Supplementary Information

Porphyrin Metal-Organic Frameworks with Bilayer and Pillar-layered Frameworks for Third-order Nonlinear Optical Properties

Ziyi Zhu ${ }^{\text {a }}$, Zirui Wang ${ }^{\text {a,b }}$, Qiao-Hong Lia ${ }^{\text {a }}$, Zhizhou Ma ${ }^{\text {a }}$, Fei Wanga*, and Jian Zhang ${ }^{\text {a* }}$
${ }^{\text {a }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
${ }^{\text {b }}$ School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. E-mail: wangfei04@,fjirsm.ac.cn.

1. Experimental Section

The S,S-BED was synthesized according to our former work. All other chemicals were commercially purchased and directly used without further purification. Fourier transform infrared (FT-IR) spectra were recorded with a Spectrum One FT-IR Spectrometer in the 400-4000 cm-1 range. Thermogravimetric analysis (TGA) data were carried out in an N 2 atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ on a STA 449F3 integration thermal analyzer. The UV-Vis (UV) absorption spectra data were carried out using Lambda-950 UV-Vis spectrophotometer. Powder X-ray diffraction (PXRD) data were collected on a Rigaku Mini Flex II diffractometer using CuK α radiation ($\lambda=$ $1.54056 \AA$) in the 2θ range of $5-50^{\circ}$ with a scanning rate of $10^{\circ} \mathrm{min}-1$. The AFM images were recorded with a Bruker Dimension ICON. X-ray photoelectron spectroscopy (XPS) spectra for the samples were recorded by using an ESCALAB250Xi. Transmission electron microscope (TEM) images recorded for the samples were used JEM-2010F.

1.1 Synthesis of $\mathbf{O H}-$ opd

Synthesis of OH-opd: $10.8 \mathrm{~g}, 0.1 \mathrm{~mol}$ of o-phenylenediamine, $8.0 \mathrm{~g}, 0.054 \mathrm{~mol}$ of L-malic acid and $4 \mathrm{~mol} / \mathrm{L}, 100 \mathrm{ml}$ of hydrochloric acid were mixed in a round bottom flask at room temperature and stirred for about 5 minutes, then heated to reflux in an oil bath at $115^{\circ} \mathrm{C}$ for 9 hours. The reaction was dark green, and after standing overnight,
the green protonated chloride crystalline salt was formed, filtered until drained, and the precipitate was filtered out into a 500 mL round bottom flask with 100 mL of water and 0.3 g of activated carbon (heated to $100^{\circ} \mathrm{C}$ for complete dissolution), refluxed for two hours, filtered while hot, and the filtrate was removed and adjusted to $\mathrm{pH} 8-9$ with aqueous sodium hydroxide, filtered, washed and dried to obtain the sample (yield: 45%, Calculation based on o-phenylenediamine). ${ }^{1}$

Scheme S1. The synthesis of OH-opd ligands

1.2 Synthesis of PMOF-1

$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(80.0 \mathrm{mg}, 0.42 \mathrm{mmol})$, S,S-BED ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$) and tetracarboxyphenylporphyrin (TCPP, $50.0 \mathrm{mg}, 0.063 \mathrm{mmol}$) dissolved in a mixed solvent of 3 mL DEF, 2 mL 1,4-Dioxane and $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were placed in a 20 mL vial. The sample was then heated at $100^{\circ} \mathrm{C}$ for 6 days and then cooled to room temperature. After washing with ethanol, red crystals were obtained (yield about 34.0% based on ТСРР).

1.3 Synthesis of PMOF-2

$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(80.0 \mathrm{mg}, 0.42 \mathrm{mmol})$, S,S-BED ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$) and tetracarboxyphenylporphyrin (TCPP, $50.0 \mathrm{mg}, 0.063 \mathrm{mmol}$) dissolved in a mixed solvent of 3 mL DMF, 2 mL 1,4-Dioxane and $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were placed in a 20 mL vial. The sample was then heated at $100^{\circ} \mathrm{C}$ for 5 days and then cooled to room temperature. After washing with Stock solution, red crystals were obtained (yield about 31.0% based on TCPP).

