Supporting information for

Denticity Governs on the Formation of β-Thioketiminato Tri-Copper(I) and Mono-Copper(I) Complexes

Venkata Sai Sashankh Penki^a, Yu-Lun Chang^a, Hsing-Yin Chen^a, Yu-Ting Chu^{a,b}, Yu-Ting Kuo^{a,b}, Dorothy Priyanka Dorairaj^{a,c}, Sri Sudewi^{a,d}, Shang-Wu Ding^b, and Sodio C.N. Hsu^{a,b,e*}

^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

^bDepartment of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.

^cDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India ^dDepartment of pharmacy, Faculty of Mathematic and Natural science, Universitas Sam Ratulangi, Manado 95115, Indonesia.

^eDepartment of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.

Table of contents

Ligand Synthesis
Figure S1. ¹ H NMR spectrum of HL ₁ in C ₆ D ₆ (400 MHz, 298 K)
Figure S2. ¹³ C NMR spectrum of HL ₁ in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S3. ¹ H NMR spectrum of HL ₂ in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S4. ¹³ C NMR spectrum of HL ₂ in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S5. ¹ H NMR spectrum of HL ₃ in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S6. ¹³ C NMR spectrum of HL ₁ in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S7. ¹ H NMR spectrum of HL ₄ in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S8. ¹³ C NMR spectrum of HL ₄ in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)

Figure S9. ¹ H NMR spectrum of [L ₁ Cu] ₃ in CDCl ₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S10. ¹³ C NMR spectrum of [L ₁ Cu] ₃ in CDCl ₃ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S11. ¹ H NMR spectrum of [L ₂ Cu] ₃ in CDCl ₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S12. ¹³ C NMR spectrum of [L ₂ Cu] ₃ in CDCl ₃ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S13. ¹ H NMR spectrum of L ₃ Cu in DMSO-D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S14. ¹³ C NMR spectrum of L ₃ Cu in DMSO-D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S15. ¹ H NMR spectrum of L ₄ Cu in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S16. ¹³ C NMR spectrum of L ₄ Cu in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S17. ¹ H NMR spectrum of L ₁ Cu(2,4,6-CNC ₆ H ₂ Me ₃) in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S18. ¹³ C NMR spectrum of L ₁ Cu(2,4,6-CNC ₆ H ₂ Me ₃) in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S19. ¹ H NMR spectrum of $L_2Cu(2,4,6-CNC_6H_2Me_3)$ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S20. ¹³ C NMR spectrum of L ₂ Cu(2,4,6-CNC ₆ H ₂ Me ₃) in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S21. ¹ H NMR spectrum of L ₃ Cu(2,4,6-CNC ₆ H ₂ Me ₃) in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S22. ¹³ C NMR spectrum of L ₃ Cu(2,4,6-CNC ₆ H ₂ Me ₃) in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S23. ¹ H NMR spectrum of $L_4Cu(2,4,6-CNC_6H_2Me_3)$ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S24. ¹³ C NMR spectrum of $L_4Cu(2,4,6-CNC_6H_2Me_3)$ in C_6D_6 (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S25. ¹ H NMR spectrum of L ₁ Cu(PPh ₃) in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)

Figure S26. ¹³ C NMR spectrum of L ₁ Cu(PPh ₃) in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S27. ³¹ P NMR spectrum of L ₁ Cu(PPh ₃) in C ₆ D ₆ (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S28. ¹ H NMR spectrum of L ₂ Cu(PPh ₃) in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S29. ¹³ C NMR spectrum of L ₂ Cu(PPh ₃) in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S30. ³¹ P NMR spectrum of L ₂ Cu(PPh ₃) in C ₆ D ₆ (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S31. ¹ H NMR spectrum of L ₃ Cu(PPh ₃)in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S32. ¹³ C NMR spectrum of L ₃ Cu(PPh ₃) in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S33. ³¹ P NMR spectrum of L ₃ Cu(PPh ₃) in C ₆ D ₆ (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S34. ¹ H NMR spectrum of L ₄ Cu(PPh ₃) in C ₆ D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S35. ¹³ C NMR spectrum of L ₄ Cu(PPh ₃) in C ₆ D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S36. ³¹ P NMR spectrum of L ₄ Cu(PPh ₃) in C ₆ D ₆ (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S37. ¹ H NMR spectrum of L ₁ Cu-CO in CDCl ₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S38. ¹³ C NMR spectrum of L ₁ Cu-CO in CDCl ₃ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S39. ¹ H NMR spectrum of L ₂ Cu-CO in CDCl ₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S40. ¹³ C NMR spectrum of L ₂ Cu-CO in CDCl ₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S41. ¹ H NMR spectrum of L ₃ Cu-CO in Acetone-D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S42. ¹³ C NMR spectrum of L ₃ Cu-CO in Acetone-D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)

