Supporting Information

Mechanistic Insight into Pb²⁺ and Hg²⁺ Ions Sensing using Cobaltbased Coordination Polymer in Aqueous Phase

Akashdeep Nath, ^a Diti Vikram Gaikwad ^a and Sukhendu Mandal ^a*

^a School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India, E-mail: sukhendu@iisertvm.ac.in

Contents

Sl. No.	Description	Page No.
А	Comparison table. Table S1. Literature of inorganic-organic hybrid materials-based Pb (II) sensors	S4
В	Experimental section	S5-S6
С	Crystal Structure description	S7-S12
	Table S2. Crystallographic parameters of 1	S7
	Table S3. Selected bond lengths (Å) of 1	S8
	Table S4. Selected bond angles (⁰) of 1	S8
	Topological analysis	S9
	Crystal structures	S10-S12
D	FT-IR spectra	S13-S14
E	Powder XRD pattern	S15
F	Thermogravimetric analysis	S16
G	Steady-state spectroscopy	S17-S22
	UV-Vis absorption spectra	S17-S19
	Emission spectra	S20-S21
	Excitation spectra	S22
Н	Fluorescence lifetime decay profile of BTB and 1	S23
	Table S5. Detail parameters of the fitted fluorescence decay plot of BTB in water	S23
	Table S6. Detail parameters of the fitted fluorescence decay plot of 1 in water	S23
I	Stability test in water	S24
J	Faraday-Tyndall experiment and DLS study	S25
К	Limit of detection calculation for Pb (II) ion	S26
L	Recyclability tests	S27-S28
М	Sensing at different pH	S29-S30
N	Table S7. Pb (II) spiking from natural water resources	S31
0	Absorption spectra of 1 with different Pb (II) ion concentrations	S32
Р	Table S8. Detail parameters of the fitted fluorescence decay plot of ${\bf 1}$ after adding PbCl_2 solution	S33
Q	Stern-Volmer plots	S34
R	Host-guest interaction	S35-S39
	Table S9. Stabilization energy of optimized PbCl ₂ on BTB molecule	S40
S	Limit of detection calculation for Hg (II) ion	S41
Т	Anti-inference ability of 1 for Hg (II) sensing and comparison	S42
U	Absorption spectra of 1 with different Hg (II) ion concentrations	S43

V	XPS spectra	S44-S46
	XPS spectra of pristine 1	S44
	XPS spectra of pristine ${f 1}$ after addition of HgCl2 aqueous solution	S45
	XPS spectra of pristine ${f 1}$ after addition of PbCl ₂ aqueous solution	S46
W	Lifetime decay profile of ${\bf 1}$ after addition of HgCl_2 aqueous solution	S47
	Table S10. Detail parameters of the fitted fluorescence decay plot of ${\bf 1}$ after addition of ${\rm HgCl}_2$ solution	S47
х	References	S48

A. Comparison table

SI.	Materials	Detection	K _{sv} (M ⁻¹)	Interaction	Turn-	Ref.
No.		limit (M)		type	on/off	
1	[Co(BTB)(4,4'-	7.08(±0.08) ×	2.2×10^{4}	Excited-state	Turn-off	This
	azopyridine)].H ₂ O.DMF	10 ⁻⁸				Work
2	[Eu ₂ (FDC) ₃ DMA(H ₂ O) ₃].DMA.4.5	8.2 ×10 ⁻⁶	2.97 ×10 ⁴	Excited-state	Turn-on	S1
	H ₂ O					
3	CDs/QDs@ZIF-8	2.4×10^{-9}	8.46 ×10 ⁴	Excited-state	Turn-off	S2
4	[Tb(ppda)(npdc) _{0.5} (H ₂ O) ₂] _n	9.44 × 10 ⁻⁵	1.05 × 10 ⁵	Excited-state	Turn-on	S3
5	[Tb(L)(H ₂ O) ₅] _n	3.4×10^{-7}	1.75×10^4	Ground-state	Turn-off	S4
	(H ₂ L= 3,5-dicarboxyphenolate)					
6	MOF-5-NH ₂	2.5 × 10 ⁻⁷	~2.8×10 ²	Ground-state	Turn-off	S5
7	Cd(II)-MOF	1.9×10^{-9}	2.4 ×10 ⁴	Ground-state	Turn-off	S6
8	Zn(II)-MOF	8 × 10 ⁻⁷	1.18 ×104	Ground-state	Turn-off	S7
9	MOF-5	2 ×10 ⁻⁹	-	Ground-state	Turn-on	S8
10	[Zn(Nptp)(HBTC)] _n	-	3.2 ×10 ³	Ground-state	Turn-off	S9
11	In-MOF	3.14 ×10 ⁻⁸	9.78 ×10 ³	Ground-state	Turn-off	S10