1.4 Prepare of MOFs dispersed PDMS

PDMS glass were fabricated using Sylgard 184 (Dow Corning) by thoroughly mixing 10 parts base to part curing agent. The MOFs crystals were stripped into MOFs nanoblock and were mixed with the PDMS solution to form MOFs dispersed PDMS suspension. And then, the mixture suspension was added into a template and then put
the template into a vacuum oven at $60^{\circ} \mathrm{C}$ for 5 hours. Last, the transparant and flexible MOFs/PDMS glasses were obtained. ${ }^{2}$

1.5 Z-scan measurements

The nonlinear optical properties of the PMOFs were evaluated using the Z-scan technique. The excitation light source was an Nd:YAG laser with a repetition rate of 5 Hz . The laser pulses (period, 5 ns ; wavelength, 532 nm) were split into two beams with a mirror. The pulse energies at the front and back of the samples were monitored using energy detectors 1 and 2 . All of the measurements were conducted at room temperature. The sample was mounted on a computer-controlled translation stage that shifted each sample along the Z -axis.

1.6 Calculation of the nonlinear optical parameters

The imaginary parts of the third-order susceptibility $\left(\operatorname{Im} \chi^{(3)}\right)$ and the real parts of thirdorder susceptibility ($\operatorname{Re} \chi^{3}$) were determined through relations:

$$
\begin{aligned}
& \operatorname{lm} \chi^{(3)}(e s u)=\frac{c^{2} n_{0}^{2} \beta(m / W)}{240 \pi^{2} \omega} \\
& \operatorname{Re\chi ^{(3)}(esu)}=\frac{c n_{0}^{2} n_{2}\left(m^{2} / W\right)}{120 \pi^{2}}
\end{aligned}
$$

Where ω is angular frequency of the incident wavelength, β is the nonlinear absorption coefficient, n_{2} is the nonlinear refractive index parameter, c is the speed of light in vacuum, λ is the wavelength of the laser pulse and $n 0$ is the linear refractive index, respectively.

The absolute value of the third-order NLO susceptibility $\left(\chi^{\beta 3}\right)$ of the ZnTCPP were determined according to the following relations:
$\left|\chi^{(3)}\right|=\sqrt{\left|m \chi^{(3)}\right|^{2}+\left|l m \chi^{(3)}\right|^{2}}$

The relationship of the sample transmission and input laser intensity for a spatially Gaussian beam could be plotted from the open-aperture Z-scan curve. From the input
laser pulse energy $E_{\text {in }}$ and beam radius $\omega(z)$, the light fluence $F_{\text {in }}(z)$ at any position could be obtained. $F_{\text {in }}(z)$ was defined as:

$$
F_{\text {in }}(z)=\frac{4 E_{\text {in }} \sqrt{\ln 2}}{\pi^{\frac{3}{2}} \omega(z)^{2}}
$$

Where $\omega(\mathrm{z})$ was defined as:
$\omega(Z)=\frac{\omega_{0}}{\left[1+\left(\frac{z}{z_{0}}\right)^{2}\right]-0.5}$
where ω_{0} and z_{0} are the light beam radius and the Rayleigh range, respectively, and z_{0} was defined as:
$z_{0}=\frac{k \omega_{0}^{2}}{2}$

Where k was defined as:
$k=\frac{2 \pi}{\lambda}$
The curve of output fluence versus input fluence in Figure 4(b) was plotted from Figure 4(c).