Figure S43. ¹ H NMR spectrum of L ₄ Cu-CO in Acetone-D ₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S44. ¹³ C NMR spectrum of L ₄ Cu-CO in Acetone-D ₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*)
Figure S45. Cyclic voltammetry diagrams of A. [L ₁ Cu] ₃ , B. [L ₂ Cu] ₃ , C. L ₃ Cu, and D. L ₄ Cu in
10^{-4} M MeCN solutions using 0.1 M (Bu ₄ N)(PF ₆) as supporting electrolyte, referenced to Fc^{+/0}S52
Figure S46. Cyclic voltammetry diagrams correspond to two SN chelator copper complexes with 10^{-4} M solutions of [L ₁ Cu] ₃ in (a) CH ₃ CN, (b) CH ₂ Cl ₂ , (c) CH ₃ NO ₂ respectively and [L ₂ Cu] ₃ in (d) CH ₃ CN, (e) CH ₂ Cl ₂ , (f) CH ₃ NO ₂ respectively using 0.1 M (Bu ₄ N)(PF ₆) as supporting electrolyte, referenced to Fc ^{+/0}
Figure S47. (1) ORTEP X-ray structure of $L_1Cu(PPh_3)$ (2) ORTEP X-ray structures of two independent molecules of L_2CuPPh_3 (a) and (b) similar to each other present in same unit cell (3) ORTEP X-ray structures of three independent molecules of $L_2Cu(2,4,6-CNC_6H_2Me_3)$ a, b, and c similar to each other present in same unit cell at the 50% probability level. Hydrogen atoms are not shown for clarity
Figure S48. Solution state FTIR of copper(I) carbonyl adducts(THF). A. L ₁ CuCO, B. L ₂ CuCO, C. L ₃ CuCO, D. L ₄ CuCO
Figure S49. Solid state FTIR (KBr) of copper(I) isocyanide adducts. A. L ₁ CuCNR, B. L ₂ CuCNR, C. L ₃ CuCNR, D. L ₄ CuCNR
Figure S50. Solution state FTIR of copper(I) isocyanide adducts(THF). A. L ₁ CuCNR, B. L ₂ CuCNR, C. L ₃ CuCNR, D. L ₄ CuCNR
Figure S51. ORTEP X-ray structure of HL3 at the 50% probability level. Hydrogen atoms are not shown for clarity except H ₁ and H _{3a} group
Figure S52. Stiochiometric titration ¹ H NMR for (a) $HL_1 + CuO^tBu$ expanded regions 7.45 to 5.8
ppm, (b) $HL_2 + CuO^tBu$ expanded region 7.65 to 5.65 ppm and (c) $HL_4 + CuO^tBu$ expanded region
1.00 to 4.00 and 5.00 to 9.00 ppm
Figure S53. (A) Elucidation of Variable Temperature ¹ H NMR for L4CuCO in Toluene-d8 at -93 °C and 25 °C. Expanded region 0.5 to 4.2 ppm and 5.2 to 8.6 ppm (B) Variable Temperature ¹ H NMR for L4CuCO expanded region 5.2-8.6 ppm
Figure S54. UV absorbance change for 0.1 mM (A) [L ₁ Cu] ₃ and (B) L ₃ Cu complexes before and after treatment with Ag ⁺ in acetonitrile at room temperature
Table S1. Selected bond distances (Å) and bond angles (deg) for $L_1Cu(2,4,6-CNC_6H_2Me_3)$, $L_2Cu(2,4,6-CNC_6H_2Me_3)$, and $L_4Cu(2,4,6-CNC_6H_2Me_3)$.

Table S2. Selected Bond distances (Å) and Bond Angles (deg) for L1Cu(PPh3), L2Cu(PPh3), andL4Cu(PPh3).S62
Table S3. Selected bond lengths (Å) and bond angles (°) for copper(I) adducts, L2Cu(2,4,6-CNC6H2Me3) and L2CuPPh3.S63
Table S4. Crystallographic data for synthesized ligands HL1, HL2, HL3, HL4 and copper(I)complexes [L1Cu]3, L3Cu
Table S5. Crystallographic data for synthesized copper(I) phosphine and isocyanide adductsS65
Table S6. Selected bond lengths (Å) and bond angles (°) for HL3
Table S7. CV data for [L1Cu]3, [L2Cu]3, L3Cu, and L4Cu complexes in MeCN solutions
Table S8. Kinetic data and equilibrium constants of carbonylation and decarbonylation for β-thioketiminato copper(I) complexes

Ligand Synthesis:

*HL*₁. The reaction of (Z)-4-((2,6-diisopropylphenyl)amino)pent-3-en-2-one (5.00 g, 19.27 mmol), and Lawesson's reagent (3.89 g, 9.637 mmol) were dissolved in dichloromethane (50ml) and heated at 35 °C for 1h. The volatiles were removed under vacuum to give a reddish orange oil that was purified by column chromatography ethyl acetate/hexane 1:10 ratio. Solvent is removed by vacuum to give reddish-orange oil. Recrystallization of the crude product from hexane gave pure HL₁ as reddish-orange crystals (4.45 g, 85 % yield). (C₆D₆, 400 MHz, 298K, δ): 15.85 (bs, 1H, NH), 7.12 (m, 1H, Ar-H), 7.00 (d, 2H, Ar-H), 6.10 (s, 1H, backbone-CH), 2.95 (septet, *J* = 6.8 Hz, 2H, CH(CH₃)₂), 2.67 (s, 3H, backbone-CH₃), 1.38(s, 3H, backbone-CH₃), 1.03 (dd, *J*=4.0 Hz, 12H, CH(CH₃)₂). ¹³C{¹H} NMR (C₆D₆, 100 MHz, 298K, δ): 209.10, 165.28, 145.62, 133.13, 128.98, 124.00,112.45, 39.15, 29.02, 25.09, 22.48, 20.39. Anal. Calcd for C₁₇H₂₅NS: C, 74,13; H, 9.15; N, 5.09. Found: C, 74.15; H, 9.11; N, 5.08.