Table S1. Literature of inorganic-organic hybrid materials-based Pb (II) sensors.

B. EXPERIMENTAL SECTION

Chemicals. Cobalt chloride (CoCl₂), 1,3,5-Tris(4-carboxyphenyl) benzene, 4,4'-azopyridine, KCl, CaCl₂, SrCl₂, MgCl₂, CuCl₂, ZnCl₂, MnCl₂, CoCl₂ were procured from Sigma-Aldrich. LiCl, NaCl, BaCl₂, NiCl₂, HgCl₂, and PbCl₂ were bought from Finar Chemicals, Merck, SRL Pvt. Ltd., Alfa Aesar, and Spectrochem Pvt. Ltd., respectively. (*Caution: Lead chloride and mercury chloride are highly toxic*. *High precaution and lab safety should be taken care while performing all the experiments with Pb²⁺and Hg²⁺. Being potentially dangerous to the environment, all the waste products after experiments should be treated with proper protocol)*. p-Terphenyl was purchased from TCI Chemicals. Anhydrous *N*, *N'*-dimethylformamide (DMF), and HPLC cyclohexane were acquired from Spectrochem Pvt. Ltd. We used all the chemicals without any further purification. Double distilled water was used wherever required throughout the project.

Synthesis of 1 [Co(BTB)(4,4'-azopyridine)].(DMF)(H₂O). 0.25 mmol CoCl₂, 0.05 mmol 1,3,5-Tris(4-carboxyphenyl) benzene, 0.1 mmol 4,4'-azopyridine were measured in a 20 mL glass vial and dissolved with 7 mL H₂O, followed by 3 mL DMF and subjected to sonication for 1 h. The resulting solution mixture was kept in a 100 $^{\circ}$ C hot air oven for 2 days and allowed to cool down normally to room temperature. Orange-coloured flake-like crystals were formed, which were washed 3-4 times with DMF, dried under vacuum, and stored in an ambient condition for further experiments.

Single Crystal X-ray Diffraction. A good quality single-crystal was mounted at 170 K on a Rigaku Oxford Diffraction XtaLAB Synergy-S diffractometer combined with a HyPix-6000HE Hybrid Photon Counting (HPC) detector. We used Cu K α (λ = 1.54184 Å) from PhotonJet micro-focus sealed X-ray Source. CrystAlisPro software suite was utilized for data processing.^[S11] The computing structure was refined with full-matrix least-squares techniques using SHELXL 2018/3 (Sheldrick, 2015).^[S12] All the hydrogens were positioned geometrically, whereas non-hydrogens atoms were refined anisotropically in OLEX2.^[S13] Thermal constraints were used for disorderd DMF molecule.

General instrumentations. The powder X-ray diffraction (5 $^{\circ}$ < 20 < 50 $^{\circ}$) was carried out in Bruker D8 Advance X-ray diffractometer. The steady-state spectroscopy was performed on UV-2600 SHIMADZU UV-Vis/NIR spectrometer and Horiba Jobin Yvon Fluorolog-3 spectrofluorometer for absorption and emission, respectively. Thermal stability was obtained in a SDT Q600 (Shimadzu) analyzer at a heating rate of 10 °C/min from room temperature to 600 °C under a constant N₂ flow. Dynamic light scattering experiment was carried out in a Malvern Zetasizer Nano-ZS analyzer. The FT-IR spectra were measured in a SHIMADZU IRPrestige-21 spectrometer using KBr pellet.