The equation fits for the nonlinear adsorption coefficient β as follows:

$$
\begin{aligned}
& T(Z, S=1)=\frac{1}{\pi^{\frac{1}{2}}(Z, 0)} \int_{-\infty}^{\infty} \ln \left[1+q_{0}(Z, 0) e^{-r^{2}}\right] d r \\
& q_{0}(Z, 0)=\beta I_{0} L_{e f f} \\
& L_{e f f}=\frac{1-e^{-\alpha l}}{\alpha}
\end{aligned}
$$

In these equations, I_{0} is the on-axis peak intensity at the focus $(\mathrm{Z}=0)$, $L_{\text {eff }}$ is the effective thickness of the sample, α is the linear absorption coefficient, and l is the sample thickness.

1.7 Photocurrent measurement

We prepared the working electrode by solution coating method as follows: the newly prepared sample (5 mg) and Nafion ($10 \mu \mathrm{~L}$) dissolved in 0.5 mL ethanol with ultrasound and $40 \mu \mathrm{~L}$ solution was uniformly dropped on clean FTO conductive glass $\left(1.0 \times 4.0 \mathrm{~cm}^{2}, 10 \Omega \cdot \mathrm{~cm}^{-2}\right)$. The photocurrent experiment was carried out on the CHI760E electrochemical workstation of the three electrode system, in which Pt sheet was the counter electrode and $\mathrm{Ag} / \mathrm{AgCl}$ electrode was the reference electrode. The experiment was carried out in $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ electrolyte at room temperature, and a 300 W high-pressure xenon lamp (full band) was used as a visible light source.

2. Single crystal synthesis and characterization of compound

Scheme S2. Illustration of the synthesis for PMOF-1 and PMOF-2.

Table S1. Crystallographic data and structure refinement for PMOF-1 and PMOF-2.

Identification code	PMOF-1	PMOF-1
Empirical formula	$\mathrm{C}_{64} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Zn}_{3}$	$\mathrm{C}_{64} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Zn}_{3}$
Formula weight	1304.18	1239.1
Temperature/K	100.0(13)	100.0(13)
Crystal system	triclinic	monoclinic
Space group	$P-1$	C2/c
a / \AA	16.6123(5)	23.5128(4)
b/A	16.6936(6)	23.5272(3)
c/ \AA	16.7212(6)	18.2894(3)
$\alpha /{ }^{\circ}$	118.127(4)	90
$\beta /{ }^{\circ}$	90.188(3)	96.728(2)
$\gamma /{ }^{\circ}$	108.145(3)	90
Volume/ \AA^{3}	3823.3(3)	10047.8(3)
Z	2	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.133	0.819
μ / mm^{-1}	1.551	0.743
$\mathrm{F}(000)$	1334	2512
Crystal size/ mm^{3}	$0.1 \times 0.1 \times 0.1$	$0.1 \times 0.1 \times 0.1$
Goodness-of-fit on F^{2}	1.051	1.055
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0555, \mathrm{w} R_{2}=0.1612$	$\mathrm{R}_{1}=0.0815, \mathrm{w} R_{2}=0.2274$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0639, \mathrm{w} R_{2}=0.1677$	$\mathrm{R}_{1}=0.0872, \mathrm{w} R_{2}=0.2327$
CCDC	2235076	2235077

(a)

(b)

Figure S1. (a) the asymmetric unit of PMOF-1; (b) view of the 2D bilayer of PMOF-1 containing coordinated 1,4-Dioxane and guest 1,4-Dioxane.

Figure S2. (a) the asymmetric unit of PMOF-2; (b) Pore size of PMOF-2.

Figure S3. The IR spectra of PMOF-1, PMOF-2 and TCPP.

Figure S4. (a) The survey XPS and (b) N 1s XPS spectra of PMOF-1.

Figure S5. (a) The survey XPS and (b) N 1s XPS spectra of PMOF-2.

Figure S6. The Adsorption of PMOF-1, PMOF-2.

Figure S7. The stability of PMOF-1 (a) and PMOF-2 (b) in different solvents at room temperature.