*HL*₂. The reaction of (Z)-4-(mesitylamino)pent-3-en-2-one (5 g, 23.0 mmol) and Lawesson's reagent (4.64 g, 11.50 mmol) in dichloromethane gave purified by column chromatography ethyl acetate/hexane 1:10 ratio. Solvent is removed by vacuum to give reddish-orange oil. Recrystallization of the crude product from hexane gave pure HL₂ as reddish-orange crystals (4.66 g, 87 % yield). ¹H NMR (C₆D₆, 400 MHz, 298K, δ): 15.57 (bs, 1H, NH), 6.02 (s, 2H, Ar-H), 6.09 (s, 1H, backbone-CH), 2.67 (s, 3H, backbone-CH₃), 2.06 (s, 3H, *para* ArCH₃), 1.93 (s, 6H, *ortho* ArCH₃), 1.34 (s, 3H, backbone-CH₃). ¹³C {¹H} NMR (C₆D₆, 100 MHz, 298K, δ): 208.70, 165.72, 137.44, 134.71, 133.51, 129.38, 112.64, 39.16, 20.95, 20.03, 18.13. Anal. % Calcd for C₁₄H₁₉NS: C, 72,05; H, 8.21; N, 6.00. Found: C, 72.10; H, 8.11; N, 5.96.

*HL*₃: The reaction of (Z)-4-((pyridin-2-ylmethyl)amino)pent-3-en-2-one (5.00 g, 26.28 mmol), and Lawesson's reagent (5.30 g, 13.14 mmol) were dissolved in dichloromethane (50ml) and heated at 35 °C for 1h. The volatiles were removed under vacuum to give a reddish-brown oil was purified by column chromatography ethyl acetate/ dichloromethane 1:10 ratio. Solvent is removed by vacuum to give reddish orange oil. Recrystallization of the crude product from dichloromethane gave pure HL₃ as reddish-brown crystals (3.48 g, 73.4 % yield). ¹H NMR (C₆D₆, 400 MHz, 298K, δ): 14.65 (bs, 1H, NH), 8.32 (d, 1H, *J*=4 Hz, Py1), 7.03 (ddd, 1H, *J*=7.6 Hz, Py2), 6.95 (d, *J* = 8 Hz, 1H, Py4), 6.62 (m, 1H, Py3), 5.92 (s, 1H, backbone CH), 4.16 (s, 2H, CH₂Py), 2.61 (s, 3H, backbone-CH₃), 1.46 (s, 3H, backbone-CH₃). ¹³C{¹H} NMR (C₆D₆, 100 MHz, 298K, δ): 207.06, 165.66, 156.79, 149.70, 136.81, 122.50, 121.22, 113.24, 48.97, 39.16, 20.22. Anal. % Calcd for C₁₁H₁₄N₂S: C, 64,04; H, 6.84; N, 13.58. Found: C, 64.05; H, 6.82; N, 13.55.

*HL*₄. The reaction of (Z)-4-((2-(pyridin-2-yl)ethyl)amino)pent-3-en-2-one (5 g, 24.50 mmol) and Lawesson's reagent (4.95 g, 11.50 mmol) in dichloromethane gave purified by column chromatography ethyl acetate/ dichloromethane 1:10 ratio. Solvent is removed by vacuum to give reddish-orange oil. Recrystallization of the crude product from hexane gave pure HL₄ as reddish-brown crystals (4.20 g, 77.80 % yield). ¹H NMR (C₆D₆, 400 MHz, 298K, δ): 14.32 (bs, 1H, NH), 8.39 (d, 1H, *J* =4 Hz, Py1), 7.05 (ddd, 1H, *J* = 7.6 Hz, Py2), 6.79 (d, *J* = 8 Hz, 1H, Py4), 6.63 (dd, 1H, Py3), 5.80 (s, 1H, backbone C*H*), 3.32 (q, 2H, C*H*₂C*H*₂Py), 2.72 (t, 2H, CH₂C*H*₂Py), 2.58 (s, 3H, backbone-C*H*₃), 1.33 (s, 3H, backbone-C*H*₃). ¹³C{¹H} NMR (C₆D₆, 100 MHz, 298K, δ): 205.01, 165.20, 158.12, 149.72, 136.28, 123.95, 121.82, 112.72, 43.08, 38.95, 37.85, 19.84. Anal. % Calcd for C₁₂H₁₆N₂S: C, 65,42; H, 7.32; N, 12.71. Found: C, 65.39; H, 7.32; N, 12.74.

Figure S1. ¹H NMR spectrum of HL₁ in C_6D_6 (400 MHz, 298 K).