Quantum yield calculation. We used p-terphenyl (in cyclohexane) as a reference for quantum yield measurement. We excited the BTB linker, **1**, and reference at 290 nm by keeping the individual absorbance similar (0.03-0.04). The relative quantum yield (ϕ_s) was measured after integrating the area of the emission spectra using the following equation,

where, *I* is an integrated area of the emission spectrum, *A* denotes absorbance, *n* is the refractive index of the solvent used (water for linkers and **1**, cyclohexane for p-terphenyl).^[514] ϕ_R is 0.93 when excited at 290 nm in cyclohexane.^[S15]

Time-resolved fluorescence spectroscopy. The lifetime decay profile was measured using a 310 nm laser diode excitation source using time-correlated single-photon counting (TCSPC) technique on a

Horiba Jobin Yvon-IBH time-resolved fluorimeter, containing Hamamatsu R3809U-50 microchannel plate detector (instrument response time is 38.6 ps), coupled to a monochromator (5000M) and TCSPC electronics (Data station Hub including Hub-NL, NanoLED controller). DAS6.3 fluorescence decay analysis software was used to fit the obtained data.

Fluorescence sensing.

Probe solution preparation. 1 mg of **1** was dissolved in 1.7 mL distilled water and sonicated for 30 min, followed by centrifugation at 10000 rpm for 6 min. 1.5 mL of the supernatant was taken from the solution and added to 1.5 mL of distilled water, which was used for further sensing studies.

Metal ion solutions preparation. All the metal ion solutions were prepared in an aqueous medium. We prepared 10^{-2} M PbCl₂ as a primary solution; other working PbCl₂ solutions were made by diluting it with distilled water. The final concentration of metal ion was calculated when dissolved it in a quartz cuvette containing 3 mL of **1** solution. We used the same concentration of metal ions (10^{-5} M) for comparative studies.

Limit of Detection (LOD). The fluorescence quenching was plotted with different Pb (II) ion concentrations and fitted linearly. The obtained slope from the linear fit was used to calculate the LOD value employing the following equations,

Limit of detection = $\frac{3\sigma}{Slope}$ (S2)

 $\sigma = 100 \times (I_{SE}/I_0)$ (S3)

where, I_{SE} denotes standard error in emission measurement which is calculated from baseline measurement monitored at 357 nm (10 times), *I* is pristine emission intensity of the **1**.^[S16]

Recyclability test. The material was washed thoroughly in water after use for Pb (II) sensing and centrifuged to discard the water. This process was repeated four times, followed by drying under a vacuum before reusing for the next cycle.

Theoretical calculation.

A density functional theory was carried out to optimize the ground-state and excited-state geometry of BTB molecule along with frequency calculation using a polarized double-zeta basis set (cc-pVDZ) with long-range-corrected hybrid functional (ω b97xd).^[S17] The Los Alamos effective core potential (ECP) LanL₂-DZ for Pb and split valence cc-pVDZ basis set for Cl atom was used with ω b97xd functional for geometry optimization of PbCl₂ molecule.^[S18-19] The time-dependent DFT calculation was carried out with the same level of theory using a polarizable continuum model (PCM) for an aqueous medium.^[S20] We employed the following equation to calculate the stabilization energy (Δ E),

 $\Delta E = E_{BTB-PbCl2} - (E_{BTB} + E_{PbCl2})$ (S4)

Gaussian 16 program package was used for all the calculations.^[S21]