Figure S8. The TG of PMOF-1, PMOF-2.

Figure S9. The SEM EDS of PMOF-1.

Figure S10. The SEM elemental mapping of PMOF-1.

Figure S11. The SEM EDS of PMOF-2.

Figure S12. The SEM elemental mapping of PMOF-2.

Figure S13. The photograph of PMOF-1/PDMS and PMOF-2/PDMS with different concentrations.

Figure S14. The linear transmittances of PMOF-1/PDMS and PMOF-2/PDMS with different concentrations.

3. Third order nonlinear optical measurement

(a)

(b)

(c)

(d)

(e)

(f)

Figure S15. Nonlinear refractive response of PMOF/PDMS showed a clear peak-totrough trend, indicating their self-defocusing behavior.

Table S2. The comparison of the nonlinear absorption coefficients.

Samples	Nonlinear absorption coefficient $(c m / \mathbf{G W})$	References
PMOF-2/PDMS	$\mathbf{1 1 6 5}$	This work
PMOF-1/PDMS	$\mathbf{6 2 5}$	This work
ZnTPyP-1(Zn/Cu)/PDMS	4650	${ }^{2}$
Por-COF-ZnCu	4470	${ }^{3}$

Por-COF-ZnNi	4170	
Por-COF-HH	1170	
Por-TzTz-POF	1100	4
MQD-TPP/PMMA film	1059.2	5
Pure grapheme	900	6
Zinc porphyrin	366	
Copper porphyrin	132	
[(TBA) $)_{8}\left\{(4-\mathrm{TPP}-\mathrm{Mn})\left(\mathrm{Mo}_{6} \mathrm{O}_{18}\right)_{4}\right]$	98	7
$\mathrm{Si}(\mathrm{OH})_{2} \mathrm{TPPc}$	136	8
DNDs-Si(OH) ${ }_{2}$ TPPc	125	
DNDs-ZnTPPc	60.9	
DNDs- H_{2} TPPc	58.5	
ZnTPPc	42.8	
$\mathrm{H}_{2} \mathrm{TPPc}$	41	
$\mathrm{P}_{2} \mathrm{Pt}$	45	9
$\mathrm{P}_{1} \mathrm{Pt}$	39	
1-GO	93	10
GO	2.6	
PIZA-1	28	11
C60@PIZA-1	19	
HKUST-1-200	1.6	12

Table S3. Linear and NLO data of PMOF-1/PDMS with different concentrations.

Samples	Tmin	$\beta\left(\times 10^{-9} \mathrm{~m} / \mathrm{W}\right)$	$\operatorname{Im} \chi^{(3)}\left(\times 10^{-11} \mathrm{esu}\right)$	$\mathrm{F}_{\text {OL }}\left(\mathrm{J} \mathrm{cm}^{-1}\right)$
0.03%	0.92	3.60	7.35	1.74
0.06%	0.84	5.05	11.6	0.97
0.10%	0.50	6.25	12.3	0.60

Note: Tmin: Transmissivity; $\boldsymbol{\beta}$: nonlinear coefficient; $\boldsymbol{I m} \boldsymbol{\chi}^{(3)}$: the imaginary parts of the third-order susceptibility; $\boldsymbol{F}_{\mathbf{O L}}$: limiting threshold.

Table S4. Linear and NLO data of PMOF-2/PDMS with different concentrations.

Samples	Tmin	$\beta\left(\times 10^{-9} \mathrm{~m} / \mathrm{W}\right)$	$\operatorname{Im} \chi^{(3)}\left(\times 10^{-11} \mathrm{esu}\right)$	$\mathrm{F}_{\mathrm{OL}}\left(\mathrm{J} \mathrm{cm}^{-1}\right)$
0.03%	0.87	5.45	11.4	1.40
0.06%	0.74	9.25	20.3	0.54
0.10%	0.43	11.65	24.1	0.24

(a)

(b)

(c)

(d)

HUMO

LUMO
(e)

HUMO-1
(f)

LUMO-2

Figure S16. The frontier molecular orbitals diagram of HOMO and LUMO for PMOF1 and PMOF-2 are compared with $\mathrm{Zn}-\mathrm{TCPP}$ 2D.