Figure S2. ¹³C NMR spectrum of HL₁ in C_6D_6 (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S3. ¹H NMR spectrum of HL₂ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S4. ¹³C NMR spectrum of HL₂ in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S5. ¹H NMR spectrum of HL₃ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S6. ¹³C NMR spectrum of HL₃ in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S7. ¹H NMR spectrum of HL₄ in C₆D₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S8. ¹³C NMR spectrum of HL₄ in C_6D_6 (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S9. ¹H NMR spectrum of [L₁Cu]₃ in CDCl₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S10. ¹³C NMR spectrum of [L₁Cu]₃ in CDCl₃ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S11. ¹H NMR spectrum of [L₂Cu]₃ in CDCl₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S12. ¹³C NMR spectrum of [L₂Cu]₃ in CDCl₃ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S13. ¹H NMR spectrum of L₃Cu in DMSO-D₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S14. ¹³C NMR spectrum of L₃Cu in DMSO-D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S15. ¹H NMR spectrum of L_4Cu in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S16. ¹³C NMR spectrum of L₄Cu in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S17. ¹H NMR spectrum of $L_1Cu(2,4,6-CNC_6H_2Me_3)$ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S18. ¹³C NMR spectrum of $L_1Cu(2,4,6-CNC_6H_2Me_3)$ in C_6D_6 (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S19. ¹H NMR spectrum of $L_2Cu(2,4,6-CNC_6H_2Me_3)$ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S20. ¹³C NMR spectrum of L₂Cu(2,4,6-CNC₆H₂Me₃) in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S21. ¹H NMR spectrum of L₃Cu(2,4,6-CNC₆H₂Me₃) in C₆D₆ (400 MHz, 298 K).

Figure S22. ¹³C NMR spectrum of L₃Cu(2,4,6-CNC₆H₂Me₃) in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S23. ¹H NMR spectrum of L₄Cu(2,4,6-CNC₆H₂Me₃) in C₆D₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S24. ¹³C NMR spectrum of L₄Cu(2,4,6-CNC₆H₂Me₃) in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S25. ¹H NMR spectrum of $L_1Cu(PPh_3)$ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S26. ¹³C NMR spectrum of $L_1Cu(PPh_3)$ in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S27. ³¹P NMR spectrum of $L_1Cu(PPh_3)$ in C_6D_6 (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S28. ¹H NMR spectrum of $L_2Cu(PPh_3)$ in C_6D_6 (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S29. ¹³C NMR spectrum of L₂Cu(PPh₃) in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S30. ³¹P NMR spectrum of L₂Cu(PPh₃) in C₆D₆ (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S31. ¹H NMR spectrum of L₃Cu(PPh₃)in C₆D₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S32. ¹³C NMR spectrum of L₃Cu(PPh₃) in C_6D_6 (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S33. ³¹P NMR spectrum of L₃Cu(PPh₃) in C₆D₆ (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S34. ¹H NMR spectrum of L₄Cu(PPh₃) in C₆D₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S35. ¹³C NMR spectrum of L₄Cu(PPh₃) in C₆D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S36. ³¹P NMR spectrum of L₄Cu(PPh₃) in C₆D₆ (162 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S37. ¹H NMR spectrum of L₁Cu-CO in CDCl₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S38. ¹³C NMR spectrum of L₁Cu-CO in CDCl₃ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S39. ¹H NMR spectrum of L₂Cu-CO in CDCl₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S40. ¹³C NMR spectrum of L₂Cu-CO in CDCl₃ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S41. ¹H NMR spectrum of L₃Cu-CO in Acetone-D₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S42. ¹³C NMR spectrum of L₃Cu-CO in Acetone-D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S43. ¹H NMR spectrum of L₄Cu-CO in Acetone-D₆ (400 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S44. ¹³C NMR spectrum of L₄Cu-CO in Acetone-D₆ (100 MHz, 298 K). Solvent residual peaks are marked with an asterisk (*).

Figure S45. Cyclic voltammetry diagrams of (A) $[L_1Cu]_3$, (B) $[L_2Cu]_3$, (C) L_3Cu , and (D) L_4Cu in 10⁻⁴ M MeCN solutions using 0.1 M (Bu₄N)(PF₆) as supporting electrolyte, referenced to Fc^{+/0}.

Figure S46. Cyclic voltammetry diagrams correspond to two SN chelator copper complexes with 10^{-4} M solutions of [L₁Cu]₃ in (A) CH₃CN, (B) CH₂Cl₂, (C) CH₃NO₂ respectively and [L₂Cu]₃ in (D) CH₃CN, (E) CH₂Cl₂, (F) CH₃NO₂ respectively using 0.1 M (Bu₄N)(PF₆) as supporting electrolyte, referenced to Fc^{+/0}.

Figure S47. (1) ORTEP X-ray structure of $L_1Cu(PPh_3)$ (2) ORTEP X-ray structures of two independent molecules of L_2CuPPh_3 (a) and (b) similar to each other present in same unit cell (3) ORTEP X-ray structures of three independent molecules of $L_2Cu(2,4,6-CNC_6H_2Me_3)$ a, b, and c similar to each other present in same unit cell at the 50% probability level. Hydrogen atoms are not shown for clarity.