C. Crystal Structure description

Parameters				
CCDC number	2238686			
Empirical formula	$C_{39}H_{26}CoN_5O_8$			
Formula weight	751.58			
Crystal System	Triclinic			
Space Group	<i>P-1</i> (No. 2)			
a (Å)	9.4934 (4)			
b (Å)	12.7660 (4)			
c (Å)	15.1031 (6)			
α (°)	75.989 (3)			
β (°)	80.082 (3)			
γ (°)	71.663 (3)			
Volume (ų)	1676.56 (12)			
Z	2			
Calculated density (mg/m ³)	1.489			
Absorption coefficient (mm ⁻¹)	4.559			
θ range (°)	3.032 to 67.051			
Reflections collected	17702			
Unique reflections	5912			
Number of parameters	482			
Goodness-of-fit on F ²	1.062			
Final R indices [I > 2sigma(I)]	$R_1 = 0.0622$, $wR_2 = 0.1685$			
R indices (all data)	$R_1 = 0.0680, wR_2 = 0.1728$			
$R_{1} = \Sigma F_{0} - F_{c} / \Sigma F_{0} ; wR_{2} = \{ [w(F_{0}^{2} - F_{c}^{2})^{2}] / [w(F_{0}^{2})^{2}] \}^{1/2}; w = 1/[\sigma^{2} (F_{0})^{2} + (aP)^{2} + bP]; P = [(F_{0}^{2}, 0) + 2(F_{c})^{2}] / 3, where a = 0.0929 and b = 2.98$				

 Table S2. Crystallographic parameters of 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Co1	01	2.036 (3)	N1	C6	1.334 (5)
Co1	04	2.007 (3)	N1	C24	1.343 (5)
Co1	O6	2.094 (3)	N4	N3	1.236 (5)
Co1	02	2.399 (3)	N4	C33	1.437 (5)
Co1	N1	2.136 (3)	N5	C27	1.337 (5)
Co1	N5	2.156 (3)	N5	C15	1.338 (5)
01	C35	1.267 (5)	N3	C17	1.435 (5)
04	C35	1.253 (5)	05	C9	1.205 (5)
O6	C32	1.256 (5)	C37	07	1.38 (2)
08	C9	1.328 (5)	N2	C19	1.574 (17)
02	C32	1.254 (5)			

Table S3. Selected bond lengths (Å) of 1.

 Table S4.
 Selected bond angles (°) of 1.

Atom	Atom	Atom	Angle/ ⁰	Atom	Atom	Atom	Angle/ ⁰
01	Co1	06	90.29 (11)	C27	N5	C15	117.6 (3)
01	Co1	02	147.27 (11)	C15	N5	Co1	121.2 (3)
01	Co1	N1	87.38 (11)	N4	N3	C17	113.3 (3)
01	Co1	N5	91.12 (11)	C27	N5	Co1	120.9 (3)
04	Co1	01	125.32 (12)	06	C32	C34	119.0 (3)
04	Co1	06	143.78 (12)	02	C32	06	120.6 (4)
04	Co1	02	87.38 (11)	02	C32	C34	120.2 (4)
04	Co1	N1	90.69 (11)	07	C37	N2	120 (2)
04	Co1	N5	88.12 (12)	C6	N1	Co1	121.3 (2)
06	Co1	02	57.57 (10)	04	C35	01	123.1 (3)
06	Co1	N1	98.14 (11)	05	C9	08	123.6 (4)
06	Co1	N5	84.38 (12)	05	C9	C22	123.1 (4)
N1	Co1	02	91.04 (11)	C6	N1	C24	117.7 (3)
C35	01	Co1	117.7 (2)	N2	C37	07	127.5 (19)
C35	04	Co1	171.0 (3)	C24	N1	Co1	121.0 (2)
C32	06	Co1	96.7 (2)	N3	N4	C33	114.0 (3)
C32	02	Co1	82.9 (2)				

Topological Analysis

1:C37 H24 Co N4 O6, H2 O, C2 N O **Topology for Co1** -----Atom Co1 links by bridge ligands and has Common vertex with R(A-A) f Co 1 -0.6426 1.4165 0.5670 (-110) 13.298A 1 Co1 1.3574 -0.5835 0.5670 (1-10) 13.298A 1 Co 1 0.3574 1.4165 -0.4330 (01-1) 17.254A 1 Co 1 0.3574 -0.5835 1.5670 (0-11) 17.254A 1 Common edge with R(A-A) Co 1 0.6426 0.5835 0.4330 (111) 3.953A 2 Co 1 0.6426 -0.4165 1.4330 (102) 14.771A 2 _____ Structural group analysis _____ _____ Structural group No 1 _____ Structure consists of layers (111) with CoO6N4C37H24 Num. groups=1; Thickness=6.60; Min.Distance=8.174 **Coordination sequences** -----Co1: 1 2 3 4 5 6 7 8 9 10 Num 6142230384654627078 Cum 7 21 43 73 111 157 211 273 343 421 _____ TD10=421 Vertex symbols for selected sublattice -----Co1 Point symbol:{3^3.4^10.5.6} Extended point symbol: [3.3.3.4.4.4.4.4.4.4.4.4.5.6(4)] Rings with types: [*.*.*.*.*.*.*.*.*.*.*.*.*]