To gain further insight into NLO performance of dimension in PMOFs, the theoretical calculation based on DFT was performed, and the noninterpenetrated Part A and Part B For the PMOF structures. when the angle between porphyrin ring and benzene is 70.92°, it is more stable than $84.56^{\circ}(\triangle \mathrm{E}=0.078 \mathrm{eV})$, and $90^{\circ}(\triangle \mathrm{E}=0.470$
eV). The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are mainly distributed on the porphyrin ring, and the HOMO-LUMO gap of PMOF-2 $\left(70.92^{\circ}\right)$ is 0.0044 eV and 0.0255 eV smaller than that of PMOF-1 $\left(84.56^{\circ}\right)$ and Zn -TCPP $\left(90^{\circ}\right)$, respectively. From the perspective of charge transfer, the three ZnTCPP structures are mainly electron redistribution within the porphyrin ring (Zn-TCPP (90°): 94.18\%, PMOF-1 (84.56 ${ }^{\circ}$): 93.73\%, PMOF-2 $\left(70.92^{\circ}\right): 93.53 \%$), but with the decrease of angle, the charge transfer amount between porphyrin and benzene ring increases (Zn-TCPP $\left(90^{\circ}\right): 5.73 \%$, PMOF-1 (84.56°): 6.17%, PMOF-2 (70.92°): 6.37\%), this makes PMOF-2 have more excellent third-order performance.

Reference

1. Z.-W. Wang, Z.-Y. Zhu, S. Li and F. Wang, CrystEngComm, 2022, 24, 3465-3468.
2. D. J. Li, Q. H. Li, Z. R. Wang, Z. Z. Ma, Z. G. Gu and J. Zhang, J Am Chem Soc, 2021, 143, 17162-17169.
3. B. P. Biswal, S. Valligatla, M. Wang, T. Banerjee, N. A. Saad, B. M. K. Mariserla, N. Chandrasekhar, D. Becker, M. Addicoat, I. Senkovska, R. Berger, D. N. Rao, S. Kaskel and X. Feng, Angew Chem Int Ed Engl, 2019, 58, 6896-6900.
4. M. Samal, S. Valligatla, N. A. Saad, M. V. Rao, D. N. Rao, R. Sahu and B. P. Biswal, Chem Comтип (Camb), 2019, 55, 11025-11028.
5. P. Jiang, B. Zhang, Z. Liu and Y. Chen, Nanoscale, 2019, 11, 20449-20455.
6. N. Jia, C. He, S. Wang, W. Song, Z. Chen, Y. Zu, Y. Gao and Y. Dong, Optical Materials, 2018, 76, 81-89.
7. S. u. Hassan, F. Nawaz, Z. U. Haq Khan, A. Firdous, M. A. Farid and M. S. Nazir, Optical Materials, 2018, 86, 106-112.
8. R. Matshitse, S. Khene and T. Nyokong, Diamond and Related Materials, 2019, 94, 218-232.
9. Z. Liu, J. Sun, C. Yan, Z. Xie, G. Zhang, X. Shao, D. Zhang and S. Zhou, Journal of Materials Chemistry C, 2020, 8, 12993-13000.
10. K. Garg, R. Shanmugam and P. C. Ramamurthy, Carbon, 2017, 122, 307-318.
11. D. J. Li, Z. G. Gu and J. Zhang, Chem Sci, 2020, 11, 1935-1942.
12. Z. G. Gu, D. J. Li, C. Zheng, Y. Kang, C. Woll and J. Zhang, Angew Chem Int Ed Engl, 2017, 56, 6853-6858.