Figure S48. Solution state FTIR (THF) of copper(I) carbonyl adducts. (A) L₁CuCO, (B). L₂CuCO, (C) L₃CuCO, (D) L₄CuCO.

Figure S49. Solid state FTIR (KBr) of copper(I) isocyanide adducts. (A) L₁CuCNR, (B) L₂CuCNR, (C) L₃CuCNR, (D) L₄CuCNR.

Figure S50. Solution state FTIR (THF) of copper(I) isocyanide adducts. (A) L₁CuCNR, (B) L₂CuCNR, (C) L₃CuCNR, D. L₄CuCNR

Figure S51. ORTEP X-ray structure of HL₃ at the 50% probability level. Hydrogen atoms are not shown for clarity except H_1 and H_{3a} group.

(A)

Figure S52. Stiochiometry-dependent NMR titration was performed at different concentrations in CDCl₃. The ¹H NMR spectra were recorded for the following samples: (A) Expanded regions 7.00 to 7.45 ppm and 5.80 to 6.50 ppm for I, only HL₁; II, CuO^tBu + HL₁ in 1:3 equivalents; III, CuO^tBu + HL₁ in 1:2 equivalents; IV, only [L₁Cu]₃. (B) Expanded regions 6.75 to 7.40 ppm and 5.80 to 6.50 ppm for I, only HL₂; II, CuO^tBu + HL₂ in 1:3 equivalents; III, CuO^tBu + HL₂ in 1:2 equivalents; IV, only [L₂Cu]₃. (C) Expanded regions 9.00 to 5.00 ppm and 4.00 to 1.00 ppm for I, only HL₄; II, CuO^tBu + HL₄ in 1:2 equivalents; III, only L₄Cu.

(C)

Figure S53. (A) The variable temperature ¹H NMR spectra of L₄CuCO in toluene-d8 were obtained at -93 °C and 25 °C, with an expanded region of 0.5 to 4.2 ppm and 5.2 to 8.6 ppm. (B) The expanded region of 5.2 to 8.6 ppm was studied using variable temperature ¹H NMR

spectroscopy for L4CuCO. (C) The full ¹H NMR spectrum of L4CuCO, along with the toluened8 peaks, was recorded.

Note: Toluene-d8 peaks were avoided for clarity for both A and B at 2.0 to 2.2 ppm and 7.0 to 7.2 ppm.

Figure S54. UV absorbance change for 0.1 mM (A) $[L_1Cu]_3$ and (B) L_3Cu complexes before and after treatment with Ag⁺ in acetonitrile at room temperature. The insets show the increases in the d–d transition band intensities.

Note: We performed stoichiometry-dependent UV titration experiments in acetonitrile to observe the mixed $[L_1Cu]_3$ and its copper (II) products as shown in the scheme below. Unreacted $[L_1Cu]_3$ complexes could be extracted by ether to the expected yield.

(A)
$$1 [L_1Cu]_3^+ 0.66 \text{ AgCIO}_4 \xrightarrow{\text{MeCN}} 0.33 [L_1Cu]_3^+ 0.00 [L_1Cu^{II}(\text{NCMe})n]CIO_4^+ 0.00 \text{ Ag}_0$$

(expected products)
(B) $1 L_3Cu + 1 \text{ AgCIO}_4 \xrightarrow{\text{MeCN}} [L_3Cu^{II}(\text{NCMe})n]CIO_4^+ + Ag_0$
(expected products)

Scheme S1. Stoichiometry-dependent oxidation control experiments. (A) Stoichiometry dependent titration of $[L_1Cu]_3$ with AgClO₄ in MeCN at room temperature. (B) Treatment of L₃Cu by AgClO₄ in MeCN at room temperature.

	L1Cu(2,4,6-	L2Cu(2,4,6-	L4Cu(2,4,6-CNC ₆ H ₂ N		
	CNC ₆ H ₂ Me ₃)	$CNC_6H_2Me_3)^b$	Molecule A	Molecule B	
Cu-N(amide(aryl))	1.973(16)	1.970(4)			
Cu-N(amide(alkyl))			2.046(19)	1.952(2)	
Cu-N(Py)			2.110(2)		
Cu–S	2.174(5)	2.175(13)	2.268(7)	2.172(7)	
C-C(NCCCS healthana)	1.436(3)	1.433(7)	1.443(3)	1.438(4)	
C-C(NCCCS backbolle)	1.364(3)	1.358(7)	1.359(4)	1.362(4)	
C–N	1.302(7)	1.308(6)	1.303(3)	1.477(3)	
C–S	1.719(2)	1.730(5)	1.725(3)	1.721(3)	
Cu-C(isocyanide)	1.848(2)	1.844(5)	1.867(3)	1.834(3)	
C≡N(isocyanide)	1.154(3)	1.157(6)	1.164(3)	1.161(3)	
N(amide(alkyl))-Cu-N(Py)			90.20(8)		
N(amide(aryl))-Cu-S	103.49(5)	102.79(12)			
N(amide(alkyl))-Cu-S			99.19(5)	104.48(6)	
C(isocyanide)–Cu–S	136.33(6)	136.35(15)	118.29(7)	130.81(8)	
C(isocyanide)–Cu–N(amide(aryl))	120.19(8)	120.44(19)	109.58(9)	124.60(10)	
$\angle NCCCS(aryl)^a$	86.50	88.79			

Table S1. Selected bond distances (Å) and bond angles (deg) for $L_1Cu(2,4,6-CNC_6H_2Me_3)$, $L_2Cu(2,4,6-CNC_6H_2Me_3)$, and $L_4Cu(2,4,6-CNC_6H_2Me_3)$.