Point symbol for net: {3^3.4^10.5.6} 6-c net; uninodal net

Fig. S1 Asymmetric unit of 1 (Co: Blue, C: Black, O: Red, N: Sky-blue, H: off-white).

Fig. S2 Coordination pattern of Co (II) centre in framework (Co: Blue, C: Black, O: Red, N: Sky-blue, H: off-white).

Fig. S3 Coordination mode of BTB in framework (Co: Blue, C: Black, O: Red, N: Sky-blue, H: off-white).

D. FT-IR spectra

(a)

(b)

Fig. S4 FT-IR spectra of (a) BTB, (b) 4,4'-azopyridine and (c) 1.

E. Powder XRD pattern

Fig. S5 PXRD pattern of simulated and as-synthesized 1.

F. Thermogravimetric analysis

(b)

Fig. S6 (a) Thermogravimetric analysis shows the thermal stability of **1** up to 295 0 C, (b) PXRD confirms the formation of Co₃O₄ after framework destruction at 350 0 C.^[S21]

G. Steady-state spectroscopy

UV-Vis absorption spectra

Fig. S7 (a) UV-Vis absorption spectrum of BTB, and (b, c) pictorial representation of corresponding molecular orbitals associated to the electronic transitions.

Fig. S8 (a) UV-Vis absorption spectrum of 4,4'-azopyridine, pictorial representation of corresponding molecular orbitals of (b) *trans*- and (c) *cis*-conformer associated to these electronic transitions.

Fig. S9 UV-Vis absorption spectrum of 1.

Emission spectra

Fig. S10 Emission spectra of BTB (excitation at 275 nm).

Fig. S11 Emission spectra of 1 (excitation at 275 nm).

Excitation spectra

Fig. S12 Excitation spectra of the (a) BTB and (b) 1.

H. Fluorescence lifetime decay profile of BTB and 1

Fig. S13 The lifetime decay profile of (a) BTB and (b) 1 (λ_{ex} = 310 nm; λ_{probe} = 357 nm).

Table S5. Detail	parameters of the fitted fl	luorescence decay plo	ot of BTB in water.
------------------	-----------------------------	-----------------------	---------------------

λ excitation	λ detection	α1	τ ₁ (ns)	α2	τ ₂ (ns)	χ2
310 nm	357 nm	0.19	5.243	0.81	21.114	1.14

Table S6. Detail parameters of the fitted fluorescence decay plot of 1 in water.

λ excitation	λ detection	α1	τ ₁ (ns)	α2	τ ₂ (ns)	χ2
310 nm	357 nm	0.02	5.769	0.98	22.883	1.11

I. Stability test in water

Fig. S14 PXRD of the 1 before and after kept in water for 12 h.

J. Faraday-Tyndall experiment and DLS study

Fig. S15 Faraday-Tyndall effect showing uniform dispersibility of the solution and also after 1 h.

Fig. S16 Dynamic light scattering (DLS) study showing uniformly dispersed **1** particle in water with an average particle diameter of 219 nm.

K. Limit of detection calculation for Pb (II) ion

Fig. S17 Emission quenching ratio (at 357 nm) with respect to Pb (II) concentration fitted in a linear relationship to obtain the slope for limit of detection (LOD) calculation.

L. Recyclability tests

Fig. S18 PXRD of 1 before and after Pb (II) sensing.

Fig. S19 Retention of emission intensity and quenching efficiency of **1** upon Pb (II) sensing and being washed with water in alternative cycles.

