formation of [(N4)FeIII(OOH)]2+ from either [(N5)FeII(MeCN)]2+ or 
[(N5)FeIII(OMe)]2+. g factors are indicated for species detected.
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Figure S25. X-band EPR spectra (90 K) [(cyclenCB-CH2py)FeIII(OMe)](OTf)2 upon successive additions of 
HClO4 and H2O2 in MeOH. The initial LS signal represents 75% of the Fe content. After addition of 1 eq. 
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HClO4, it drops to 62 %. The first addition of H2O2 lowers it to 52%. Another aliquot of acid raises it to 
66% and the second addition of H2O2 lowers it to 52%.
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Figure S26. X-band EPR spectrum (90 K, MeOH) of a solution of [(cyclenCB-CH2py)FeIII(OMe)](OTf)2, 2 
equiv. HClO4, and 200 equiv. H2O2, (green trace) and (a/) simulations (pink and yellow traces) with two 
sets of signals g = 2.55 2.47 1.73 ((N4)FeIII(OOH)(MeOH) = species A) and g = 2.35 2.177 1.92 
((N5)FeIII(OMe) = species B), and (b/) summed simulation of the two species (B + 0.1 A).
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