^{*a*} Dihedral angle between NCCCS plane and the *N*-aryl ring. ^{*b*} There are three independent molecules of L₂Cu(2,4,6-CNC₆H₂Me₃) in the unit cell, only one molecule data shown here. For complete information refer supporting information Figure S47 and Table S3.

	$L_1Cu(PPh_3)$	$L_2Cu(PPh_3)^b$	L ₄ Cu(PPh ₃)
Cu-N(amide(aryl))	1.956(3)	1.941(5)	
Cu-N(amide(alkyl))			2.049(17)
Cu-N(Py)			2.069(17)
Cu–S	2.204(9)	2.188(19)	2.256(6)
Cu–P	2.195(10)	2.182(19)	2.210(6)
C CNICCCS healthana)	1.431(5)	1.441(9)	1.448(3)
C-C(NCCCS backbone)	1.363(5)	1.351(9)	1.365(3)
C–N	1.315(5)	1.312(8)	1.296(3)
C–S	1.721(4)	1.726(7)	1.720(2)
P-Cu-S	116.88(4)	122.41(7)	114.15(2)
N(amide(aryl))-Cu-P	139.42(9)	133.96(15)	
N(amide(alkyl))–Cu–P			115.54(5)
N(amide(aryl))-Cu-S	103.68(9)	103.53(15)	
N(amide(alkyl)-Cu-S			100.28(5)
N(amide(alkyl))-Cu-N(Py)			90.93(7)
$\angle NCCCS(aryl)^a$	82.93	83.49	

Table S2. Selected Bond distances (Å) and Bond Angles (deg) for $L_1Cu(PPh_3)$, $L_2Cu(PPh_3)$, and $L_4Cu(PPh_3)$.

^{*a*} Dihedral angle between NCCCS plane and the *N*-aryl ring. ^{*b*} There are two independent molecules of L₂Cu(PPh₃) in the unit cell, only one molecule data shown here. For complete information see figures S46, S48 and Table S3.

	$L_2Cu(2,4,6-CNC_6H_2Me_3)^b$	$L_2Cu(2,4,6-CNC_6H_2Me_3)^b$	$L_2Cu(2,4,6-CNC_6H_2Me_3)^b$	L ₂ CuPPh ₃ ^c	L ₂ CuPPh ₃ ^c
Cu-N(amide(aryl))	1.970(4)	1.977(4)	1.950(4)	1.941(5)	1.937(5)
Cu–S	2.175(13)	2.161(13)	2.175(15)	2.188(19)	2.187(2)
Cu–P				2.182(19)	2.183(19)
C-C(NICCCS baskbara)	1.433(7)	1.440(7)	1.441(7)	1.441(9)	1.433(9)
C-C(NCCCS backbone)	1.358(7)	1.361(6)	1.360(7)	1.351(9)	1.353(9)
C–N	1.308(6)	1.297(6)	1.307(6)	1.312(8)	1.305(8)
C–S	1.730(5)	1.729(5)	1.706(5)	1.726(7)	1.723(7)
Cu-C(isocyanide)	1.844(5)	1.837(5)	1.835(5)		
C≡N(isocyanide)	1.157(6)	1.161(6)	1.155(6)		
P-Cu-S				122.41(7)	122.08(8)
N(amide(aryl))-Cu-P				133.96(15)	134.67(17)
N(amide(aryl))-Cu-S	102.79(11)	103.87(11)	104.89(12)	103.53(15)	103.07(17)
C(isocyanide)–Cu–S	136.35(15)	142.51(16)	132.79(17)		
C(isocyanide)–Cu–N(amide (aryl))	120.44(19)	113.53(19)	122.0(2)		
$\angle NCCCS(aryl)^a$	88.79	88.54	89.92	83.49	85.72

Table S3. Selected bond lengths (Å) and bond angles (°) for copper(I) adducts, $L_2Cu(2,4,6-CNC_6H_2Me_3)$ and L_2CuPPh_3 .

^{*a*}Dihedral angle between N-aryl ring and NCCCS plane. ^{*b*}There are three independent crystal structures of $L_2Cu(2,4,6-CNC_6H_2Me_3)$ see figure S47 similar to each other in same unit cell. ^{*c*}There are two independent crystal structures of $L_2Cu(PPh_3)$ similar to each other in same unit cell.