M. Sensing at different pH

(b)

Fig. S20 Pb (II) sensing at different pH of the reaction medium.

N. Spiking

Table S7. Pb (II) spiking from natural water resources.

Water resources	Added Pb (II) concentration (M)	Detected Pb (II) concentration (µM)
River water	10 ⁻⁵	1.2 × 10 ⁻⁵
	10 ⁻⁶	10 ⁻⁶
Drinking water	10 ⁻⁵	1.1 × 10 ⁻⁵
	10 ⁻⁶	10-6
Tap water	10 ⁻⁵	10-5
	10 ⁻⁶	0.9 × 10 ⁻⁶

Fig. S21 Absorption spectra of 1 in pristine state and after adding Pb (II) in increasing concentrations.

P. Table S8. Detail parameters of the fitted fluorescence decay plot of **1** after adding $PbCl_2$ aqueous solution.

λ excitation	λ detection	α1	τ ₁ (ns)	α2	τ ₂ (ns)	α ₃	τ ₃ (ns)	χ2
310 nm	357 nm	0.10	0.489	0.03	5.978	0.87	22.606	0.97

Q. Stern-Volmer plots

(b)

Fig. S22 The Stern-Volmer plots of 1 at two different temperatures.

R. Host-guest interaction

We optimized the possible orientations (named as adduct 1-6 as Figs. 5 and S23-S27, respectively) of PbCl₂ over the BTB molecule, (a) one PbCl₂ molecule on each individual peripheral benzene moiety (Figs. 5, S23-S24), (b) one PbCl₂ molecule on central benzene moiety (Fig. S25), (c) two PbCl₂ molecules on two peripheral benzene moieties (Fig. S26), (d) two PbCl₂ molecules on central benzene moiety (Fig. S27).

Fig. S23 Adduct 2: (a) Optimized PbCl₂ position on BTB molecule (peripheral benzene moiety), their corresponding HOMO (b: top view, c: side view) and LUMO (d: top view, e: side view).

Fig. S24 Adduct 3:(a) Optimized PbCl₂ position on BTB molecule (peripheral benzene moiety), their corresponding HOMO (b: top view, c: side view) and LUMO (d: top view, e: side view).

Fig. S25 Adduct 4: (a) Optimized PbCl₂ position on BTB molecule (central benzene moiety), their corresponding HOMO (b: top view, c: side view) and LUMO (d: top view, e: side view).

Fig. S26 Adduct 5: (a) Optimized $PbCl_2$ position on BTB molecule (two $PbCl_2$ molecules each on two peripheral benzene moieties), their corresponding HOMO (b: top view, c: side view) and LUMO (d: top view, e: side view).

Fig. S27 Adduct 6: (a) Optimized PbCl₂ position on BTB molecule (two PbCl₂ molecules on central benzene moieties), their corresponding HOMO (b: top view, c: side view) and LUMO (d: top view, e: side view).

Adduct No.	Stabilization Energy (eV) per PbCl ₂
Adduct 1 (Figure 5)	0.579
Adduct 2 (Figure S20)	0.584
Adduct 3 (Figure S21)	0.563
Adduct 4 (Figure S22)	0.759
Adduct 5 (Figure S23)	0.593
Adduct 6 (Figure S24)	0.734

Table S9. Stabilization energy of optimized PbCl₂ on BTB molecule.

S. Limit of detection calculation for Hg (II) ion

Fig. S28 Emission quenching ratio (at 357 nm) with respect to Hg (II) concentration fitted in a linear relationship to obtain the slope for limit of detection (LOD) calculation.

T. Anti-inference ability of 1 for Hg (II) sensing and comparison

Fig. S29 Selective sensing of Hg (II) in presence of mixed metal ions (middle bar), whereas right bar shows more sensing efficiency of Pb (II) in presence of all metal ions and Hg (II) ions in the aqueous solution.

U. Absorption spectra of 1 with different Hg (II) ion concentrations

Fig. S30 Absorption spectra of 1 in pristine state and after adding Hg (II) with increasing concentrations.

V. XPS spectra

Fig. S31 XPS spectra of pristine 1: (a) survey, (b) C 1s, (c) Co 2p, (d) O 1s, (e) N 1s spectrum.

Fig. S32 XPS spectra of pristine **1** after addition of Hg (II) solution: (a) survey, (b) C 1s, (c) Co 2p, (d) O 1s, (e) N 1s, (f) Hg 4f spectrum.

Fig. S33 XPS spectra of pristine **1** after addition of Pb (II) solution: (a) survey, (b) C 1s, (c) Co 2p, (d) O 1s, (e) N 1s, (f) Pb 4f spectrum.

W. Fluorescence lifetime decay profile of 1 after addition of HgCl₂ solution

Fig. S34 The comparative lifetime decay profile of (a) 1, and (b) after addition of Hg (II) solution (λ_{ex} = 310 nm; λ_{probe} = 357 nm).

Table S10. Lifetime deca	y profile of 1 after	addition of HgCl ₂ aqu	eous solution.
--------------------------	-----------------------------	-----------------------------------	----------------

λ excitation	λ detection	α1	τ ₁ (ns)	α2	τ ₂ (ns)	α3	τ ₃ (ns)	χ2
310 nm	357 nm	0.06	0.3	0.07	5.563	0.87	22.216	0.97

X. References

- S1 L. Li, Q. Chen, Z. Niu, X. Zhou, T. Yang and W. Huang, J. Mater. Chem. C, 2016, 4, 1900–1905.
- S2 K. Yi and L. Zhang, J. Hazard. Mater., 2020, **389**, 122141.
- S3 Z. Li, Z. Zhan and M. Hu, *CrystEngComm*, 2020, **22**, 6727–6737.
- S4 G. Ji, J. Liu, X. Gao, W. Sun, J. Wang, S. Zhao and Z. Liu, J. Mater. Chem. A, 2017, 5, 10200–10205.
- S5 X. An, Q. Tan, S. Pan, H. Liu and X. Hu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2021, 247, 119073.
- S6 L. H. Chen, X. Bin Cai, Q. Li, B. Bin Guan, T. H. Liu, D. Li, Z. Q. Wu and W. Zhu, J. Solid State Chem., 2021, 302, 122416.
- 57 J.-X. Hou, J.-P. Gao, J. Liu, X. Jing, L.-J. Li and J.-L. Du, Dye. Pigment., 2019, 160, 159–164.
- S. Xu, L. Zhan, C. Hong, X. Chen, X. Chen and M. Oyama, Sensors Actuators B Chem., 2020, 308, 127733.
- S9 D.-C. Hu, X.-R. Da, J.-J. Tan, X.-F. Guo, H. Feng and J.-C. Liu, *Polyhedron*, 2020, **186**, 114613.
- S10 Q. Li, B.-B. Guan, W. Zhu, T.-H. Liu, L.-H. Chen, Y. Wang and D.-X. Xue, J. Solid State Chem., 2020, 291, 121672.
- S11 Rigaku Oxford Diffraction. CrysAlisPro Software System, version 1.171.39.30d, Rigaku Corporation: Oxford, UK, 2018.
- S12 G. M. Sheldrick, Crystal Structure Refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* 2015, **71**, 3–8.
- S13 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, Howard, J. A. Gildea, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- S14 A. Nath, S. Chawla, A. K. De, P. Deria, S. Mandal, *Chem. Eur. J.* 2022, accepted.
- S15 I. B. Berlman, "Handbook of Fluorescence Spectra of Aromatic Molecules," *Academic Press* 1971, New York, N. Y.
- S16 W. Liu, Y. Wang, Z. Bai, Y. Li, Y. Wang, L. Chen, L. Xu, J. Diwu, Z. Chai, S. Wang, ACS Appl. Mater. Interfaces 2017, **9**, 16448–16457.
- S17 J-D. Chaia, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, **10**, 6615-6620.
- S18 P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
- S19 P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H, P, Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M, Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M, Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision C.01, Gaussian Inc., Wallingford CT 2016.
- S21 D. D. M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, *Appl. Phys.* 2017, A **123**, 264.