Table 51. Crystanograph	ie data for synthesiz		2, 11115, 11114 and 00	pper(i) complexes	<u></u> , <u></u>	
	HL_{1}^{a}	HL_2	HL3	HL4	$[L_1Cu]_3$	L3Cu
CCDC Number	2177690	2177691	2177692	2177693	2177697	2177698
Empirical formula	$C_{17} H_{24} N S$	$C_{14} H_{19} N S$	$C_{22} \ H_{28} \ N_4 \ S_2$	$C_{12} \: H_{16} \: N_2 \: S$	C ₅₀ H ₇₀ Cu ₃ N ₃ S ₃	$C_{11} H_{13} Cu N_2 S$
Formula weight	274.43	233.36	412.60	220.33	999.89	268.83
T° K	113(2)	113(2)	113(2)	113(2)	113(2)	113(2)
Crystal size mm ³	0.3 x 0.25 x 0.2	0.25 x 0.2 x 0.2	0.25 x 0.2 x 0.2	0.25 x 0.2 x 0.2	0.2 x 0.15 x 0.1	0.25 x 0.2 x 0.2
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	Orthorhombic	Triclinic
Space group	$P2_1/c$	$P2_1/c$	P-1	P-1	P212121	P-1
a(Å)	11.8498(4)	8.1962(3)	6.8410(2)	7.0013(5)	15.3411(3)	7.5980(3)
b(Å)	8.9288(4)	8.8474(2)	9.3645(3)	7.2355(5)	16.6809(3)	7.7676(3)
c(Å)	15.6583(6)	18.7562(5)	18.5881(4)	12.2312(9)	19.9753(4)	10.3763(4)
a(deg)	90°	90°	93.715(2)°	105.091(6)°	90°	102.817(3)°
β(deg)	99.025(3)°	100.089(3)°	99.741(2)°	93.555(6)°	90°	98.971(3)°
γ(deg)	90°	90°	107.792(3)°	92.253(6)°	90°	107.163(4)°
V (Å ³)	1636.21(11)	1339.08(7)	1108.86(6)	596.10(8)	5111.75(17)	554.20(4)
Ζ	4	4	2	2	4	2
D_{calcd} (g cm ⁻³)	1.118	1.158	1.236	1.228	1.299	1.611
$\mu(\text{mm}^{-1})$	0.186	0.216	0.255	0.241	1.394	2.124
Reflns mcasd/indep	13693/2888	19261/2818	15514/4610	6999/ 2447	33473/10353	6328/2274
Data/restrains/params	2888/102/182	2818 / 0 / 150	4610 / 0 / 257	2447 / 0 / 138	10353 / 306 / 561	2274 / 0 / 138
GOF	1.065	1.072	1.071	1.073	1.034	1.144
R _{int}	0.0297	0.0242	0.0295	0.0407	0.0729	0.0574
$R_{l}[I>2\sigma]$ (all data)	0.0367 (0.0914)	0.0328(0.0834)	0.0355 (0.0812)	0.0444 (0.1185)	0.0570 (0.1258)	0.0355 (0.0841)
$R_w[I>2\sigma]$ (all data)	0.0446 (0.0952)	0.0387(0.0860)	0.0454 (0.0850)	0.0547 (0.1232)	0.0667 (0.1298)	0.0417 (0.0863)
Max. peak/hole (e ⁻ / Å ³)	0.18/ -0.21	0.23 / -0.21	0.29 / -0.21	0.423 / -0.320	0.820 / -0.642	0.511 / -0.744

Table S4. Crystallographic data for synthesized ligands HL1, HL2, HL3, HL4 and copper(I) complexes [L1Cu]3, L3Cu

^{*a*}The N-H hydrogen of HL₁ also could be confirmed by the NMR characterizations in comparison with HL₂ analogue.

	L1Cu(2,4,6-	L2Cu(2,4,6-	L4Cu(2,4,6-	L (DDba)	L Cu(PPha)	L ₄ Cu(DP h ₂)
	CNC ₆ H ₂ Me ₃)	CNC ₆ H ₂ Me ₃)	CNC ₆ H ₂ Me ₃)		L2Cu(1113)	L4Cu(11113)
CCDC Number	2260182	2177695	2177696	2177687	2177688	2177689
Empirical formula	$C_{27}H_{35}CuN_2S$	$C_{72}H_{87}Cu_3N_6S_3$	$C_{44}H_{52}Cu_2N_6S_2$	C35H39CuNPS	$C_{64}H_{66}Cu_2N_2P_2S_2$	$C_{30}H_{30}CuN_2PS$
Formula weight	483.17	441.09	856.1	600.24	1116.32	545.13
T° K	113(2)	113(2)	113(2)	113(2)	113(2)	113(2)
Crystal size mm ³	0.3 x 0.2 x 0.2	0.2 imes 0.15 imes 0.1	$0.38 \times 0.25 \times 0.25$	$0.25 \times 0.15 \times 0.1$	0.2 imes 0.15 imes 0.1	0.3 imes 0.2 imes 0.2
Crystal system	Tetragonal	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P-421c	$P2_1/c$	P-1	Pn	$P2_1/c$	$P2_1/c$
a(Å)	10.195(3)	8.3921(2)	8.4434(3)	8.7209(2)	34.0853(6)	10.0287(2)
b(Å)	11.398(3)	72.7477(11)	13.9072(4)	11.5302(2)	10.8570(2)	9.2600(2)
c(Å)	13.1968(3)	11.9258(3)	19.3518(6)	15.5452(3)	15.8802(4)	28.7420(6)
a(deg)	103.579(2)°	90°	99.445(2)°	90°	90°	90°
β(deg)	103.829(2)°	109.714(3)°	100.502(3)°	97.780(2)	102.842(2)°	96.315(2)°
γ(deg)	111.271(2)°	90°	105.746(3)°	90°	90°	90°
V (Å ³)	1297.18(7)	6854.0(3)	2094.97(12)	1548.74(5)	5729.7(2)	2652.95(10)
Z	2	12	4	2	4	4
D_{calcd} (g cm ⁻³)	1.237	1.282	1.357	1.287	1.294	1.365
$\mu(\text{mm}^{-1})$	0.938	1.058	1.153	0.848	0.912	0.984
Reflns mcasd/indep	37815/4553	63787/13864	43908/7357	25463/4673	48453/10040	21461/5531
Data/restrains/params	4553 / 0 / 289	13864/0/781	7357/0/497	4673/32/359	10040/0/660	5531/0/318
GOF	1.089	1.238	1.104	1.094	1.157	1.045
R _{int}	0.0576	0.0508	0.0295	0.0343	0.0828	0.0341
$R_{l}[I>2\sigma]$ (all data)	0.0331 (0.0838)	0.0712 (0.1330)	0.0378 (0.1022)	0.0437, (0.1118)	0.0873 (0.1782)	0.0351 (0.0782)
R _w [I>2σ] (all data)	0.0385 (0.0858)	0.0941 (0.1388)	0.0460 (0.1068)	0.0463, (0.1124)	0.1121 (0.1873)	0.0469 (0.0818)
Max. peak/hole (e ⁻ / Å ³)	0.41/ -0.36	0.58/-0.71	0.73/ -0.46	0.33/-0.68	1.18/-0.75	0.46/-0.43

 Table S5. Crystallographic data for synthesized copper(I) phosphine and isocyanide adducts

	HL3					
	Molecule I Molecule II					
C-C _(NCCCS backbone)	1.409(2), 1.381(2)	1.405(2), 1.380(2)				
C-N _(NCCCS backbone)	1.317(18)	1.317(19)				
C–S	1.698(16)	1.6959(17)				
N-H	0.860 0.860					

Table S6. Selected bond lengths (Å) and bond angles (°) for HL₃

Table S7. CV data for [L₁Cu]₃, [L₂Cu]₃, L₃Cu, and L₄Cu complexes in MeCN solutions

Complex	Ea	Ec	i _{pa} / i _{pc}	$E_{1/2}(V)$	$\Delta E(V)^{c}$
[L 1Cu]3	-0.153	-	-	-	-
$[L_2Cu]_3$	-0.011	-	-	-	-
L ₃ Cu	-0.562	-0.692	0.93	-0.627	0.130 ^b
L4Cu	-0.286	-0.440	1.20	-0.363	0.154 ^b

^aAll values reported vs NHE, by adding 0.64V to the value measured vs the ferrocene/ferrocenium couple in CH₃CN with Bu_4NPF_6 as electrolyte and potentials (in V vs. Fc^{+/0}) were measured at a glassy carbon electrode at a scan rate of 0.01Vs⁻¹. b. Quasi-reversible.

c. $\Delta E = E_c - E_a$.

Table S8. Kinetic data and equilibrium constants of carbonylation and decarbonylation for β -thioketiminato copper(I) complexes.

$$[LCu^{I}] + [CO] \xrightarrow{K_{CO}} [LCu^{I}-CO]$$

$$\kappa_{CO} = \frac{k_{CO}}{K_{CO}}$$
(S1)

(S2)

The equilibrium constants and the binding constants for carbonylation and decarbonylation experiments were calculated using the above equations (S1) and (S2).

Complex	Wavenumber (cm ⁻¹)	kco, M ⁻¹ s ⁻¹	<i>k</i> -co, s ⁻¹	<i>K</i> co, M ⁻¹
$[L_1Cu]_3$	2085	$4.77 \times 10^{-4} (\pm 0.17)$	$1.45 \times 10^{-3} (\pm 0.09)$	0.32(±0.06)
$[L_2Cu]_3$	2085	$1.09 \times 10^{-3} (\pm 0.04)$	$3.22 \times 10^{-3} (\pm 0.09)$	0.33(±0.15)
L3Cu	1995	$5.91 \times 10^{-3} (\pm 0.05)$	$2.14 \times 10^{-4} (\pm 0.18)$	27.61(±0.12)
	2019	$4.57 \times 10^{-3} (\pm 0.26)$	$2.25 \times 10^{-4} (\pm 0.20)$	20.31(±0.26)
L4Cu	1995	8.91x10 ⁻³ (±0.67)	3.35x10 ⁻⁴ (±0.07)	26.53(±0.33)
	2020	$5.35 \times 10^{-3} (\pm 0.59)$	$3.26 \times 10^{-4} (\pm 0.10)$	16.40(±0.56)